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ABSTRACT

In this work, we derive a relation between the irradiance measured at the image plane of two conjugate sensor-target-
source geometries. Such a relation is of interest in the application of ground-based optical sensors taking measurements
of point-like geosynchronous space objects illuminated by the sun. The relation rests on a particular symmetry of the
bidirectional reflectance distribution function (BRDF) known as Helmholtz reciprocity. Given the conjugate relation,
we are able to directly relate the expected irradiance from a point reflector in one orientation to the expected irradiance
in a conjugate orientation conditioned on a unique illumination geometry. Such a technique may enable one to match
the optical spectra of a post-oriented geosynchronous space object to a registry of pre-oriented optical spectra at the
conjugate geometry and thereby quantitatively infer the new orientation.

1. INTRODUCTION

To calculate the irradiance on a given surface arising from the reflections of a point-target illuminated by a spherical
source, we make use of a few concepts of radiometry. First, we compute the irradiance from a Lambertian sphere
arriving at the surface of the target. This incident irradiance is then used to compute the reflected outgoing radiance
from the target in association with its bidirectional reflectance distribution function (BRDF). Finally, taking into account
the entrance pupil size and focal length of a simple optical system, we calculate the irradiance incident on the image
plane. We discuss the assumptions and approximations used to derive the simple reflection model. We also motivate
a potential application of the irradiance constraint based on ground-based optical spectral measurements of the target.

2. IRRADIANCE DUE TO A SPHERICAL LAMBERTIAN SOURCE

First, some definitions. The radiant flux Φ (W) is related to radiance L (W/sr/m2) by [1]

Φ =

∫∫
L cos θdAdω. (1)

To compute the radiant flux Φ arriving at a given surface A, for each area element dA we integrate over the entire
solid angle ω subtended by the source. To account for the orientation of the surface relative to the incident light,
we must integrate over the projected surface element dA cos θ where θ defines the angle between the surface normal
and the solid angle direction. For convenience, we may equivalently express (1) in terms of the projected solid angle
dΩ = cos θdω as described in subsection A.2 according to

Φ =

∫∫
LdAdΩ. (2)

The irradiance E (W/m2) incident on a given surface element can be obtained by integrating the radiance over the
projected solid angle of a hemisphere centered on the surface element

E =

∫
Ωhemi

L cos θdω =

∫
Ωhemi

LdΩ. (3)
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Fig. 1: Trigonometry of a Lambertian sphere and a detector of area Ad.

Now, given a sensor-target-source system, to compute the irradiance arriving at the target, we model the source after
the sun and represent it as a Lambertian sphere (Figure 1). A Lambertian source is characterized by having a constant
radiance, L(θ, ϕ) = const. From (3), we can obtain the on-axis irradiance Eon-axis incident to the target surface due
to the spherical Lambertian source by integrating over the right circular cone (see subsection A.1) of half-angle θ1/2

Eon-axis =

∫
Ωcone

Lsun cos θdω (4)

= Lsun

∫ 2π

0

dϕ

∫ θ1/2

0

sin θ cos θdθ (5)

= Lsunπ sin2 θ1/2. (6)

For a target surface with normal n that may lie off the cone axis, the total irradiance received at the surface is
approximated by scaling the on-axis contribution by the dot product of the surface normal n and central cone axis ω̂i

Esun = (ω̂i · n)Eon-axis = Lsunπ sin2 θ1/2(ω̂i · n). (7)

For a spherical source of radius a with a center lying a distance b from the target surface as shown in Figure 1, we have

sin2 θ1/2 =
a2

a2 + b2
, (8)

which allows us to simplify (7) as

Esun = Lsunπ

(
a2

a2 + b2

)
ω̂i · n. (9)

For b≫ a, the sphere approaches a point source and we may relate the radiance of the source to the intensity I (W/sr)
of a point source through I = LAproj = Lπa2 [2] to thus recover the familiar inverse-square behavior of irradiance

Esun =
Isun
b2

ω̂i · n. (10)

Given a = rsun = 6.957× 108 m and b = 1 au = 1.496× 1011 m, the half-angular size of the sun relative to Earth or
target is approximately θ1/2 = 0.266◦ and the overestimate of sin2 θ1/2 arising from the point-source approximation is

Esun-point/Esun-finite = 1 + 2× 10−5. (11)

3. THE RENDERING EQUATION

The rendering equation describes the output radiance measured in the direction ω̂o and is given as [3]

Lo(ω̂o, λ, t) = Le(ω̂o, λ, t) +

∫
Ωhemi

f(ω̂′
i, ω̂o, λ, t)Li(ω

′
i, λ, t)(ω̂

′
i · n)dω′

i. (12)

Here we integrate over a hemisphere centered around the target surface area with normal n, adding the contributions
of all incident radiance modulated by the bidirectional reflectance distribution function f(ω̂′

i, ω̂o, λ) and projected by
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Fig. 2: Illumination geometry. For a fixed n, the geometry may be specified by the pair of unit vectors (ω̂i, ω̂o).

ω̂′
i ·n. Radiance that is emitted by the target (i.e., thermal radiation) is represented by Le(ω̂o, λ, t), which we will take

to be zero.

From (3), we may use the form
dE = L cos θdω̂ (13)

to express the outgoing radiance as an integral over all sources of irradiance within the hemisphere reaching the target
surface ∫

Ωhemi

f(ω̂′
i, ω̂o, λ, t)Li(ω

′
i, λ, t)(ω̂

′
i · n)dω′

i =

∫
Ωhemi

f(ω̂′
i, ω̂o, λ, t)dE. (14)

With our source (sun) modeled as a point source, the incident irradiance is entirely attributed to the radiance lying
along the direction ω̂i and, by substitution of (10), can be expressed as

dE = (ω̂′
i · n)δ(ω̂i − ω̂′

i)
Isun
b2

dω̂′
i. (15)

Finally, substituting this into our integral of (14), we obtain the outgoing radiance in direction ω̂o due to a point-source
in direction ω̂i

Lo(ω̂o, λ, t) =

∫
f(ω̂′

i, ω̂o, λ, t)(ω̂
′
i · n)δ(ω̂i − ω̂′

i)
Isun
b2

dω̂′
i (16)

= f(ω̂i, ω̂o, λ, t)
Isun(λ)

b2
(ω̂i · n). (17)

4. THE CAMERA EQUATION

The camera equation describes image irradiance at the focal plane for a basic optical system operating at finite
conjugates. Let rimage and robject represent the distance from the lens to the focal plane and object plane respectively.
Let us define an optical system with effective focal length f and aperture diameter D. The magnification m is

m =
rimage

robject
. (18)

For an object at infinity, m = 0 and for equal conjugates, m = 1. The irradiance at the focal plane arising from the
reflected target radiance Lo is given by [2]

Eimage =
π

4
Lo

D2

f2(1 +m)2
=

π

4
Lo

(
D

f

)2 r2object
(robject + rimage)2

. (19)
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Given the outgoing radiance of (17) along direction ω̂o and given robject ≫ rimage, the image-plane irradiance may
be simplified as

Eimage(λ, t) =
π

4

(
D

f

)2
Isun(λ)

r2sun
f(ω̂i, ω̂o, λ, t)(ω̂i · n). (20)

Note that the focal plane lies in the direction of −ω̂o.

From (20) we see that the irradiance at the image plane scales as 1/r2 for the source-to-target distance and that the total
irradiance received is scaled by the cosine of the angle between the source and target normal. For imaging areas that
deviate from the optical axis and subtend an angle α, it is worth noting that the irradiance scales as cos4 α. Given the
0.05 arcsec angular diameter of a 10 m target, the error in irradiance from neglecting the cosine falloff is approximately

Eimage/Eextended-image = 1 + 1.55× 10−13. (21)

The mapping between image-plane irradiance and pixel intensities is non-linear. The number of electrons generated
per unit area in the photodetector may be roughly estimated as

Nelectron(λ) = Eimage(λ, t)

(
λ

hc

)
× Quantum Efficiency×∆t× Camera Gain. (22)

The amplified electron count undergoes analog signal processing and ADC quantization to finally arrive at pixel
intensity. While a sharper model of the detection stage can be constructed, it is not needed for our purposes here.

5. THE HELMHOLTZ RECIPROCITY CONSTRAINT

Let us first simplify our expression for the irradiance received at the image plane, (20). Given the small eccentricity of
Earth’s orbit, we take drsun

dt = 0. Given that the solar intensity is, to a decent approximation, constant over time we
take dIsun

dt = 0. It then follows that

E0 ≡
π

4

(
D

f

)2
Isun(λ)

r2sun
= const. (23)

Here E0 is a strictly theoretical quantity representing a maximal received irradiance in which all incident energy within
the solid angle subtended by the source is reflected by the target and received at the detector. With E0 we may then
express the irradiance at the image plane as

Eimage(ω̂i, ω̂o, λ, t) = E0f(ω̂i, ω̂o, λ, t)(ω̂i · n). (24)

The BRDF f is constrained to obey the following properties:

f(ω̂i, ω̂o) ≥ 0 (positivity) (25)
f(ω̂i, ω̂o) = f(ω̂o, ω̂i) (Helmholtz reciprocity) (26)

∀ω̂i,

∫
Ωhemi

f(ω̂i, ω̂o)(ω̂o · n)dω̂o ≤ 1 (energy conservation) (27)

Helmholtz reciprocity can be derived from the basis of time-reversal symmetry associated with the Maxwell field
equations. Simply put, the reciprocity states that if we exchange the locations of the source and detector, the BDRF
will remain invariant.

We can make use of such a principle to derive a constraint that relates the irradiances measured between two conjugate
points as shown in Figure 3. The illumination geometry of the source-target-sensor system is specified by the ordered
pair of unit-vector directions, (source, sensor). Given (source, sensor) = (ω̂1, ω̂2), the irradiance E12 at the image
plane is

E12(λ) = E0f(ω̂1, ω̂2, λ, t)(ω̂1 · n). (28)

For the conjugate geometry, the illumination geometry is (source, sensor) = (ω̂2, ω̂1) and the irradiance E21 on the
image plane is

E21(λ) = E0f(ω̂2, ω̂1, λ, t)(ω̂2 · n). (29)
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Fig. 3: Two conjugate geometries, obtained by (ω̂1, ω̂2)←→ (ω̂2, ω̂1). Note that the orientation of the target differs in
the image plane of each conjugate system, while the BRDF remains invariant.

Solving for the BRDF, Helmholtz reciprocity leads to the equality

E12(λ)

E0(ω̂1 · n)
=

E21(λ)

E0(ω̂2 · n)
. (30)

This can be simplified into a constraint relating measured irradiances E12 and E21, target surface normal n, and
direction vectors ω̂1 and ω̂2 as

(E12(λ)ω̂2 − E21(λ)ω̂1) · n = 0. (31)

6. APPLICATION

For resident space objects in a geostationary orbit – an assumption that can be relaxed but would require a more
involved treatment – let us assume that a large baseline of optical measurements of a nadir-pointing satellite can be
obtained over a wide variety of illumination geometries. Over a 24-hour period, the incident direction vector of the
sun ω̂i sweeps a continuous semi-circle path of illumination directions that lie within our observation window. On an
annual timescale, the inclination of the orbital plane of the sun (in a reference frame inertial to the target) continuously
increases and then decreases (i.e., seasonal variation), resulting in an appreciable subset of the BRDF unit-sphere that
is able to be sampled by ground-based sensors. While one could elect to utilize single band photometric measurements
as the basis for optical observations, we are encouraged by the use of past works [4][5] which demonstrate that high-
resolution spectra provide a rich source of information related to a satellite’s unique material composition, geometry,
and orientation.

Given such a baseline, the Helmholtz reciprocity constraint of (31) allows us to relate the irradiance of a) a target that
has changed its pointing angle to n + ∆n to b) a pre-registered target with pointing angle n that coincides with its
conjugate geometry. This is most easily visualized through Figure 3 which illustrates that the orientation of the target
as measured by E12 differs from its orientation at the conjugate point measured by E21.
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Fig. 4: Illumination geometry in terms of angles θ1 and θ2.

The ratio between the two conjugate irradiances themselves differs by an overall scalar factor. In reference to Figure 4,
we can express the Helmholtz reciprocity constraint of (31) in terms of the angles θ1 and θ2 as

E12(λ) cos θ2 = E21(λ) cos θ1 (32)

or
E12(λ)

E21(λ)
=

cos θ1
cos θ2

. (33)

In sum, to a first order approximation the irradiances associated with two conjugate geometries are directly proportional
to each other over the full set of wavelengths sampled. Interestingly, the Helmholtz reciprocity relation also implies that
there are clear degeneracies associated with inferring a target’s orientation from optical spectra under real illumination
geometries.

7. ASSUMPTIONS

• The Sun is a Lambertian sphere: Given the sun is almost a perfect blackbody radiator, the errors due to this
assumption are going to be very small. That said, the sun does possess non-uniform radiance, temperature
variations, spectral variations, and surface features.

• The Sun may be treated as a point source: As shown in (11), the irradiance error associated with the finite radius
of the Sun is given as Esun-point/Esun-finite = 1 + 2× 10−5.

• The target may be treated as a point source: For a geosynchronous object of 10 m in diameter, the angular
diameter as seen from an Earth sensor is approximately 0.05 arcsec. Computing the difference in irradiance
in the same manner as the Sun, we find an error on the order of Etarget-point/Etarget-finite = 1 + 10−14.
(Intuitively, the Sun occupies a much larger angular extent than a geosynchronous satellite in the sky, so this
seems reasonable). In addition, the contribution of the cos4 α falloff associated with a finite angular extent of
the target is approximately Eimage/Eextended-image = 1 + 1.55× 10−13.

• The off-axis irradiance can be computed from the on-axis radiance by simply scaling it by the dot product
ω̂i · n. Such an approximation is not uncommon and one may refer to its role in Lambert’s cosine law. Given
the differential area element associated with the irradiance, the approximation is reasonable. To compute the
off-axis correction directly, one needs to set up and compute an integral over a tilted right circular cone. Once
the coordinate system and proper bounds of integration are determined, such a computation is likely to require
numerical integration.

• The optical system is simple and ideal, admitting perfect optical and atmospheric transmittance.
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• No atmosphere: The underlying assumption here is that the dispersive effects of the atmosphere (absorption,
transmission, reflection) have little statistical variation over the observation time windows.

• The target can be modeled as a single surface with normal n: Since the target is modeled as a point source, we let
n represent the mean surface normal ⟨n⟩ and associate with it a spatially averaged BRDF. As we depart from this
assumption, we must give up analytical tractability and pivot towards a full-scale simulation with micro-faceted
BRDFs. Another confounding detail not present in this assumption is that, for satellites, solar panels articulate.
We expect this to pose a formidable, but not impossible challenge. Fortunately, we can estimate the rotation
angle of solar panels with a very high likelihood. Decoupling the effects of panel articulation from bus pointing
angle may be slated for higher order corrections in future-future work.

• No thermal emission: Thermal radiation, especially from the large surface area of satellite solar panels is not
insignificant. However, this radiation primarily lies in the NIR or larger wavelengths. For optical spectra
≲ 1000 nm, we expect thermal radiation to be negligible.

• f(ω̂1, ω̂2, λ, t) = f(ω̂2, ω̂1, λ, τ): While Maxwell’s equations show this holds for t = τ , we have implicitly
made the assumption that the BRDF is approximately the same at conjugate times t and τ . Given that we have
modeled the target as a point source with a spatially averaged BRDF, we expect the variance in the BRDF at two
conjugate times to be small given a sufficiently small ∆t = |t− τ |. What is sufficiently small? One metric for
this is the time scale by which materials start to significantly deviate due to space aging. The time difference
assumption here in general falls within the same vein of work regarding spectral concept drift [6].

8. RELATED WORK

The first paper proposing the notion of the BRDF was in 1965 [3]. Since its inception, there have indeed been other
works that attempt to exploit Helmholtz reciprocity [7][8][9] for imaging applications. These works lie in the domain
of classical computer vision at the intersection of geometric stereo and photometry. They concern natural resolved
imaging and comprise experiments where the illumination source and camera are precisely positioned and controlled.
In these works, a sequence of conjugate observations allows one to stack the constraints of (31) into a matrix by which
one can use singular-value-decomposition or least squares optimization to make an estimate of the normal vector n
and depth at each pixel in the image. The results are compelling as seen in Figure 5 referenced from [8]. However,
such a technique’s utility may ultimately be limited by the need to precisely measure or control the system geometry of
the sensor-target-source positioning. Such methods should be contrasted with recent developments in neural radiance
fields that are independent of both camera intrinsics and extrinsics [10]. For the space domain, the relative positioning
between the sensor, target, and source is precisely defined via astrodynamical propagators and thereby may prove to be
a well-suited candidate for leveraging Helmholtz reciprocity.

Fig. 5: A reconstruction of the marked interior region (a) of a ceramic figurine. Figures (b) and (c) are the depth map
and the quiver plot of the normal field. The low resolution of the depth map is caused by the 11 × 11 window used in
the depth search, but this does not affect the accuracy of the estimated normal field. 18 reciprocal image pairs were
used.
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A. APPENDIX

A.1 Right Circular Cones

Given that most optical systems have circular apertures, rather than using the canonical solid angle defined by

ω =

∫∫
sin θdθdϕ (34)

which represents the solid angle subtended by a curvilinear square-like patch on the unit sphere (due to dθ and sin θdϕ
being orthogonal), it is helpful to use the solid angle associated with a right circular cone parametrized by half angle
θ1/2 as shown in Figure 6

ω =

∫ 2π

0

dϕ

∫ θ1/2

0

sin θdθ = 2π(1− cos θ1/2) = 4π sin2
(
θ1/2

2

)
. (35)
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Fig. 6: Right circular cone of half-angle θ1/2.

A.2 Projected Solid Angles

Given that radiance is defined as the flux per unit solid angle per unit projected area, it is helpful to define a quantity
related to the area subtended by a solid angle that is projected onto the plane of the observer as shown in Figure 7. To
differentiate from the canonical solid angle ω, we denote the projected solid angle as Ω and define it as

dΩ = sin θ cos θdθdϕ. (36)

Solid angle and projected solid angle are related as

dΩ = cos θdω. (37)

Fig. 7: Projected solid angle Ω.

For small solid angles, we can approximate the projected solid angle as Ω = ω cos θ. However, for large solid angles,
we must integrate over cos θ for each differential area to compute the correct projected area. For the hemisphere,
ω = 2π while Ω = π.

The projected solid angle associated with a right circular cone can be computed as

Ω =

∫ 2π

0

dϕ

∫ θ1/2

0

sin θ cos θdθ = π sin2 θ1/2. (38)
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