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ABSTRACT

We introduce an end-to-end framework to analyze and evaluate the prediction accuracy of different atmospheric models
for satellites in low-Earth orbit. We focus our analysis on the NRLMSISE-00, NRLMSIS 2.0, and JB2008 atmosphere
models.

To evaluate the performance of each atmospheric input, we cannot simply compare generated ephemerides with the
same initial conditions and different atmosphere models; parameters such as the drag coefficient must also be estimated
with the same model before generating new predictions. By processing GNSS tracking data over a timespan of 6
months for two satellites in different orbit regimes, we can generate a large dataset of definitive ephemeris data. Using
the last definitive state at the end of each orbit determination arc, we generate a prediction using the solved-for CD
value and the most up-to-date space weather data at the time.

Overlapping predictive and definitive states at the same epochs to determine the prediction errors at 24, 48, and 72
hours, we show that JB2008 slightly outperforms the MSIS models during geomagnetic storms, reducing prediction
errors by half in some isolated cases. However, outside of storm periods, the empirical radial–in-track–cross-track
uncertainties generated from our sample data with MSIS are smaller than the equivalent results from Jacchia–Bowman:
at 400 km, the differences in error are less than 20 %, but at 700 km the errors double. We also show that for this
application, the differences between the newer NRLMSIS 2.0 and the classic NRLMSISE-00 are negligible; the lower
thermospheric densities result in higher CD estimates, but the prediction errors are essentially identical for both.

Finally, we analyze the effect of space weather data independently from the atmospheric model. Using the same
framework, we compare results with NRLMSISE-00 using space weather data from NOAA’s Space Weather Prediction
Center and from Space Environment Technologies. We do not see any significant differences between the two, but
when we compare the predictive data to the definitive data of either source, prediction errors are on average reduced
by 30 % after 48 h of prediction. This shows that if we can decrease the error in the space weather predictions,
owner/operator ephemerides will see a major boost in accuracy.

1. INTRODUCTION

As the catalog of space objects in low-Earth orbit (LEO) grows and we witness an increasing number of conjunction
events, owner/operators find themselves in need of generating accurate orbit predictions for the purposes of space
situational awareness.

Although the 18th and 19th Space Defense Squadrons of the U.S. Space Force already generate ballistic trajectories for
all trackable objects for operational conjunction assessment, not all operators have access to these ephemerides, and
in many cases they might require more frequent predictions that they can use for planning, tasking, and scheduling.
Additionally, for all maneuverable satellites, it is of the utmost importance that they share predicted ephemerides with
the rest of the space community to communicate their intent to maneuver and allow other operators to plan accordingly.

Many satellite operators already leverage on-board GNSS receivers to obtain definitive solutions and produce their
own orbit predictions. In LEO, uncertainty in these predictive ephemerides is highly influenced by drag modeling,
but there is a lack of resources detailing which atmospheric models are best suited for the application of generating
real-time predicts. By real time, we refer to orbit predictions being generated with the most up-to-date space weather
data at a given epoch, which is typically the latest definitive state produced by an orbit determination (OD) process.
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Our goal with this paper is to start generating comparative data of the prediction accuracy of different atmospheric
models. In particular, we will be comparing the widely used NRLMSISE-00 from the Naval Research Laboratory, their
more modern NRLMSIS 2.0 version, as well as the Jacchia–Bowman 2008 (JB2008) atmosphere. For the first two
models, we employ the daily short-term space weather predictions from the U.S. Air Force available through NOAA’s
Space Weather Prediction Center (SWPC), while for the latter we use the data generated by Space Environment
Technologies (SET), as we need an expanded set of indices. We also independently analyze the effects of each of
these space weather data sources with predictive and definitive data.

For this study, we have selected two satellites that operate in different orbit regimes: the first one is NASA’s Global
Precipitation Measurement (GPM) satellite, which is in a very low altitude, 400 km, 65° orbit, while the second one—
an Earth-Observing satellite—is flying in a much higher, 700 km, 98° orbit and has a slightly higher area-to-mass ratio.
Additional details of each satellite can be found in Table 1.

Table 1: Orbital parameters of the satellites in the study.

Satellite Apogee×Perigee Altitude* Inclination Area-to-Mass Ratio†

GPM 405×391km 65° 0.005 m2/kg
Earth-Observing Satellite 703×702km 98° 0.009 m2/kg
* Average mean elements relative to the Earth’s equatorial radius.
† Average AD/m, where AD is the effective drag area and m is the mass.

The accuracy review will be conducted by first processing 6 months of GPS measurements through an orbit determina-
tion process to generate definitive ephemerides and then propagating a predictive ephemeris from the definitive states
at the end of each arc. After aggregating the results, we end up with multiple sets of predicted states overlapping with
the definitive data, allowing us to compare the position differences in the radial–in-track–cross-track (RIC) frame for
each model at different prediction lengths.

2. ATMOSPHERIC MODELS

In order to generate ample data for comparisons, three different modern empirical atmospheric models are considered:

(a) NRLMSISE-00,

(b) NRLMSIS 2.0, and

(c) JB2008.

Each of these models has been implemented in SpaceNav’s State Propgation Service (SPS) and is utilized for both
orbit determination and prediction. The following sections describe the particulars of each atmosphere model in more
detail. The first section of results, §5.1, will focus on the performance of each atmosphere model.

2.1 The NRLMSISE-00 Model
The inputs to the Naval Research Laboratory (NRL) mass spectrometer and incoherent scatter radar (MSIS) extended
to the exosphere (E) from the year 2000, or NRLMSISE-00 for short, are as follows [12]:

ρ = f

DoY, t,Altitude,Latitude,Longitude,

Space Weather︷ ︸︸ ︷
F10.7, F̄10.7,ap,Ap,LST


• DoY is the current day of the year and t are the seconds in the day,

• daily F10.7 for the previous day and 81-day F̄10.7 average,

• daily Ap (average), as well as 3-hour ap index for 0, 3, 6, 9, 12–33 (mean), and 36–57 (mean) hours before
current time, and finally
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• LST, or local solar time, which is interpreted as the apparent local time from the Sun’s instantaneous position;
it is worth noting that other implementations may use directly the mean local time computed directly as LST =
t/3600+Longitude/15 [hours].

NRLMSISE-00 has become the standard atmosphere for satellite drag modeling over the last few years, in part thanks
to its widespread availability. The original source code is available in Fortran [16], but a translation to C is available
from Prof. Brodowski [3], and Python bindings exist too.

2.2 The New NRLMSIS 2.0 Model

In [4], the new NRLMSIS 2.0 model from 2020 is introduced as follows:

“NRLMSIS®2.0 is an empirical atmospheric model that extends from the ground to the exobase and
describes the average observed behavior of temperature, eight species densities, and mass density via a
parametric analytic formulation.”

The new model takes in the same inputs as NRLMSISE-00 but drops the local solar time requirement. Internally, it
computes mean local solar time from time of day and longitude (i.e., LST = t/3600+Longitude/15 [hours]). Fortran
source code is available [15]. However, it is worth noting that unlike NRLMSISE-00, NRLMSIS 2.0 is distributed
with a license agreement that prohibits usage of the software for any non-academic, commercial purposes without first
obtaining written authorization from the Naval Research Laboratory.

Most of the changes focused on altitudes below 200 km. However, the incorporation of new measurements and slight
changes to the thermosphere modeling have significant effects on state propagation.

Below we list the main differences or upgrades of the NRLMSIS 2.0 model over its predecessor:

• Species densities are fully coupled to temperature from the mixed region below ∼ 70km altitude to the diffu-
sively separated region above ∼ 200km.

• Atomic oxygen (O) density now extends down to 50 km.

• Geopotential height is now used as the internal vertical coordinate.

• Assimilated extensive new lower and middle atmosphere temperature, O and H data, global average thermo-
spheric mass density from satellite orbits, and validated the model against independent samples of this data.

• Decreased residual biases and uncertainties in the mesosphere and below.

• New model presents a warmer upper troposphere, cooler stratosphere and mesosphere.

• In the thermosphere, the main changes are lower N2 and O densities.

From a computational performance point of view, the source code from [15] states:

“For applications in which the horizontal location or time changes with every call (e.g., satellite
ephemerides), users may find that NRLMSIS 2.0 is 1/3 to 1/2 as fast as NRLMSISE-00. The reduction in
speed is due to the greater number of model parameters in NRLMSIS 2.0, as well its stronger coupling
with the lower atmosphere, compared to NRLMSISE-00. However, the model is still very fast: a typical
desktop system can process at least 100 000 serial calls per second.”

In our testing, propagating an initial state for 1 day with a full set of force models (see Table 4), we have found
ephemeris generation with the new NRLMSIS 2.0 atmosphere to be ∼ 8% slower than the old NRLMSISE-00 model.
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2.3 The Jacchia–Bowman 2008 Model

Jacchia–Bowman 2008, or JB2008 for short, is the latest iteration of atmosphere models based on Jacchia’s diffusion
equations, following the original work published by Jacchia in 1970 [6], with updates in 1971 [7] and 1977 [8]. Starting
with JB2006 [2], Bowman introduced new solar indices to better model the thermospheric density. With JB2008, this
is further expanded to also better model the effects of geomagnetic storms [1].

The final form of JB2008 takes in as inputs:

ρ = f

MJD,Altitude,Latitude,RA,

Space Weather︷ ︸︸ ︷
F10, F̄10,S10, S̄10,M10,M̄10,Y10,Ȳ10,dTc,Sun Declination and RA


• MJD is the modified Julian date of the current time,

• solar indices F10, S10 (EUV), M10 (MUV), and Y10 (X-ray) for each corresponding wavelength, with F̄10, S̄10,
M̄10, and Ȳ10 being the centered averages,

• the dTc exospheric temperature change—derived from the Dst index—is the driver of global density changes
when modeling the effect of geomagnetic storms, and

• the satellite’s and the Sun’s right ascensions (RA) are used to compute the local hour angle (LHA), like in all
Jacchia models [17].

Fortran source code for JB2008 is publicly available from Space Environment Technologies [13].

JB2008 is the basis for the U.S. Air Force’s latest high-accuracy satellite drag model (HASDM), often labeled JBH09,
which applies the Dynamic Calibration Atmosphere (DCA) algorithm on top of this reference model to estimate a
varying global density field out 3 days from a series of calibration satellites in LEO.

3. SPACE WEATHER DATA SOURCES

As we have seen in the previous section, all atmospheric models require up-to-date space weather inputs. Space
weather data comes in many forms, but the most common are:

F10.7 The solar radio flux at 10.7 cm is one of the best indicators of solar activity. It correlates well with the sunspot
number and solar irradiance records. Daily F10.7 data is produced by the Canadian Dominion Radio Astrophys-
ical Observatory and expressed in solar flux units (1 sfu = 1 × 10−22 W m−2 Hz−1) [10].

Kp The planetary K-index is an indicator of disturbances in the Earth’s magnetic field and is used to characterize the
magnitude of geomagnetic storms. NOAA’s Space Weather Prediction Center (SWPC) will send geomagnetic
alerts when Kp thresholds are exceeded [10].

Ap The Kp index is a logarithmic scale, and thus it is not meaningful to average a set of K-indices. Every 3 hours,
the K-value is converted into a linear scale, which results in the a-index. Averaging the 8 daily a-values gives
us the Ap index for a certain day.

Daily and historical space weather data can be obtained from different sources:

• F10.7 indices can be retrieved from NOAA SWPC [10] or the Canadian Space Weather Forecast Centre [5].
Updated daily.

• Kp indices can be retrieved from NOAA SWPC [10]. Updated every 3 hours. These can be converted into ap
indices with a simple relation if necessary.

For short short-term predictive data, the U.S. Air Force generates 45-day predictions daily for both F10.7 and Ap indices,
which can then be retrieved through NOAA SWPC [10]. SWPC also distributes a separate 27-day prediction. Note
that daily values will not become definitive until, in some cases, months after the day has passed.
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In this work, we will discuss two main sources of space weather data:

• NOAA SWPC will refer to the combination of daily and historical indices retrieved from SWPC combined with
the U.S. Air Force 45-day prediction. With the raw data, an 81-day centered average F̄10.7 is computed to use in
the atmosphere models.

• SET will refer to the space weather files generated by Space Environment Technologies in an hourly cadence.
Access to these can be requested to SET through the Unified Data Library. These files are required when using
the JB2008 model as they provide the additional S10, M10, and Y10 indices, along with the precomputed dTc. It
is worth noting that this file provides 54-day centered averages instead of 81 days.

In the second part of this study (see §5.2), we present results that compare the effects of switching between the NOAA
SWPC and SET space weather data sources using a single atmospheric model (NRLMSISE-00). Additionally, we
compare the effects of using “definitive” space weather instead of the daily predictions to understand the statistically
significant orbit prediction changes caused by errors in space weather predictions.

4. A DESCRIPTION OF THE ANALYSIS FRAMEWORK

In order to evaluate the accuracy of each atmosphere model and space weather source, we have designed a rigorous
end-to-end testing framework that can inform us on which model produces more statistically consistent results. In this
section, we will cover the details regarding the propagation and filter configuration, as well as detail the procedure for
analyzing predictive-definitive overlaps.

4.1 Orbit Determination and Prediction Models

SpaceNav’s Advanced Orbit Determination Service (AODS) was utilized for processing all tracking data. Both satel-
lites provide GPS NavSOL measurements, i.e., Cartesian position and velocity in a terrestrial frame (ITRF). Table 2
lists the measurement noise values associated with each satellite.

Table 2: Measurement noise values for NavSOL tracking data.

Satellite
Position [m] Velocity [m/s]

Radial In-Track Cross-Track Radial In-Track Cross-Track

GPM 5.0 2.75 2.25 0.012 0.008 0.005
Earth-Observing Satellite 5.0 5.0 5.0 0.01 0.01 0.01

For GPM, tracking data is received in 32-hour long files, 3 times per day. For this analysis, we split the data and
processed it in 10-hour OD arcs to improve solution quality due to the high variability of drag at GPM’s low altitude.
For the Earth-observing satellite, since it flies about 300 km higher than GPM, the effects of drag are decreased and
we were able to process 24-hour OD arcs from daily high-quality NavSOL measurement files while still preserving
accuracy.

The batch least-squares filter, or differential corrector, was used for each OD run. This approach iteratively processes
groups of data as opposed to sequentially propagating between measurements and applying updates like the extended
or unscented Kalman filters [14]. The batch propagates a reference trajectory numerically, while the covariance is
propagated using the state-transition matrix (STM). Further details on the OD setup are shown in Table 3.

Internally, AODS makes use of our in-house propagation software (SPS), which is then also utilized to generate the
predictive ephemerides. The latter are always propagated from the last definitive state in each OD arc and employs
the latest solved-for CD for drag and CR for solar radiation pressure modeling during the entire prediction timespan.
Predictive ephemerides are limited to 4 days (96 h) in this study.
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Table 3: Orbit determination configuration for each run.

Satellite GPM Earth-Observing Satellite

Arc Length 10 h 24 h
Filter Type Batch Least-Squares Batch Least-Squares
Solve-Fors* CD, CR CD, CR

* Additional states (other than position and velocity) solved-for
during the OD arc, including the drag coefficient (CD) and the
reflectivity coefficient (CR).

Table 4 details all force models used for propagation during both orbit determination and prediction. These are the
same for both satellites. The only differences lie on the individual parameters for each spacecraft: (a) the Earth-ob-
serving satellite assumes fixed drag and solar radiation pressure (SRP) effective areas, while (b) the GPM model is
significantly more complex. Given the importance of drag modeling for the latter, we make use of a high-fidelity
variable area model where we compute the effective drag and SRP areas at each timestep of the propagation from
the modeled attitude of the spacecraft, which is derived from an Earth-pointing attitude provider that accounts for a
constant pitch offset (an axis aligned with nadir and an axis constrained to point as close as possible to the velocity
direction), as well as Sun-tracking solar panels that remain feathered during eclipse and at certain β angles.

Table 4: Special perturbation force models for propagation.

Geopotential EGM2008, 70×70 (degree and order)
Solid Tides Enabled
Drag NRLMSISE-00, NRLMSIS 2.0, JB2008
Third Bodies* Sun, Moon
Solar Radiation Pressure† Enabled
* Included third bodies are treated as point-body masses. Their posi-

tion is determined using the JPL SPICE ephemerides (DE430).
† SRP uses a cannonball model where the radiation pressure is only a

function of the satellite-Sun vector, the effective area in that direc-
tion, and the reflectivity coefficient.

4.2 Overlap Analysis
Overlaps are simply position and velocity differences between synchronous definitive and predictive data, i.e., predic-
tion errors. Once all OD runs finish, we concatenate all of the definitive data to arrive at one continuous definitive
ephemeris spanning the entire analysis time interval. Any duplicate time nodes are removed (only retaining the lat-
est result). As stated, predictive ephemerides begin at the last epoch of each original definitive ephemeris. Because
there are a few gaps in the original GPS data for both satellites, each predictive ephemeris roughly covers 4 days of
continuous definitive data, though epochs do not always line-up perfectly. To create better, more uniformly formatted
overlaps, we define an overlap timespan which covers 4 days (with 5 min buffers) and has a 60 s timestep size. We
then find the definitive data that overlaps every predictive file, and we synchronize through Lagrange interpolation of
both predictive and defintive datasets. Finally, we take position and velocity differences for each overlapping state at
all relative and absolute times.

After all overlaps are collected, outlier overlaps are removed based on a defined “low” and “high” outlier sigma.
Outlier removal first collects the computed predictive errors into intervals of length equal to the orbit period. For
each of these intervals, the median of all state errors is computed followed by the absolute deviation of each individual
ephemeris from the median. This distance divided by the median of all the distances serves as an analogue for standard
deviation that is less sensitive to outliers. All ephemerides falling outside the “high” sigma-level threshold based on
this metric are removed. Next, the process is repeated using the standard deviation instead of median absolute deviation
and using the “low” sigma threshold [11]. For this analysis, we define “low” and “high” thresholds of 5 and 10 sigma,
respectively. Outliers can result from unmodeled maneuvers in the data, a sequence of poor GPS measurements
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occurring near the end-of-arc, an unmodeled attitude change, etc.

With outliers removed, an empirical uncertainty profile can be generated. We take the standard deviation of differences
at each time, utilizing each overlap as an empirical sample.

4.3 Analysis Time Range

To collect statistically significant results, this study processed tracking data for each satellite over 6 months. We
have limited the study to 2023, as this year has been so far the most active of Solar Cycle 25. As we approach
solar maximum, the density in the thermosphere increases significantly, and the effects of drag mismodeling are more
pronounced. For both satellites we used observations covering the exact same timespan which is detailed in Table 5.

Table 5: Timespan for observations used in the study.

Tracking Data Start Tracking Data End

February 22, 2023 August 22, 2023

The space weather evolution over the analysis time range (February to August 2023) as described by the “definitive”
NOAA SWPC and SET space weather sources is presented in Figure 1a for the solar flux (daily F10.7 and F̄10.7 centered
average) and in Figure 1b for the geomagnetic activity (we plot the daily Ap average, but Kp and Dst follow the exact
same pattern). Note that since the period of this analysis covers data all the way until August 2023, not all days
have final definitive information. Notice the spikes in the geomagnetic activity history; each corresponds to a past
geomagnetic storm which we will see has a significant effect in the prediction results.

5. RESULTS

In this section we present the main prediction accuracy results for this study. We have structured the accuracy review
in two main sections: the first one focusing on the atmospheric models in prediction space, and a second one exploring
the effects of space weather data sources and prediction errors.

5.1 Atmospheric Models Comparison

5.1.1 Overlap Analysis Before Outlier Removal

We start by analyzing the predictive-definitive overlaps without outlier removal to understand the evolution in time of
position differences of the orbit predictions relative to the definitive states (expressed in the RIC frame). To do that,
we take individual states from the predicted ephemerides at 24, 48, and 72 hours from the OD epoch and compute the
differences with the Lagrange-interpolated definitive state at the same time. Note that we still remove all definitive
and predictive overlaps around the times of executed maneuvers to not bias the results.

Figures Figures 2, 3, and 4 plot these RIC differences at discrete prediction times for GPM and each different atmo-
spheric model. In all cases, we see significant spikes in the data—outliers—that all exactly correspond to geomagnetic
storms as indicated by high Ap values in Figure 1b. For example, the 72 h prediction line has spikes on March 27,
2023 and April 27, 2023, which perfectly align with the storms on March 24, 2023 and April 24, 2023, respectively.
We also see spikes on March 26, 2023 and April 26, 2023 for the 48 h prediction time. This indicates that predictions
generated at the time of the storm will suffer from the most inaccuracies. After the storm passes, the prediction errors
return to average levels.

The graphs show that most of the time, all models perform roughly the same, with errors typically in the 1000 m
range after 24 h of prediction but sometimes reaching more than 10 km in-track and more than 100 m radially during
geomagnetic storms. However, it is in the storm periods that we see JB2008 outperforming both MSIS models, with
the errors around the March and April 2023 storms sometimes being reduced by half. This makes sense given the focus
of the Jacchia–Bowman model on improving density modeling during geomagnetic storms through the Dst-derived
dTc parameter. NRLMSISE-00 and NRLMSIS 2.0 perform nearly identically for GPM’s orbit.
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De-nitive Space Weather Data

Feb Mar Apr May Jun Jul Aug Sep

Time [UTC] 2023

120

140

160

180

200

220

240

S
o
la
r
F
lu
x
In
d
ex
,
F
10

:7

NOAA SWPC (Daily)
NOAA SWPC (81-Day Average)

SET (Daily)
SET (54-Day Average)
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Fig. 1: Definitive space weather data evolution over the study time range.
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Satellite: GPM (400 km, 65 /) | Prediction Time: 24 h
Predictive vs. De-nitive Ephemerides
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Fig. 2: RIC position differences evolution over time for GPM at 24 h of prediction time after the OD epoch for different
atmosphere models using predictive space weather data.

Satellite: GPM (400 km, 65 /) | Prediction Time: 48 h
Predictive vs. De-nitive Ephemerides
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Fig. 3: RIC position differences evolution over time for GPM at 48 h of prediction time after the OD epoch for different
atmosphere models using predictive space weather data.
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Satellite: GPM (400 km, 65 /) | Prediction Time: 72 h
Predictive vs. De-nitive Ephemerides
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Fig. 4: RIC position differences evolution over time for GPM at 72 h of prediction time after the OD epoch for different
atmosphere models using predictive space weather data.

5.1.2 Overlap Analysis After Outlier Removal

Next, we complete the overlap process described in §4.2. The total number of overlaps before and after outlier removal
are displayed in Table 6 for each case and satellite. Note that this is the only section that will include results from
the Earth-observing satellite, as the longer OD arcs resulted in a number of overlaps we deemed too low for any other
analysis.

Table 6: Total number of predictive-definitive overlaps.

Satellite Model
Number of Overlaps

Total Post-Outlier Removal

GPM
NRLMSISE-00 1347 698
NRLMSIS 2.0 1347 698
JB2008 1347 689

Earth-Observing Satellite NRLMSISE-00 161 98
JB2008 161 96

Figures 5, 6, and 7 show the resulting overlap plots for GPM and each atmospheric model. In these plots, each line
represents one predictive-definitive interpolated overlap spanning up to 4 days. Equivalent plots for the higher-altitude
Earth-observing satellite are presented in Figures 8 and 9.

From the prediction error overlaps, we can then compute an empirical covariance. This is a realistic covariance since
it exactly represents the expected uncertainties at different prediction lengths based on a statistical analysis. Figure 10
plots the empirical error growth for GPM, while Figure 11 includes the counterpart for the Earth-observing satellite.
Finally, Table 7 summarizes all the results for all atmosphere models and satellites.
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Fig. 5: Overlaps of RIC position differences between predictive and definitive ephemerides for GPM using the
NRLMSISE-00 atmosphere model.

Fig. 6: Overlaps of RIC position differences between predictive and definitive ephemerides for GPM using the NRLM-
SIS 2.0 atmosphere model.
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Fig. 7: Overlaps of RIC position differences between predictive and definitive ephemerides for GPM using the JB2008
atmosphere model.

Fig. 8: Overlaps of RIC position differences between predictive and definitive ephemerides for an Earth-observing
satellite using the NRLMSISE-00 atmosphere model.
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Fig. 9: Overlaps of RIC position differences between predictive and definitive ephemerides for an Earth-observing
satellite using the JB2008 atmosphere model.

Table 7: Statistical prediction errors from predictive-definitive overlaps using different atmosphere models, all with
predictive space weather data (NOAA SWPC for MSIS models, SET for JB2008).

Satellite Model Prediction
Mean Error, µ [m] Std. Dev., 1σ [m]

Radial In-Track Cross-Track Radial In-Track Cross-Track

GPM

NRLMSISE-00
24 h 0.92 −36.86 −0.02 14.65 859.89 1.12
48 h −1.04 −17.73 0.02 30.44 3542.65 2.43
72 h −3.22 664.81 −0.06 46.66 8196.73 4.80

NRLMSIS 2.0
24 h 0.81 −33.74 -0.02 14.63 848.08 1.12
48 h −1.26 7.80 0.01 30.44 3513.67 2.44
72 h −3.60 732.58 −0.05 46.33 8155.85 4.82

JB2008
24 h 0.29 −66.14 −0.01 16.22 1037.46 1.18
48 h −4.87 151.26 −0.01 34.48 4060.35 2.76
72 h −26.83 2875.25 −0.06 49.18 9474.61 6.00

Earth-
Obs.
Sat.

NRLMSISE-00
24 h 1.14 −83.60 0.06 1.17 82.60 0.56
48 h 1.17 −213.76 0.15 2.26 251.96 0.88
72 h 1.12 −347.99 0.12 3.11 520.57 1.24

JB2008
24 h −2.67 236.00 −0.07 2.75 193.07 0.58
48 h −5.11 731.48 0.06 4.07 560.05 0.95
72 h −7.36 1595.61 0.05 4.88 1061.93 1.49
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Fig. 10: Empirical covariance error growth vs. prediction time for GPM with different atmospheric models.

Fig. 11: Empirical covariance error growth vs. prediction time for an Earth-observing satellite with different atmo-
spheric models.
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Overall, we can see that after outlier removal, both MSIS models slightly outperform Jacchia–Bowman 2008 in terms
of prediction accuracy despite requiring significantly less space weather inputs. The differences are fairly small for
GPM, where prediction errors are already quite high due to the low 400 km altitude orbit being highly perturbed by
drag. Differences between either MSIS and JB2008 in the in-track standard deviation prediction errors are around
20 % at most after 24 h of prediction, and slightly lower than that afterwards. However, at the 700 km altitude of the
Earth-observing satellite, the prediction error differences are more pronounced; after 48 h of prediction, the empirical
in-track uncertainty is more than doubled when comparing JB2008 to NRLMSISE-00.

Furthermore, we do not see any significant difference in accuracy between the NRLMSISE-00 and NRLMSIS 2.0
models. Despite the thermospheric density modeling changes in the newer version and updates for lower-altitude
computations, these are not reflected in our results here. Differences in density are compensated with differences in CD
(see §5.1.3), but we do not see improvements in the prediction accuracy. It could be that since the focus of NRLMSIS
2.0 was on altitudes below 200 km, other satellites and, in particular, reentry studies could see improvements from the
new model, but for satellite operations in LEO the difference appears to be negligible.

5.1.3 Drag Coefficient Analysis

Finally, since each OD solution returns a new solved-for drag coefficient, we can analyze the consistency of the CD
results as well as its changes throughout the analysis time interval. We plot this in Figure 12 for GPM and in Figure 13
for the Earth-observing satellite, with each graph containing data for all atmosphere model runs.

Again, we can see that NRLMSISE-00 and NRLMSIS 2.0 generate very similar results. However, in the CD time
series we can see some differences between the models. NRLMSIS 2.0 consistently produces higher drag coefficient
estimates when compared to the older NRLMSISE-00. This is expected for a satellite flying at GPM’s altitude since—
all else being equal—the lower N2 and O densities in the thermosphere need to be compensated with an increase in
CD.

At the same time, the JB2008 drag estimates vary wildly, particularly for GPM. This is very surprising to see since the
rest of the results are all in line with the MSIS models, but the solved-for CD appears to be significantly more variable
in this model. While the estimate from MSIS is always around CD ≈ 2, some of the JB2008 estimates peak at CD > 10,
which is much higher than the typical nominal or physical drag coefficients for satellites. Overall, JB2008 appears to
be predicting much lower neutral mass density values than MSIS, with the density being half of MSIS in some cases.
This is true for both GPM and the higher-altitude Earth-observing satellite.

5.2 Space Weather Data Sources Comparison

In this last section, we focus on the effects of the space weather data only. We perform a variation of the previous
analysis over the same timespan for GPM using the NRLMSISE-00 atmosphere and the NOAA SWPC and SET space
weather files. Since the SET indices include both F10.7 and Ap, they can be used with any atmospheric model, not
only JB2008. However, recall that F̄10.7 from SET is a centered-average over 54 days, not the standard 81 days like in
the NOAA SWPC data. We also compare the results of using predictive and definitive space weather from both data
sources, i.e., using the known space weather data as of August 2023 instead of the daily or hourly predictions for each
day.

Figure 14 displays the evolution of the RIC differences over the interval of analysis at 24 h of prediction after the
OD epoch. In contrast with the results from §5.1.1, here we do not see any significant differences between each data
source. This makes sense, as NRLMSISE-00 cannot take advantage of the SET-provided dTc parameter that JB2008
uses for geomagnetic storm modeling.

After outlier removal, we follow the same procedure from §5.1.2 and compute the empirical covariance error growth
profile for each space weather data source. The results are plotted in Figure 15 and detailed in Table 8. Note that the
graph here uses a linear scale to more clearly showcase the differences between each source.

As expected, predictions using NOAA SWPC and SET predictive space weather behave very similarly. Despite the
latter using a shorter 54-day centered average for the solar flux, that does not reflect in significant prediction error
differences. However, when we compare either predictive source to the definitive data, the differences are more
prominent—of the order of 30 %. This is the percentage of orbit prediction accuracy errors introduced by errors in the
space weather predictions.
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Satellite: GPM (400 km, 65 /)
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Fig. 12: Time series of the solved-for drag coefficient (CD) history for GPM with different atmosphere models.

Satellite: Earth-Observing Satellite (700 km, 98 /)
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Fig. 13: Time series of the solved-for drag coefficient (CD) history for an Earth-observing satellite with different
atmosphere models.
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Satellite: GPM (400 km, 65 /) | Prediction Time: 24 h
Predictive vs. De-nitive Ephemerides
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Fig. 14: RIC position differences evolution over time for GPM at 24 h of prediction time after the OD epoch using the
NRLMSISE-00 atmosphere and NOAA SWPC and SET predictive and definitive space weather data.

Fig. 15: Empirical covariance error growth vs. prediction time for GPM with NOAA SWPC and SET predictive and
definitive space weather data.
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Table 8: Statistical prediction errors from predictive-definitive overlaps for GPM using the NRLMSISE-00 atmosphere
model and different space weather data sources from NOAA SWPC and SET.

Space Weather Prediction
Mean Error, µ [m] Std. Dev., 1σ [m]

Radial In-Track Cross-Track Radial In-Track Cross-Track

NOAA SWPC Predictive
24 h 0.92 −36.86 −0.02 14.65 859.89 1.12
48 h −1.04 −17.73 0.02 30.44 3542.65 2.43
72 h −3.22 664.81 −0.06 46.66 8196.73 4.80

NOAA SWPC Definitive
24 h −0.74 62.36 −0.02 11.40 628.24 1.03
48 h −1.15 255.94 −0.01 21.95 2418.26 2.01
72 h −1.30 595.14 0.03 32.68 5460.61 3.51

SET Predictive
24 h −0.41 33.23 −0.00 15.04 881.68 1.14
48 h −4.19 343.69 −0.07 30.77 3682.71 2.57
72 h −18.29 2331.42 0.15 46.27 8522.80 5.30

SET Definitive
24 h −0.60 54.96 −0.01 11.66 652.35 1.07
48 h −0.88 219.24 −0.03 21.81 2468.13 2.05
72 h −1.18 529.50 0.07 31.47 5459.38 3.53

6. CONCLUSIONS

In this work, we have presented an approach to evaluate the prediction accuracy of different atmospheric inputs when
used in an operational setting for satellite propagation. In this framework, we run both orbit determination and predic-
tion with each set of models so that predicted ephemerides can be generated with the correct drag coefficient estimates.
Results in §5.1.3 show why this is the right approach, as we see how the solved-for CD varies significantly at a given
epoch based on the chosen model without necessarily accruing more or less errors in prediction.

Overall, the comparison of atmospheric models for GPM showed that in some cases, particularly during geomagnetic
storms, the Jacchia–Bowman atmosphere can slightly reduce prediction errors compared to the MSIS models, with a
limited number of cases showing a two-fold improvement in accuracy. However, on average, the differences between
these models are fairly small, and when we aggregate all overlaps after outlier removal to compute an empirical
covariance, we see that both MSIS models result in slightly smaller uncertainties: ∼ 3500m in-track uncertainty after
48 h compared to ∼ 4000m. Note that in all cases, the prediction errors for GPM are rather large due to the low 400 km
altitude that is highly influenced by drag perturbations. The differences between JB2008 and MSIS are more obvious
for the higher-altitude Earth-observing satellite data, where, for example, the in-track empirical standard deviation
after 48 h of prediction is doubled with JB2008.

In our analysis, we did not see any significant differences between the more modern NRLMSIS 2.0 model and the
classic NRLMSISE-00. It is possible that other use cases like reentry prediction could see improvements from the
newer model given the focus on the lower atmosphere, but even at GPM’s altitude, the main differences were observed
in terms of slightly higher CD estimates to compensate for the lower thermospheric density values. It is when analyzing
the drag coefficient that we see that the solved-for CD with the Jacchia–Bowman model is always significantly larger
than the one from either MSIS model, indicating that JB2008 is estimating much lower neutral mass densities; in some
extreme cases, the density values can be half of what MSIS predicts. This is the case for both GPM’s 400 km orbit and
the 700 km case.

In the last part of the study, we showed that using either the NOAA SWPC or SET predictive space weather sources
produce fairly similar results with the NRLMSISE-00 atmosphere and GPM. This means that the SET data is only
advantageous when used along with the JB2008 model which employs the extended set of solar flux and geomagnetic
indices. However, the difference between using predictive or definitive space weather data for predictions is striking:
radial and in-track uncertainties are reduced by more than 30 % after just 2 days of prediction or more. This indicates
that a considerable percentage of the orbit prediction errors are introduced by space weather prediction errors. Future
work by NOAA’s Space Weather Prediction Center on physics-based atmosphere models, like WAM-IPE [9], has the
potential to reduce our reliance on solar and geomagnetic indices and, in the process, improve prediction accuracy.
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