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ABSTRACT

As space exploration expands past Earth orbit to the Moon and beyond, spacecraft are re-
quired to develop more capabilities in order to operate in more complex dynamical environments.
Considering objectives for spacecraft rendezvous and proximity operations (RPO) in the cislunar
domain, this investigation proposes and leverages a framework to characterize relative dynamics
between two spacecraft in a target-chaser configuration along orbits in the Earth-Moon-Sun system
described by the Bicircular Restricted Four-Body Problem (BCRFBP). First, a novel parameteri-
zation of the relative dynamics is introduced and numerically validated along two non-Keplerian
reference orbits in the BCRFBP. The resulting equations of motion are linearized about the target
spacecraft’s position and implemented as elements of a multiple-shooting strategy that enable the
ability to design relative trajectories in a Local-Vertical-Local-Horizontal (LVLH) frame attached
to the target’s center. Two RPO demonstrations involving the target-chaser configuration are sim-
ulated along the reference orbits which include a 9:2 𝐿2 Near Rectilinear Halo Orbit (NRHO) and
a 3:1 𝐿1 Northern Halo orbit. In each demonstration, the chaser achieves a successful rendezvous
with the target spacecraft while adhering to specific Sun-lit geometries during its close approach.
The results of this investigation underscore the benefit of characterizing spacecraft relative dynam-
ics in the BCRFBP to model rendezvous and proximity operations in a multibody gravitational
environment.

1. INTRODUCTION

As NASA moves to enable a more permanent human presence beyond Earth orbit, a need
arises to further develop the current state-of-the-art in spacecraft guidance, navigation, and control
(GNC) technologies with the aim of operating in more challenging dynamical environments.
Notably, NASA’s Artemis program seeks a return to the Moon in order to leverage the lunar surface
and surrounding cislunar region as a proving ground to test new technologies for coordinating
spacecraft to meet near and long term human exploration objectives. For example, NASA’s
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proposed orbiting platform Gateway, slated to be the first deep-space station beyond low Earth
orbit, is expected to orbit near the Moon in a 9:2 Lunar Synodic Resonant Near Rectilinear Halo
Orbit (NRHO) to serve as a staging location for missions to the lunar surface and beyond.19 A
critical element of these future space architectures warrant the capability to coordinate multiple
spacecraft relative to one another in order to accomplish mission objectives such as rendezvous and
proximity operations. As a result, the need arises to advance relative motion GNC technologies
and design strategies in flight regimes simultaneously governed by multiple gravitational influences
from the Moon, Earth, and Sun.

Most of the previous work in relative motion modeling has been confined to near-Keplerian
orbit regimes where the gravitational influence on spacecraft is assumed to stem from a single
primary body with the inclusion of additional perturbations as first-order approximations of the
corresponding force model.16 Among the earliest relative motion dynamics models developed
include the Hill-Clohessy-Wiltshire (HCW) equations which were formulated to model rendezvous
operations in low Earth orbit.6 These equations characterize the relative motion of a chaser
spacecraft with respect to a target spacecraft in a circular orbit around a single gravitational primary.
The HCW model fails to characterize the relative dynamics if the target spacecraft’s orbit is eccentric
or the chaser spacecraft’s relative state exceeds more than 20 km.16 The Yamanaka-Ankersen model
improves upon this limitation by characterizing relative motion in target-chaser configurations
along highly eccentric orbits.18 Schaub et al. further developed relative motion models that utilize
differences in orbit elements to incorporate additional perturbations including 𝐽2 Earth gravity
harmonics.14 Similarly, Sullivan, Grimberg, and D’Amico employ a dynamical formulation based
on relative orbital elements (ROEs) to characterize relative motion under additional perturbing
accelerations including solar radiation pressure and three-body effects.16 Although each of the
abovementioned relative motion models has been validated extensively in their applicable flight
regimes, they employ the underlying assumption that the governing relative dynamics are mostly
Keplerian. Additional perturbing accelerations are approximated using first-order series expansions
of the force model descriptions and assumed to be minor perturbations in comparison to the
purely Keplerian description of the orbital motion. Consequently, these models fail to adequately
characterize the relative spacecraft dynamics in flight regimes with more than one gravitational
primary including the cislunar environment.11

More recently, relative motion in more complex dynamical regimes, like the Circular Re-
stricted Three-Body Problem (CRTBP) model, has been investigated. Franzini et al. initially
developed nonlinear equations of relative motion relative to a target spacecraft’s LVLH frame in
the CRTBP for rendezvous applications along orbits close to the lunar vicinity.7 Khoury & Lippe
further develop the relative equations of motion by establishing the Moon, 𝐿1, and 𝐿2 as “an-
chor points” that define the target LVLH frame geometry for orbits residing further away from the
Moon’s near vicinity and close to the Earth-Moon libration points.10 In their work, Khoury & Lippe
formulate multiple shooting strategies to demonstrate orbital rendezvous and spacecraft loitering
along a variety of orbits defined in the CRTBP. Moreover, they implement the different geometric
configurations of the target’s LVLH frame in a relative navigation filter to demonstrate tracking
between spacecraft using simulated on-board bearing angle and range measurements. Although
these abovementioned dynamical models are improvements from their Keplerian-based counter-
parts, they still ignore the nontrivial influence of the Sun on certain trajectories in the cislunar
environment.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



To incorporate the Sun’s influence, this investigation leverages an extension of the CRTBP
model, i.e., the Bicircular Restricted Four-Body Problem (BCRFBP) model. Insights from the
BCRFBP model have been successfully implemented in preliminary mission design studies and
have been used to explore the complex dynamics in cislunar space. Boudad et. al3,4 investigated dis-
posal strategies from the 9:2 𝐿2 NRHO within the BCRFBP model and the high-fidelity ephemeris
force model. Additionally, multiple authors have leveraged the Sun’s influence to construct low-
energy Ballistic Lunar Transfers (BLTs) to a range of regions within cislunar space.2,12, 13, 15 The
implementation of lower fidelity dynamical models which describe the Sun-Earth-Moon system
facilitates the construction of feasible relative motion transfers for rendezvous and proximity oper-
ations in cislunar space.

This investigation proposes a novel framework to construct rendezvous and proximity op-
erations (RPO) scenarios between a target and chaser spacecraft within the BCRFBP model. The
structure of this paper is as follows; First, the BCRFBP model is defined as an extension to the
CRTBP model which incorporates the Sun’s gravitational influence. A set of nonlinear relative
equations of motion (EOMs) characterizing a chaser’s motion relative to a target spacecraft are
derived based on the dynamics of the BCRFBP model. Next, a set of linearized EOMs correspond-
ing to the relative BCRFBP EOMs are derived and validated along the selected 9:2 𝐿2 NRHO
and 3:1 southern 𝐿1 halo orbit. Two rendezvous and proximity operations scenarios are evaluated
and examined along each reference orbit. First, a target-chaser spacecraft configuration is used
to describe a possible rendezvous scenario between NASA’s Gateway orbiting platform and the
Orion spacecraft along a 9:2 𝐿2 NRHO. The chaser’s close approach and resulting rendezvous
trajectory is constrained to adhere to a desired solar geometry relative to the target to demonstrate
Orion’s close approach to Gateway in a sun lit region of the NRHO. Secondly, a low-energy BLT is
constructed to insert along a lunar synodic resonant 3:1 𝐿1 southern halo orbit within the BCRFBP
model. Upon insertion, the chaser spacecraft performs a number of maneuvers relative to the target
spacecraft with the objective of achieving terminal rendezvous within some specified time of flight
(TOF). The main contributions of this paper are summarized as follows: First, relative EOMs
are derived from the BCRFBP model for a target and chaser configuration. Second, a validation
analysis is performed based on the linearized relative EOMs for the set of selected cislunar orbits.
Finally, two rendezvous and proximity scenarios along the selected reference orbits are considered
to demonstrate a feasible preliminary design within the dynamical framework of the relative motion
BCRFBP model.

2. DYNAMICS

2.1 Bicircular Restricted Four-Body Problem
Key elements of NASA’s proposed architectures for the upcoming Artemis missions include

orbits that arise when gravitational accelerations from both the Earth and Moon are incorporated
simultaneously. Moreover, some mission requirements, including those pertaining to NASA’s
proposed rendezvous and proximity operations between Orion and Gateway, stipulate that Orion’s
close approach be performed while adhering to specific solar geometries with respect to Gateway
along its orbit. The BCRFBP is a lower-fidelity model that incorporates the gravitational influence
of all three celestial bodies within one dynamical framework.9 In the Sun-Earth-Moon, SEM,
system, the model is derived in either the Earth-Moon rotating frame or the Sun-𝐵1 rotating frame,
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where 𝐵1 is the Earth-Moon barycenter. The SEM BCRFBP model is an extension of the Earth-
Moon CRTBP model with the inclusion of the Sun’s gravitational influence. Figure 1(a) describes
the Earth-Moon rotating frame of the BCRFBP model consistent with the rotating frame of the
CRTBP model. Note that the Sun moves in a clockwise direction with respect to the Earth-Moon
barycenter, B1. Moreover, the BCRFBP stipulates that the positions of the Earth and the Moon

(a) (b)

Fig. 1: (a) Earth-Moon rotating frame of the BCRFBP model. (b) Sun-B1 rotating frame of the
BCRFBP model. The origin is the Sun-Earth-Moon barycenter, B2. Figures adapted from Boudad3

are fixed in the Earth-Moon rotating frame. For consistency with previous authors, the EOMs for
the BCRFBP model are non-dimensionalized with a characteristic length, 𝑙∗, and a characteristic
time, 𝑡∗, see Boudad4 for common definitions of the characteristic values. In Fig. 1(a), the Earth-
Moon rotating frame of the BCRFBP is defined via the following set of vectors {x̂, ŷ, ẑ} where, x̂
points from the Earth to the Moon, ẑ is in the direction of the Moon’s angular momentum, and ŷ
completes the right-handed triad. In this investigation, vectors are expressed in lower-case bold text
and matrices are written in upper-case bold text. A gravitational mass parameter, `, is introduced
and is defined as: ` =

𝑚2
𝑚1+𝑚2

, where 𝑚1 and 𝑚2 corresponds to the mass of the Earth and Moon,
respectively. From Fig. 1(a), the position of the sun in the Earth-Moon rotating frame is,

r𝑠 = [𝑎𝑠 cos(\𝑠), 𝑎𝑠 sin(\𝑠),0], (1)

where 𝑎𝑠 is the nondimensionalized distance of the Sun relative to the Earth-Moon barycenter, 𝐵1,
and \𝑠 is the Sun angle measured from the x̂ axis. The EOMs for the BCR4BP model are written
as,

¥𝑥−2 ¤𝑦 = 𝜕Γ

𝜕𝑥
, (2)

¥𝑦 +2 ¤𝑥 = 𝜕Γ

𝜕𝑦
, (3)

¥𝑧 = 𝜕Γ

𝜕𝑧
, (4)
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where Γ is the pseudo-potential corresponding to the model expressed as ,

Γ =
1
2
(𝑥2 + 𝑦2) + (1− `)

𝑟𝑒𝑡
+ `

𝑟𝑚𝑡

+ `𝑠

𝑟𝑠𝑡
− `𝑠

𝑎3
𝑠

(r𝑠 · r), (5)

where `𝑠 denotes the mass of the Sun non-dimensionalized using the combined mass of the Earth
and Moon, 𝑚∗. The vectors r𝑒𝑡 , r𝑚𝑡 , and r𝑠𝑡 correspond to the spacecraft’s position measured
relative to the Earth, Moon, and Sun, respectively. Additionally, the EOMs for the BCRFBP model
are also derived in a Sun-B1 rotating frame where the origin coincides at the barycenter of the
Sun-Earth-Moon system and the corresponding EOMs are described via the vector set {x̂, ŷ, ẑ}, see
Fig. 1(b). The derivation of the EOMs is presented by Boudad,4 McCarthy,12 and Huang.9 Note
that the dynamics of the BCRFBP model is the same in both the Earth-Moon and Sun-𝐵1 frames.
Although the BCRFBP model is not coherent, e.g., the motion of the Earth, Moon, and Sun are
assumed to be along the same orbital plane, it offers an intermediate fidelity representation of the
complex dynamics of the system before transitioning to the higher-fidelity ephemeris force model.9

2.1.1 Orbit Selection in the BCRFBP model

Periodic motion observed in a dynamical model provides insightful properties that facilitate
the construction of complex cislunar transfers. Within the context of the CRTBP model, periodic
orbits exist as members of families of periodic orbits.17 Recall that the BCRFBP model is an
extension of the CRTBP model where the gravitational influence of the fourth body where the
Sun is represented as a periodic perturbation. In the BCRFBP model, periodic orbits exist as
isolated solutions that are resonant with the synodic period of the model, e.g., 29.5 days in the
Earth-Moon-Sun system. Multiple authors have successfully implemented numerical methods to
compute periodic orbits in the BCRFBP model from an initial CRTBP periodic orbit. Boudad
et. al. implemented a natural parameter continuation technique based on a homotopy method
which slowly increased the Sun’s gravity by introducing a scaling factor to the Sun’s mass, `𝑠 in
Eq. 5. This investigation explores transfers and proximity operations near two candidate orbits:
a 3:1 𝐿1 southern halo orbit and a 9:2 𝐿2 NRHO (the selected orbit for the Gateway mission19).
Note that the 3:1 𝐿1 halo corresponds to three revolutions along the orbit per one synodic period
and the 9:2 𝐿2 NRHO represents nine revolutions for two synodic periods. The candidate orbits
are constructed by implementing a pseudo-arclength continuation method consistent with previous
authors.4,12 Figure 2 presents the selected orbits in the Earth-Moon and Sun-𝐵1 frames, note that
the colors in Figure 2 represent the associated sun angle, \𝑠, over time.
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(a) (b)

Fig. 2: (a) Candidate orbits in the Moon-centered Earth-Moon frame. The color corresponds to
the sun angle. (b) Candidate orbits in the 𝐵1-centered Sun-𝐵1 frame. The Moon is represented in
the dashed line

2.2 Relative Equations of Motion in the BCRFBP

In this section, a formulation is presented to characterize the relative dynamics between
spacecraft in a target-chaser configuration subject to the gravitational influence of the Earth, Moon,
and Sun as point masses. The relative dynamics involves the propagation of four separate elements;
namely, the target spacecraft’s absolute state in the Earth-Moon rotating frame, the kinematic
expressions governing the target spacecraft’s LVLH frame over time, the chaser’s relative state with
respect to the target, and finally the Sun’s angle with respect to the Earth-Moon system. All of the
corresponding equations belonging to each of these four elements are propagated simultaneously
providing full state knowledge of both spacecraft and the system dynamics for a specified time
interval. As a result, a geometrically intuitive model of the relative dynamics is obtained and used
to describe target-chaser configurations along orbits defined in the BCRFBP.

As described in Franzini et al.7 and Khoury & Lippe,10 the nonlinear equations of relative
motion for a chaser spacecraft with respect to a target spacecraft in the CRTBP are formulated
in the target’s LVLH frame. In order to formulate the nonlinear equations of relative motion in
the BCRFBP, the gravitational force due to the Sun is incorporated as an additional acceleration
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imparted on both spacecraft. Consequently, the relative equations of motion can be written as

[ ¥𝝆 ]
𝑇

= −2𝝎𝑇/𝐼 × [ ¤𝝆 ]
𝑇

− [ ¤𝝎𝑇/𝐼]
𝑇

× 𝝆−𝝎𝑇/𝐼 × (𝝎𝑇/𝐼 × 𝝆) (6)

+ `

(
𝒓

𝑟3 −
𝒓 + 𝝆

| |𝒓 + 𝝆 | |3

)
+ (1− `)

(
𝒓 + ®𝑟𝑒𝑚

| |𝒓 + 𝒓𝑒𝑚 | |3
− 𝒓 + 𝝆 + 𝒓𝑒𝑚
| |𝒓 + 𝝆 + 𝒓𝑒𝑚 | |3

)
+ `𝑠

(
𝒓 + 𝒓𝑠𝑚

| |𝒓 + 𝒓𝑠𝑚 | |3
− 𝒓 + 𝝆 + 𝒓𝑠𝑚
| |𝒓 + 𝝆 + 𝒓𝑠𝑚 | |3

)
where the terms following the Sun gravitational parameter `𝑠 supplement the CRTBP relative
equations of motion by incorporating the Sun’s acceleration in the BCRFBP. In this formulation,
𝒓 is the target’s position vector relative to the Moon and 𝝆 is the relative position vector measured
from the target to the chaser. Moreover, 𝒓𝑒𝑚 and 𝒓𝑠𝑚 refer to the Moon’s position vector relative to
the Earth and Sun, respectively, with their corresponding norms denoted as 𝑟𝑒𝑚 and 𝑟𝑠𝑚. The Sun’s
position with respect to the Earth-Moon system is computed using the Sun angle \𝑠 in the BCRFBP
model. The target spacecraft’s LVLH frame is denoted as 𝑇 with the surrounding brackets (i.e.[
¤𝝆
]

𝑇

) indicating that derivatives are taken in the frame specified by the subscript. The quantities

𝝎𝑇/𝐼 and [ ¤𝝎𝑇/𝐼]
𝑇

correspond to the angular velocity and angular acceleration of the LVLH frame 𝑇

with respect to an inertial frame 𝐼, respectively.

Fig. 3: Schematic of a target-chaser configuration in the BCRFBP. The target’s LVLH frame𝑇 (red)
is formulated using the target’s absolute state vector relative to the Earth-Moon rotating frame 𝑀

originating at the Moon’s center.

The kinematic expressions governing the time evolution of the LVLH frame,𝝎𝑇/𝐼 and [ ¤𝝎𝑇/𝐼]
𝑇

,

are functions of the target spacecraft’s state in the Earth-Moon rotating frame. For example, the
angular velocity of the LVLH frame 𝑇 is the summation of two other components expressed as:

𝝎𝑇/𝐼 = 𝝎𝑇/𝑀 +𝝎𝑀/𝐼 (7)

where 𝝎𝑀/𝐼 denotes the angular velocity of an Earth-Moon rotating frame based at the Moon’s
center, denoted as 𝑀 , with respect to an inertial frame 𝐼 and 𝝎𝑇/𝑀 denotes the angular velocity of
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the target spacecraft’s LVLH frame𝑇 with respect to the Earth-Moon rotating frame 𝑀 . As depicted
in Figure 3, frame 𝑀 coincides with the location of the Moon’s center along the Earth-Moon line
with x̂𝑀 axis pointing towards the Earth, ẑ𝑀 parallel to the Moon’s angular momentum vector,
and ŷ𝑀 = ẑ𝑀 × x̂𝑀 pointing out of the page. This axis configuration mirrors the conventional
BCRFBP Earth-Moon synodic frame 𝑆, conventionally originating at the system barycenter 𝐵,
but is placed at the Moon’s center for convenience. Consequently, the propagation of the target
spacecraft’s dynamics in the BCRFBP yields state information relative to the Moon’s center in
frame 𝑀 . Additionally, the BCRFBP stipulates that the Moon orbits the Earth at a constant angular
rate, thus 𝝎𝑀/𝐼 = 1ẑ𝑀 . Separately, 𝝎𝑇/𝑀 is kinematically expressed in terms of the absolute state of
the target spacecraft relative to the Moon. As depicted in Figure 3, the target spacecraft’s position
and velocity vectors, denoted as 𝒓 and [ ¤𝒓 ]

𝑀

, respectively, define LVLH frame 𝑇 such that:

ı̂ = ̂× k̂ ̂ = −
𝒓 × [¤𝒓 ]

𝑀

| |𝒓 × [¤𝒓 ]
𝑀

| | k̂ = − 𝒓

𝑟
(8)

The axes ı̂, ̂, and k̂, analogous to the conventional V-bar, H-bar, and R bar axes used for Earth-
orbiting relative motion applications, constitute the rotating LVLH reference frame 𝑇 anchored at
the target spacecraft. The angular velocity vector 𝝎𝑇/𝑀 can then be expressed in terms of LVLH
components as

𝝎𝑇/𝑀 = 𝜔
𝑦

𝑇/𝑀 ̂+𝜔𝑧
𝑇/𝑀 k̂ (9)

Similarly, the angular acceleration of the target’s LVLH frame is expressed as:

[ ¤𝝎𝑇/𝐼]
𝑇

= [ ¤𝝎𝑇/𝑀]
𝑇

+ [ ¤𝝎𝑀/𝐼]
𝑇

= [ ¤𝝎𝑇/𝑀]
𝑇

−𝝎𝑇/𝑀 × ®𝜔𝑀/𝐼 (10)

with the angular acceleration vector of the LVLH frame 𝑇 with respect to the Earth-Moon rotating
frame 𝑀 written in component-wise form as

[ ¤𝝎𝑇/𝑀]
𝑇

= ¤𝜔𝑦

𝑇/𝑀 ̂+ ¤𝜔𝑧
𝑇/𝑀 k̂ (11)

The kinematic equations for each of the components of 𝝎𝑇/𝑀 and [ ¤𝝎𝑇/𝑀]
𝑇

are identical to ex-

pressions given in Franzini et al.7 and Khoury & Lippe10 except for the computation of the
target spacecraft’s acceleration and jerk vectors which must be adjusted to account for the Sun’s
gravitational acceleration. Therefore, the LVLH frame kinematics are written as

𝜔
𝑦

𝑇/𝑀 =
ℎ

𝑟2 𝜔𝑧
𝑇/𝑀 = − 𝑟

ℎ2 𝒉 · [¥𝒓 ]
𝑀

(12)

¤𝜔𝑦

𝑇/𝑀 = −1
𝑟

(
¤ℎ
𝑟
+2 ¤𝑟𝜔𝑦

𝑇/𝑀

)
¤𝜔𝑧
𝑇/𝑀 =

(
¤𝑟
𝑟
−2

¤ℎ
ℎ

)
𝜔𝑧
𝑇/𝑀 − 𝑟

ℎ2 𝒉 · [ �̈�]
𝑀

(13)

where

ℎ = |𝒓 × [¤𝒓 ]
𝑀

| ¤𝑟 = 1
𝑟
𝒓 · [ ¤𝒓 ]

𝑀

[ ¤𝒉]
𝑀

= 𝒓 × [¥𝒓]
𝑀

¤ℎ = −[ ¤𝒉]
𝑀

· ̂ (14)
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with the target spacecraft’s acceleration vector computed as

[¥𝒓 ]
𝑀

= −2𝝎𝑀/𝐼 × [¤𝒓]
𝑀

−𝝎𝑀/𝐼 × (𝝎𝑀/𝐼 × 𝒓) − `
𝒓

𝑟3 − (1− `)
(

𝒓 + 𝒓𝑒𝑚
| |𝒓 + 𝒓𝑒𝑚 | |3

− 𝒓𝑒𝑚

𝑟3
𝑒𝑚

)
− `𝑠

(
𝒓 + 𝒓𝑠𝑚

| |𝒓 + 𝒓𝑠𝑚 | |3
− 𝒓𝑠𝐵

𝑟3
𝑠𝐵

)
(15)

and the target’s jerk vector computed as

[ �̈� ]
𝑀

= −2𝝎𝑀/𝐼 × [¥𝒓 ]
𝑀

−𝝎𝑀/𝐼 × (𝝎𝑀/𝐼 × [¤𝒓 ]
𝑀

) − `
𝜕

𝜕𝒓

[
𝒓

𝑟3

]
[ ¤𝒓 ]
𝑀

− (1− `) 𝜕

𝜕𝒓

[
𝒓 + 𝒓𝑒𝑚

| |𝒓 + 𝒓𝑒𝑚 | |3

]
[ ¤𝒓
𝑀

]

− `𝑠
𝜕

𝜕𝒓

[
𝒓 + 𝒓𝑠𝑚

| |𝒓 + 𝒓𝑠𝑚 | |3

]
( [ ¤𝒓 ]

𝑀

+ [¤𝒓𝑠𝑚 ]
𝑀

) + `𝑠
𝜕

𝜕𝒓

[
𝒓𝑠𝐵

| |𝒓𝑠𝐵 | |3

]
[ ¤𝒓𝑠𝐵 ]

𝑀

(16)

where it follows that for any vector 𝝃,

𝜕

𝜕𝝃

[
𝝃

b3

]
=

1
b3

(
I3𝑥3 −3

𝝃𝝃𝑇

b2

)
Equation (15-16) denote the acceleration and jerk of the target spacecraft in the BCRFBP with
respect to frame 𝑀 , respectively. The vector 𝒓𝑠𝐵 denotes the position vector of the Earth-Moon
barycenter relative to the Sun which is a function of Sun angle \𝑆. Note that due to the definition
of the LVLH frame, the angular velocity and acceleration along the ı̂ direction is zero. Therefore,
the computation of both angular velocity components 𝜔𝑦

𝑇/𝑀 and 𝜔𝑧
𝑇/𝑀 (specified as the orbit rate

and the steering rate, respectively) and their corresponding derivatives govern the dynamics of the
target spacecraft’s LVLH frame in time.
2.3 Linearization of Relative Equations of Motion

The nonlinear relative equations of motion are further simplified by linearizing the gravi-
tational accelerations around the target spacecraft’s position along the reference orbit. Consider a
chaser’s position relative to the target spacecraft which can be written as

𝒓𝑐 = 𝒓 + 𝝆. (17)

The gravitational acceleration on the chaser spacecraft due to the three gravitational primaries are
expressed as

𝒈𝑚 (𝒓𝑐) = −` 𝒓𝑐
𝑟3
𝑐

𝒈𝑒 (𝒓𝑐 + 𝒓𝑒𝑚) = −(1− `) 𝒓𝑐 + 𝒓𝑒𝑚
| |𝒓𝑐 + 𝒓𝑒𝑚 | |3

𝒈𝑠 (𝒓𝑐 + 𝒓𝑠𝑚) = −`𝑠
𝒓𝑐 + 𝒓𝑠𝑚

| |𝒓𝑐 + 𝒓𝑠𝑚 | |3
(18)

where 𝒈𝑚, 𝒈𝑒, and 𝒈𝑠 denote the gravitational accelerations on the chaser spacecraft due to the
Moon, Earth, and Sun, respectively. A first order Taylor series expansion applied around the target
spacecraft’s position yields approximate expressions for the chaser spacecraft’s acceleration in the
BCRFBP. As a result, the linear equations of relative motion are obtained and written as

[ ¥𝝆 ]
𝑇

= −2𝛀𝑇/𝐼 [ ¤𝝆 ]
𝑇

−
(
[ ¤𝛀𝑇/𝐼]

𝑇

+𝛀2
𝑇/𝐼 +

`

𝑟3

(
I−3

𝒓𝒓 𝑇

𝑟2

)
(19)

+ 1− `

| |𝒓 + 𝒓𝑒𝑚 | |3

(
I−3

(𝒓 + 𝒓𝑒𝑚) (𝒓 + 𝒓𝑒𝑚)𝑇
| |𝒓 + 𝒓𝑒𝑚 | |2

)
+ `𝑠

| |𝒓 + 𝒓𝑠𝑚 | |3

(
I−3

(𝒓 + 𝒓𝑠𝑚) (𝒓 + 𝒓𝑠𝑚)𝑇
| |𝒓 + 𝒓𝑠𝑚 | |2

))
𝝆
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where 𝛀𝑇/𝐼 and [ ¤𝛀𝑇/𝐼]
𝑇

are skew symmetric matrices that contain the LVLH components of the

angular velocity and acceleration vectors, 𝝎𝑇/𝐼 and [ ¤𝝎𝑇/𝐼]
𝑇

, such that

𝛀𝑇/𝐼 =


0 −𝜔𝑧

𝑇/𝐼 𝜔
𝑦

𝑇/𝐼
𝜔𝑧
𝑇/𝐼 0 −𝜔𝑥

𝑇/𝐼
−𝜔𝑦

𝑇/𝐼 𝜔𝑥
𝑇/𝐼 0

 [ ¤𝛀𝑇/𝐼]
𝑇

=


0 − ¤𝜔𝑧

𝑇/𝐼 ¤𝜔𝑦

𝑇/𝐼
¤𝜔𝑧
𝑇/𝐼 0 − ¤𝜔𝑥

𝑇/𝐼
− ¤𝜔𝑦

𝑇/𝐼 ¤𝜔𝑥
𝑇/𝐼 0

 (20)

2.3.1 Linearized Model Accuracy

In order to evaluate the accuracy of the linearized relative motion models, numerical inte-
gration of the corresponding equations of motion are performed along both reference orbits. The
linear equations of relative motion, expressed in Equation 19, are propagated along a 9:2 𝐿2 Near
Rectilinear Halo Orbit (NRHO) and a 3:1 𝐿1 southern halo orbit in the BCRFBP. After propagat-
ing the EOMs for a specified time interval, the approximations provided by the linearized model
are compared against the results stemming from the propagation of the corresponding nonlinear
equations of relative motion, expressed in Equation 6. The accuracy results demonstrate the limits
of the first-order linear assumptions along each reference orbit to identify locations best suited for
proximity operations between the spacecraft.

Two numerical simulations are carried out in MATLAB using the ode113 differential solver
with a absolute and relative tolerance of 1×10−13. In both simulations, a target spacecraft is placed
at different points along its corresponding reference orbit. To specify the target’s initial position, a
mean anomaly parameter, Ψ𝑇 , is defined such that

Ψ𝑇 = 2𝜋
(𝑡 − 𝑡0)

𝑃
(21)

where (𝑡 − 𝑡0) denotes the time elapsed since some initial epoch on the reference orbit, Ψ0, and 𝑃

is time needed for target to complete one revolution. Since the periods of the reference orbits are
commensurate with the synodic period of the Earth-Moon-Sun system, the time it takes the target
to complete one revolution is equivalent to the time between perilunes. Next, a number of fictitious
“chaser” spacecraft are initialized both ahead (+ı̂) and behind (−ı̂) the target spacecraft’s initial
position along its LVLH reference frame. Similarly, the positions of the chaser spacecraft relative
to the target can also be parameterized by a quantity ΔΨ described as

ΔΨ = Ψ𝐶 −Ψ𝑇 (22)

where Ψ𝐶 denotes the mean anomaly of the chaser along the target’s reference orbit. Once the
relative states between the spacecraft are initialized, they are propagated using both the linearized
relative motion dynamics and nonlinear equations of motion for a specified TOF. The relative state
approximations resulting from the linearized model are compared to the results of the nonlinear
equations, established as truth, and evaluated using a performance index defined such that

𝑒𝑝 = max
𝑡∈[0 TOF]

| |𝝆(𝑡) − 𝝆∗(𝑡) | | , 𝑒𝑣 = max
𝑡∈[0 TOF]

| | ¤𝝆(𝑡) − ¤𝝆∗(𝑡) | | (23)
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where 𝑒𝑝 and 𝑒𝑣 denote the maximum position and velocity errors over the time interval. In
Equation 23, starred quantities deonte the truth values stemming from the nonlinear dynamics
whereas the unmarked quantities are the results obtained from the linearized relative motion model.
In Figure 4, the linearized equations of motion are validated along the 9:2 𝐿2 Near Rectilinear
Halo Orbit (NRHO) in the BCRFBP. In the leftmost plot, the reference orbit is depicted with
Ψ𝑇,0 indicating the where the target mean anomaly is 0◦ at perilune. Then, three color contour
maps characterize the accuracy of linearized equations as a function of the target spacecraft’s
initial position. The center-left contour plot quantifies the chaser’s initial relative distance as a
function of Ψ𝑇 vs ΔΨ. Note that if ΔΨ > 0, the fictitious chaser spacecraft is initialized ahead of
the target along its +ı̂ direction. Similarly, if ΔΨ < 0, the chaser is initialized behind the target
along its −ı̂ direction. The middle-right and far-right contour plots show the resulting position and
velocity errors, respectively, from the propagation of the linearized relative motion models. All the
color-coded information from each contour plot is placed on a log scale for convenience. Figure 5
plots the same information for the 3:1 𝐿1 Northern Halo reference orbit. Results from both cases
indicate that the linearized equations of relative motion are most accurate near apolune where the
relative velocities between spacecraft are minimized since the gravitational acceleration due to the
closest primary, the Moon, is at a minimum. Consequently, this suggests that proximity operations
between the target and chaser spacecraft should be initiated when the target’s mean anomaly is
between 150◦ to 210◦. Although proximity operations can be designed and evaluated at any point
along the reference orbits, the linearized equations of motion are most accurate when the target is
near apolune. For this reason, NASA’s proposed proximity operations between Gateway and Orion
baselines rendezvous maneuvers to occur when both spacecraft are near apolune along the NRHO.

Fig. 4: Validation of linearized model on a 9:2 𝐿2 Near Rectilinear Halo Orbit (NRHO) in the
BCRFBP. In the far-left plot, the target reference orbit is plotted along with the Ψ𝑇,0 point indicated
in red. Each color contour plot contains information regarding the chaser’s initial relative distance to
the target (center-left), final position error (center-right), and final velocity error (far-right) resulting
from the linearized equations of motion as a function of Ψ𝑇 and ΔΨ with a propagation time of 6.5
days.
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Fig. 5: Validation of linearized model on a 3:1 𝐿1 Northern Halo Orbit in the BCRFBP. In the
far-left plot, the target reference orbit is plotted along with the Ψ𝑇,0 point indicated in red. Each
color contour plot contains information regarding the chaser’s initial relative distance to the target
(center-left), final position error (center-right), and final velocity error (far-right) resulting from the
linearized equations of motion as a function of Ψ𝑇 and ΔΨ with a propagation time of 9 days.

3. RENDEZVOUS & PROXIMITY OPERATIONS MISSION DESIGN

As indicated in the previous section, the accuracy of the linearized equations of relative
motion can be leveraged for relative guidance and control applications including mission design
for proximity operations. Since the relative equations characterize the chaser’s relative state in the
target spacecraft’s LVLH frame, path planning can be performed with consideration to the target’s
local geometry. Assume that the chaser’s relative position and velocity vectors, 𝝆 and [ ¤𝝆(𝑡)]

𝑇

,

respectively, can be expressed in component-wise form as

𝝆 = [ı ;  ; k] = ıı̂+ ̂+kk̂ [ ¤𝝆 ]
𝑇

= [¤ı ; ¤ ; ¤k] = ¤ıı̂+¤̂+ ¤kk̂ (24)

where ı̂, ̂, and k̂ are the axes associated with the target’s LVLH frame 𝑇 . To leverage the linear
relative motion models for guidance and control applications, the equations of motion can be written
in state-space form such that

¤𝒙(𝑡) = A(𝑡)𝒙(𝑡) +B𝒖(𝑡) (25)

where 𝒙(𝑡) ∈ R6, A(𝑡) ∈ R6×6, B(𝑡) ∈ R6×3, and 𝒖(𝑡) is the control vector representing the chaser’s
applied maneuvers in the target spacecraft’s LVLH frame. Specifically,

𝒙(𝑡) =
[
𝝆(𝑡)
[ ¤𝝆(𝑡)]

𝑇

]
B =

[
03×3
I3×3

]
The system matrix A(𝑡) is defined such that

A(𝑡) =
[

03×3 I3×3
A𝝆 ¤𝝆 (𝑡) −2𝛀𝑇/𝐼 (𝑡)

]
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where the system matrix subcomponent, A𝝆 ¤𝝆 (𝑡), is evaluated at time 𝑡 and expressed as

A𝝆 ¤𝝆 (𝑡) = −[ ¤𝛀𝑇/𝐼]
𝑇

−𝛀2
𝑇/𝐼 −

`

𝑟3

(
I−3

𝒓𝒓𝑇

𝑟2

)
− 1− `

| |𝒓 + 𝒓𝑒𝑚 | |3

(
I−3

(𝒓 + 𝒓𝑒𝑚) (𝒓 + 𝒓𝑒𝑚)𝑇
| |𝒓 + 𝒓𝑒𝑚 | |2

)
− `𝑠

| |𝒓 + 𝒓𝑠𝑚 | |3

(
I−3

(𝒓 + 𝒓𝑠𝑚) (𝒓 + 𝒓𝑠𝑚)𝑇
| |𝒓 + 𝒓𝑠𝑚 | |2

)
(26)

Khoury & Lippe10 demonstrated that the evaluation of the system matrix A(𝑡) can be used to
numerically integrate the relative state transition matrix (STM) given by the relationship, ¤𝚽(𝑡, 𝑡0) =
A(𝑡)𝚽(𝑡, 𝑡0). Elements of the relative STM, which relate variations in the initial relative state at 𝑡0
to the resulting relative state at time 𝑡, are used to formulate multiple shooting algorithms as a part
of a differential corrections scheme in the target’s LVLH frame 𝑇 . A general overview of multiple
shooting strategies in the CRTBP can be found in Grebow.8 Moreover, examples using multiple
shooting strategies for the relative equations of motion in the CRTBP can be found in Khoury.11

Through the application of these shooting methods, chaser trajectories can be computed to adhere
to desired geometries relative to the target spacecraft.

3.1 Proximity Operations along a 9:2 𝐿2 NRHO

In this scenario, proximity operations between a target and chaser spacecraft are demonstrated
along a 9:2 𝐿2 NRHO. First, the chaser spacecraft is initialized 2 km behind the target along the
reference NRHO. Then, the chaser proceeds to perform eight maneuvers, computed using a multiple
shooting scheme, to approach the target and achieve terminal rendezvous at the end of the specified
time period of 54 hours. The chaser’s maneuvers are designed and implemented to produce a
relative trajectory that continuously approaches the target spacecraft along its line-of-site (LOS)
vector to the Sun. In Figure 6(a), the orbits of both the target (red) and chaser (blue) spacecraft
along the 9:2 𝐿2 NRHO are shown in the Moon-centered Earth-Moon rotating frame 𝑀 . Moreover,
a projection of the Sun’s position in the BCRFBP is also plotted relative to the Moon. In Figure
6(b), the chaser’s trajectory relative to the target’s LVLH frame is shown with the target’s LOS
vector geometry to the Sun. Finally, in Figure 6(c), the chaser’s relative trajectory is resolved in a
target centered frame fixed along the target’s LOS vector to the Sun. In this plot, @̂ is directed along
the target’s LOS vector to the Sun and k̂ is the target’s radial vector to the Moon. The results of
this scenario demonstrate the capability to produce chaser trajectories that adhere to a specific solar
geometry relative to the target spacecraft. As outlined in Abell et al,1 a potential application of this
proximity operations demonstration along the 9:2 𝐿2 NRHO includes Orion-Gateway rendezvous
operations which stipulate that Orion be positioned between Gateway and the Sun during the close
range phase of the RPOD (Rendezvous, Proximity Operations, and Docking) concept of operations.
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Fig. 6: Rendezvous scenario using a target-chaser configuration along a 9:2 𝐿2 NRHO: (a) The
target (red) and chaser (blue) spacecraft are shown along the NRHO reference orbit in the Moon-
centered Earth-Moon rotating frame. (b) The chaser’s relative trajectory in the target’s LVLH
frame. (c) The same relative trajectory is resolved in a target-centered frame fixed along the target’s
LOS vector to the Sun.

3.2 Proximity Operations along a 3:1 𝐿1 southern halo orbit
One potential aspect of maintaining a permanent crewed presence on the Moon includes the

establishment of fuel depots in the cislunar vicinity. Based on analyses from an internal NASA
study in 2011,5 it was assessed that the use of fuel depots would result in significant cost savings
and reductions in launch mass compared to government-developed heavy lift rocket systems. These
fuel depots can be used to refuel spacecraft that aim to access higher energy orbits or seek a return to
Earth. Consequently, this work includes an investigation of proximity operations in a target-chaser
configuration where the target spacecraft is a fuel depot structure flying along a 3:1 𝐿1 halo orbit.
In this section, strategies are leveraged to insert the chaser spacecraft along the target’s cislunar
orbit from an Earth parking orbit to rendezvous with the target spacecraft during favorable lighting
conditions. The resulting solution demonstrates a feasible low-cost lunar transfer design from Low
Earth Orbit (LEO) to terminal rendezvous with a fuel depot residing in the cislunar vicinity.

3.2.1 Ballistic Lunar Transfer to 𝐿1 halo

Ballistic Lunar Transfer options to 𝐿1 halo orbits are constructed by leveraging dynamical
structures within the BCR4BP model. For this example, the selected 3:1 𝐿1 halo orbit is depicted in
Figure 2(a). The desired BLT option assumes a maneuver is performed at the arrival location on the
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desired 𝐿1 halo orbit. To explore the options available, a Poincaré map is constructed by applying
a tangential maneuver along a range of positions on the 𝐿1 destination orbit and propagating in
negative time towards the Earth. The destination 𝐿1 halo is divided into 5418 potential insertion
locations, recall that the 3:1 orbit selected has three revolutions. A maneuver with a magnitude of
210 m/s is applied in a direction opposite of the motion, i.e., opposite the velocity vector, at each
halo insertion location. After the maneuver is applied, the trajectory is propagated in negative time
with a maximum propagation time of a year (365 days). The Poincaré map in Fig. 7(a) is generated
by collecting the first three periapsis states of each backwards propagated trajectory. Figure 7(a)
depicts the generated map with a normalized 𝜏 parameter (range of [0,1]) that represents the
insertion location along the 3:1 halo orbit, note that 𝜏 = 0,1 corresponds to the same state along
the periodic orbit. Next, the time-of-flight, 𝑇𝑂𝐹, is displayed on the 𝑦-axis of the generated map.
Finally, each point on the map is assigned a color that corresponds to the distance from the Earth at
the end of the propagation time corresponding to the first three identified periapsis states measured
relative to Earth. An initial guess is selected from the map in Fig. 7(a), see the red circle, and plotted
in Fig. 7(b). Observe that the selected initial transfer guess implements a single insertion maneuver
at the arrival location on the L1 halo. The selected initial guess is corrected via a multiple-shooting
method with a Newton-Raphson algorithm and optimized, via MATLAB’s FMINCON function,
to decrease the insertion Δ𝑉 . The launch state, near the Earth, is constrained to be a periapsis, with
respect to the Earth, and has an altitude of 200 km. Note that the Transfer Launch Injection (TLI)
maneuver is not considered because it is assumed that the upper stage of the selected launch vehicle
will provide the required energy to inject the spacecraft onto the BLT transfer. The Δ𝑉 optimized
transfer to the desired 3:1 L1 halo is presented in Fig 8 with an insertion maneuver of 93.36 m/s.

3.2.2 Rendezvous along L1 halo

Dynamical structures in a BCR4BP model facilitate the construction of preliminary end-
to-end rendezvous mission trajectories. A comprehensive rendezvous mission design consists of
a transfer, e.g., typically from launch, and a close-proximity rendezvous operations trajectory. In
this investigation, ballistic lunar transfers (BLTs) are explored as transfer options to deliver a chaser
spacecraft to the vicinity of a destination orbit. The utilization of the BCRFBP model for the Earth-
Moon system offers an additional advantage in the tracking of the Sun’s position as a function of
elapsed time since the initial epoch. As a result, the chaser spacecraft’s close approach to the target
can be designed to adhere to visibility constraints where the chaser maneuvers between the target
and Sun to ensure favorable lighting conditions for its onboard cameras and tracking sensors. As
observed in Figure 9(a), the orbits of both the target (red) and chaser (blue) spacecraft along the
3:1 𝐿1 halo orbit are shown in the Moon-centered Earth-Moon rotating frame with a projection of
the Sun’s position over time. In Figure 9(b), the chaser’s trajectory relative to the target’s LVLH
frame is shown with the target’s LOS vector to the Sun. Finally, in Figure 9(c), the chaser’s relative
trajectory is resolved in a target centered frame fixed along the target’s LOS vector to the Sun. In
this plot, @̂ is directed along the target’s LOS vector to the Sun and k̂ is the target’s radial vector
to the Moon. In this scenario, the chaser initially begins its close approach along the target’s LOS
vector to the Sun but then proceeds to perform four maneuvers to fly around the target spacecraft
to simulate a final inspection procedure prior to the final intercept trajectory.
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Fig. 7: (a) Poincaré map of trajectories propagated in negative from insertion positions along the
desired 3:1 halo orbit. A selected initial guess is displayed as a red circle (b) Selected initial
trajectory guess generated from map in the Earth-Moon rotating frame of the BCR4BP model.
Note that the axis are non-dimensionalized with the 𝑙∗ value.

(a) (b)

Fig. 8: (a) Optimal BLT to the desired 3:1 halo orbit in the Moon-Centered Earth-Moon rotating
frame of the BCR4BP. The red point corresponds to the maneuver location to insert into the halo
orbit. (b) B1-Centered Sun-B1 frame of the BCR4BP model representation of the optimal transfer.
The moon is depicted as a dashed magenta line.
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Fig. 9: Rendezvous scenario using a target-chaser configuration along a 3:1 𝐿1 southern halo orbit.
In the top left plot, the target (red) and chaser (blue) spacecraft are shown along the halo reference
orbit in the Moon-centered Earth-Moon rotating frame. The chaser’s relative trajectory in the
target’s LVLH frame is shown in the top right plot. The same relative trajectory is resolved in a
target-centered frame fixed along the target’s LOS vector to the Sun (bottom plot).

Results for the converged rendezvous trajectories along both the 9:2 𝐿2 NRHO and 3:1 𝐿1
halo orbit are provided in Table 1. They include the total number and cost of maneuvers associated
with each rendezvous profile in addition to the number of iterations produced to converge each
rendezvous trajectory. In both cases, a time of flight (TOF) between 2-3 days was considered for
consistency with the proposed timeline for rendezvous between the Orion and Gateway. Moreover,
by using the chaser spacecraft’s nominal trajectory prior to rendezvous as an initial guess for
the differential corrector, the final corrected trajectory converged within two iterations using the
employed multiple shooting scheme.

Table 1: Mission profiles in the BCRFBP.
Target Orbit Total Number of Maneuvers TOF Δ𝑣 Total Iterations
9:2 𝐿2 NRHO 8 54 hrs. 26.5 cm/s 2
3:1 𝐿1 Halo 5 60 hrs. 1.3 m/s 2
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4. CONCLUSION

As crewed space exploration expands past Earth orbit to the Moon, new technologies must
be developed to facilitate the coordination of spacecraft in the cislunar dynamical environment.
Orbits residing in the cislunar vicinity are governed simultaneously by the gravitational influence
of both the Earth and the Moon. Conventional methods for relative spacecraft GNC are designed
for proximity operations in Earth orbit and subsequently fail to accurately characterize the relative
motion between spacecraft in the Earth-Moon system. The few relative dynamics models that
incorporate Earth and Moon gravity do not include the nontrivial effects of the Sun on orbits in
the cislunar vicinity. The Sun imparts an additional gravitational acceleration on these orbits and
dictates the necessary lighting conditions for close range proximity operations between spacecraft.
To overcome limitations in conventional methods, this work leverages a dynamical framework
which characterizes the relative dynamics between a target and chaser spacecraft in the context
of the BCRFBP. As a result, numerical tools are developed to generate rendezvous trajectories
in a local rotating frame attached to the target which adhere to Sun-lit geometries that guarantee
visibility requirements during close approach. Two scenarios involving proximity operations along
cislunar orbits are investigated including a 9:2 𝐿2 NRHO and a 3:1 𝐿1 halo orbit. In the NRHO case,
a chaser spacecraft performs a sequence of maneuvers to achieve terminal rendezvous with a target
spacecraft along the target’s line of sight vector to the Sun. The resulting trajectory is modeled after
the proposed concept of operations for the Orion spacecraft’s RPOD with the Gateway orbiting
platform. In the case involving the 3:1 𝐿1 halo orbit, a feasible mission design trajectory is obtained
for a chaser spacecraft starting at LEO to achieve terminal rendezvous with a target representing
the location of a cislunar fuel depot. A ballistic lunar transfer (BLT) is leveraged to produce a
solution from an Earth parking orbit to insertion along the target’s orbit followed by a sequence of
maneuvers characterizing the chaser’s close approach to the target. During the close approach, the
chaser spacecraft circumnavigates the target spacecraft prior to rendezvous along its line of sight
vector to the Sun. Both scenarios underscore the advantages of characterizing spacecraft relative
dynamics in the BCRFBP and demonstrate new capabilities for proximity operations mission design
along orbits in the cislunar dynamical environment.
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