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1. INTRODUCTION

With multiple satellite mega-constellations, such as Spire, SpaceX’s Starlink, OneWeb, and Amazon’s Kuiper being 
planned in the LEO regime over the next decade, space traffic in the near-Earth space domain will reach unprecedented 
levels of congestion. Many of these planned constellations, such as Starlink, utilize automatic collision avoidance 
techniques for orbit safety and maintenance of their satellites. But they are still reliant on orbit data of all other satellites 
and debris in the neighborhood of their satellites from the 18th Space Squadron. Therefore, accurate prediction of the 
orbital states, and subsequently, thermospheric density, is a problem of growing significance that requires immediate 
attention. The effect of thermospheric density perturbations becomes especially evident in the very low earth orbit 
(VLEO) regime, where small uncertainties in the density predictions can dramatically impact operations, as shown by 
the February 2022 Starlink loss event.

The current operational density model for orbit predictions and conjunction analyses used by the Department of De-
fense (DOD) is the Air Force High Accuracy Satellite Drag Model (HASDM). HASDM is considered the gold standard 
of operational density modeling as it provides a very accurate picture of the current average state of the thermosphere 
by assimilating real-time tracking data from around 90 calibration objects and dynamically correcting the baseline 
JBH09 model (a slight variant of Jacchia Bowman 2008 or JB2008 model). But HASDM densities are only available 
in real-time for government users. For non-government users, there are several non-assimilating density models, such 
as the Mass Spectrometer Incoherent Scatter Radar (MSIS) series of models and JB2008, used in operations with no 
clear consensus on which model performs the best in what scenario. These models are typically biased, either high 
or low, with HASDM containing the least biases due to real-time data assimilation. These biases can be somewhat 
corrected during orbit determination during quiescent conditions, resulting in acceptable orbit fits and short-term orbit 
predictions. However, during extreme space weather conditions, the models fail to capture perturbations over short 
time scales and local spatial scales, leading to poor orbit fits and possible catalog loss. As the provision of civil SSA 
services transitions from the DOD to the DOC as per the Space Policy Directive - 3 (SPD-3), a commercial atmo-
spheric density model with a performance comparable to HASDM or better will be essential for the smooth operation 
of civil SSA.

An accurate thermosphere forecasting system requires a model rooted in full physics of the coupling between the 
upper and lower atmosphere and the Sun-Earth system. Such a model would better account for local-scale and higher 
frequency perturbations that semi-empirical models fail to capture. To be consistent with the current average state of 
the thermosphere, a physics-based model needs to be continuously calibrated with real-time data ingested through a 
data-assimilation methodology. The planned mega-constellations discussed in the preceding paragraph can serve as
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signals of opportunity for such a system with their extensive spatial and temporal coverage of the thermosphere and
high-cadence GPS data. Additionally, planned science missions such as the Geospace Dynamics Constellation (GDC)
will carry high-fidelity GPS receivers that can be used for high accuracy density retrievals along the orbit.

One of the first steps towards such a data-assimilative physics-based model of the thermosphere is accurate retrieval
of near real-time densities. The high-cadence position and velocity information obtained from the GPS receivers can
be used to retrieve estimates of neutral density along the orbital tracks of the satellites. Extensive work has been
carried out in estimating atmospheric densities from GPS measurements by various groups. GPS measurements from
CHAMP, GRACE, GOCE, and Swarm were used to estimate non-conservative accelerations in a reduced-dynamic
POD scheme, so-called ‘GPS accelerometry’ [1, 2, 3].

A simplification of this method, which bypasses complex processing of the raw GPS measurements, is to use the final
Precise Orbit Determination (POD) data for atmospheric density retrieval. Since the POD data are usually obtained
within a few centimeters of accuracy, they can be used to estimate atmospheric densities with an accuracy comparable
to processing raw GPS measurements. There are a few ways that POD can be used for this purpose. In one class of
methods, they can serve as measurements in an orbit determination scheme [4, 5, 6, 7, 8], where atmospheric densities
are estimated as part of the filtering framework — a sort of ‘POD accelerometry’. In the second class of methods,
the POD data can be used to numerically calculate orbit parameters, such as the energy dissipation rate (EDR) or the
total acceleration, that contain information related to atmospheric density. EDRs derived from POD data [9] and TLEs
[10] have been used to infer effective atmospheric densities over a chosen arc-length that are then further ingested
in data-assimilation schemes to improve density nowcasts. The POD velocities can be numerically differentiated to
obtain accelerations from which atmospheric densities can be inverted [11, 12].

All these methods have relative advantages in terms of ease of implementation and estimated density accuracy de-
pending on various factors, such as errors in non-conservative force models, the temporal resolution of the data, and
the drag signal-to-noise ratio (SNR). The drag SNR is representative of factors that determine the drag magnitude,
such as the altitude, area-to-mass ratio (AMR), and space weather activity, as well as the accuracy of the POD data.
To effectively derive densities for data-assimilation methods, the most appropriate method must be chosen given the
satellite orbit, quality of the data, and space weather conditions. An extensive error analysis of these methods is re-
quired at different altitudes to understand their relative performances for density retrieval. This work aims to provide
an understanding of the trade-offs between the methods that will aid the reader in selecting an approach for their
specific application. We perform an error analysis of two approaches from the POD-based density retrieval method
classes described in the preceding paragraph - POD accelerometry and EDR for the 300-800 km altitude regime. The
majority of the comparative analysis is performed during solar minimum (F10.7 = 72.5). The remainder of this study
provides a brief overview of the two methods and provides their sensitivity analyses for various method dependencies
over the selected altitude regime.

The ultimate goal of this work is to create a long-term, continuously updated, neutral density dataset that can be in-
gested in a “commercial data-driven atmospheric density modeling framework.” The results of the preceding error
analysis are used to select the method and tuning parameters for density retrievals using data from the Spire constel-
lation. Our results demonstrate that the outputs from density models are in better agreement with HASDM densities
when calibrated by satellite tracking data.

2. METHODOLOGY

The two methods compared in this paper - POD accelerometry and EDR - make use of POD data to infer atmospheric
densities along the orbital tracks of the satellites. The methods differ in their approach to ingesting and processing
the POD data. In the most common form of POD accelerometry, empirical accelerations are estimated in the form of
piecewise constants [1] or one cycle-per-revolution (cpr) terms [13] along each direction. These are usually estimated
in a batch least-squares estimator where the terms are fixed along some orbital arc. The other approach in POD
accelerometry is to model the accelerations as stochastic terms in the form of Gauss-Markov processes [8, 3] whose
states are estimated in a sequential filter-smoother. This work uses a second-order Gauss-Markov process (GMP2) to
model the correction to a nominal atmospheric model used in the filter. An iterated extended Kalman filter (EKF)-
smoother is used that provides estimates of the density correction at each measurement step.

In EDR, the POD positions and velocities are used to calculate the change in mechanical energy of the satellites caused
by the dissipation due to non-conservative forces. By assuming other forces are modeled accurately, the dissipation
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due to atmospheric drag and, subsequently, the densities are calculated.

The measurements for this work - precise positions and velocities - are generated by simulating nearly circular satellite
trajectories with altitudes in the 300-800 km range. The POD data are considered perfect, i.e., no errors are added
to the simulated POD. The impact of POD errors on the method performance is analyzed in section 3.4. The POD
data are assumed to be available every 10 s, with one day’s worth of data being processed. The area-to-mass ratio
(AMR) for the modeled Spire cubesat is 0.02 m2/kg, thus putting it in the category of low AMR objects. The higher
the object’s AMR, the larger the density signal in the tracking data will be. Therefore, atmospheric density can be
extracted with higher accuracy for high AMR objects.

The true density is modeled using HASDM data from the SET HASDM database [14]. HASDM densities are available
from January 1, 2000, through December 31, 2019, that can be requested from the SET website at spacewx.com/
hasdm/. The data covers two complete solar cycles with a 3-hour time resolution, at 10◦×15◦ latitude/longitude bins
and 25 km steps between 175 and 825 km. In the POD accelerometry method implemented here, a baseline model is
used as part of the orbit determination process, to which corrections are estimated using POD data. NRLMSISE-00
[15] is the baseline atmospheric density model being used.

Baseline solutions for comparison purposes for both methods are generated using perfect force dynamics modeling.
The degradation in solutions with force errors compared to the baseline solutions is discussed in the next section.

3. ERROR ANALYSIS

The accuracy of the retrieved densities from both methods depends on multiple factors such as truncation of the
gravitational field model, errors in the other non-conservative force models, attitude, and drag-coefficient. The relative
performance of the methods will depend on the nature of the error and the satellite’s orbital altitude. In this section, we
carry out an error analysis of the methods for the factors that have the largest effects on the density estimation accuracy,
including truncation of the geopotential, mismodeling of non-conservative forces of SRP and ERP and attitude errors.
Finally, we end the section with an analysis of the method performances for varying drag environments and POD
accuracy. It should be noted that one of the largest errors in density retrievals is introduced as a result of uncertainties
in the drag-coefficient. The nature of gas-surface interactions that determine the drag-coefficient can be quite complex.
There are gaps in the knowledge of key parameters that feed into these models. The models are usually more well-
constrained at lower altitudes where the nature of gas reemission from the surface is more diffuse [16]. But at higher
altitudes, the nature of reemission is less understood, with fewer observations to provide any conclusive evidence
[17]. This is especially true in the oxygen-to-helium transition region, which can vary significantly depending on solar
activity and geographical location [18]. The uncertainties in the drag-coefficient and the consequences for retrieved
densities have been extensively studied in literature [19, 8, 6]. In this work, the error introduced in the retrieved
densities due to the drag-coefficient is not analyzed due to the relatively simple nature of the error relationship. The
errors have almost a one-to-one relationship in the sense that a 10% error in the modeled drag-coefficient will result
in a 10% error in the retrieved density for the methods considered in this paper. On the other hand, the errors due to
other unmodeled forces and the attitude have a more complicated relationship to the retrieved densities.

3.1 Gravitational force modeling error

The gravitational field used for the propagation of Earth-orbiting satellites is modeled using a spherical harmonic
expansion. The gravitational field potential or geopotential is given by [20]

U =
GMe

r

∞

∑
n=0

n

∑
m=0

Rn
e

rn Pnm(sinφ)(Cnm cos(mλ )+Snm sin(mλ )), (1)

where G is the universal gravitational constant, Me is the mass of Earth, r is the distance of the point from Earth’s
center, n is the degree and m is the order of the geopotential, Re is the radius of Earth, Pnm are associated Legendre
functions of the first kind, φ and λ are geocentric latitude and longitude, and Cnm and Snm are spherical harmonic
coefficients. The gravitational acceleration can be calculated by taking the first derivative of the geopotential with
respect to the position vector and rotating to the Earth-centered inertial frame. The accuracy of the gravitational
acceleration is controlled by the spherical harmonic coefficients Cnm and Snm and the degree/order of truncation. The
spherical harmonic coefficients are available in the form of numerous global gravity field models that differ from each
other in the ingested data. The difference between the models is negligible for the accuracy concerned here [21].
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The primary estimation errors due to the gravitational field stem from the truncation of the model. The gravitational
field model in the filter is usually truncated based on orbit propagation errors and orbit fit residuals due to computa-
tional expenses [22, 23]. But when estimating non-conservative force parameters, the contribution from higher-order
gravitational harmonics becomes more important. Specifically, the ignored higher-order harmonics alias into the es-
timated non-conservative force parameters. Ray and Scheeres (2020) [21] showed that an order 90 gravitational field
at 350 km and order 50 field at 850 km would be ideal for minimizing aliasing errors into estimated cannonball drag
and SRP coefficients. Therefore, it is important to understand the trade-offs between the computational complexity
of using a higher-order gravitational field and errors introduced in retrieved densities from a lower-order gravitational
field.

To mimic the effects of gravitational field model truncation, the true trajectory is simulated using the EGM2008 model
[24], truncated at order 200. The EGM2008 model used in estimating the densities with the two methods is truncated
at lower orders. The density retrieval errors for increasing orders of truncation of the gravitational field model used in
the estimation methods are plotted in Fig. 1. As expected, with increasing orders of truncation, the estimated density
improves accuracy. For POD accelerometry, a minimum truncation order of 80-100 is required at all altitudes for the
density error to converge. This number varies quite a bit for EDR depending on the altitude. For altitudes greater
than 400 km, a truncation order of 60-70 is sufficient. This is because of the larger arc-lengths at these altitudes that
averages out the gravitational error. At 300 km and 400 km, the error is still decreasing at order 120. Note that for
noisy POD, the errors will converge at a smaller order of truncation for EDR, similar to POD accelerometry. Though
the POD accelerometry also ingests perfect POD data, noise is introduced in the system through the stochastic process
used for density corrections. For 300 km-500 km, at the steady state order of truncation, EDR performs marginally
better than POD accelerometry.
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Fig. 1: Solar minimum (F10.7 = 72.5, Ap = 9): (a) RMS of relative density estimation error using POD accelerometry;
(b) RMS of relative density estimation error using EDR. The color bar axis is limited to 100%.

3.2 Non-conservative force modeling errors
In deriving neutral densities from POD, there’s an inherent assumption that all other non-conservative forces are
accurately modeled so that their effects can be subtracted out. The remaining errors are then attributed to drag effects
or more specifically, the neutral density. But modeling errors exist in other non-conservative forces and associated
parameters such as SRP, ERP, thermal radiation pressure, and atmospheric winds in the drag equation that trickle
down to the derived density estimates. The largest contribution comes from the SRP force followed by the ERP force.
Atmospheric winds, for example, will introduce errors of a few percent in the velocity and subsequently, the retrieved
densities. Therefore, it is imperative to model the SRP and ERP forces accurately. The SRP force acting on the satellite
can be modeled by summing up the radiation force acting on each panel of the satellite as follows

aaaSRP =−Ps
Cr

m

(
AU
|rrrsss|

)2

fs

6

∑
k=1

Ak cosθk[(1−ρk)r̂rrs +2(
δk

3
+ρk cosθk)n̂nnkkk], (2)
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where Ps = 4.56 µPa is the solar radiation pressure at 1 AU distance, rrrsss is the satellite to Sun position vector, fs is the
shadow factor [25], Ak are the areas of the satellite surfaces with n̂nnkkk as the unit vectors in the satellite body frame, θk are
the angles that the sun vector makes with the surface unit vectors, δk and ρk are the diffuse and specular reflectivities
of the surfaces respectively, and Cr is the SRP coefficient or the scaling factor in the panel model.

The ERP force, as the name suggests, is the force due to the radiation emitted from the Earth’s surface. It comprises
of two components - shortwave flux or albedo which is non-zero only for the illuminated areas of Earth and the re-
radiated longwave flux which is emitted from all parts of the planet. In this work, we use the ERP model developed
by Knocke et al (1988) [26] that divides the Earth’s surface into multiple grid segments and calculates the force due
to each Earth segment using historical seasonal averages of the thermo-optical properties of Earth. The effects of SRP
and ERP errors on the performance of POD accelerometry and EDR method will depend on the relative magnitude
of the forces compared to drag and relative energy dissipation respectively. The average acceleration magnitudes and
energy dissipation over an orbit for the three forces are plotted in Fig. 2.

(

(𝑚𝑚
/𝑠𝑠

2 )
(𝑚𝑚

2 /
𝑠𝑠2

)

.

Fig. 2: Solar minimum (F10.7 = 72.5, Ap = 9): Relative magnitudes of average acceleration and energy dissipation for
atmospheric drag, SRP and ERP forces for a satellite with an AMR of 0.02

First, the effect of errors in the SRP force is investigated by taking different values of the panel optical properties in
the filter model than the ones used to generate the truth. In the POD accelerometry method, the errors in the SRP force
can partly be compensated for by estimating SRP parameters in the filter force model. The most common way is to
estimate a global scaling factor for the SRP panel model [3], Cr in Eq. 2. But a single scaling factor might not work
very well if the satellite attitude with respect to the sun-satellite line is changing. McMahon and Scheeres (2015) [27]
proposed the Three-constants model that estimates scaling factors along three perpendicular inertial directions -

aaaSRP =
K
r2 [A0ûuu+A1v̂vv+A2ŵww] (3)

where K is a constant, ûuu is the unit vector from the Earth to the Sun, ŵww is in the direction of the angular momentum of
Earth’s heliocentric orbit and v̂vv completes the triad. The spacecraft-Sun unit direction is considered to be almost equal
to the Earth-Sun direction. A0, A1 and A2 are constants to be determined. If only the component in the direction of the
Sun is taken, it reduces to the cannonball model. For the EDR method, there’s no way to correct for errors in other
non-conservative forces since no estimation is being performed. But the relative contribution of SRP and ERP to the
energy dissipation is smaller than the drag force for all altitudes as seen in Fig. 2.

The relative density error statistics using POD accelerometry and EDR method with SRP modeling errors are plotted
in Fig. 3. For the POD accelerometry in Fig. 3 (a), the density errors are compared for an estimated SRP scaling
factor and the SRP Three-constants model. As can be seen in Fig. 3, the errors in the retrieved densities with a global
scaling factor estimated for SRP is significantly larger than the Three-constants model at altitudes greater than 400
km. A single scaling factor cannot compensate for biases in the SRP force model. The Three-constants model will be
used in the filter in subsequent sections.
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For the EDR method in Fig. 3 (b), the density errors are compared with the baseline solution generated with perfect
force models. At altitudes less than 500 km, the errors are negligible. The errors increase up to 600 km and then
start decreasing again due to the averaging arc-length being close to an orbit at 700 km and 800 km. This leads to the
SRP errors averaging out; subsequently, the density estimates are close to the baseline solution. Therefore, with more
significant SRP errors, selecting an averaging arc-length of at least one complete orbit for higher altitudes might be
more advantageous. Interestingly, the mean of the density error is smaller than the baseline solution. This implies that
the SRP error averaged over the given arc-length somehow compensates for the average error in the density estimate.
The ERP force is around 20% of the SRP force and is primarily in the radial direction. Therefore, the effects of
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Fig. 3: Solar minimum (F10.7 = 72.5, Ap = 9): Relative density estimation errors for SRP modeling errors in the
filter with (a) POD accelerometry and (b) EDR method. The y-axis is limited to 10% mean and 100% RMS for POD
accelerometry.

ERP on the derived densities will be small for lower altitudes. ERP errors are introduced in the filter using a high-
fidelity model that uses monthly-averaged radiation flux data from the Clouds and the Earth’s Radiant Energy System
(CERES) instrument [28]. The filter uses the Knocke et al. model [26] that divides the Earth into multiple rings (six,
in this work) and uses historical seasonally averaged data for the radiation fluxes for each ring. A global scaling factor
is estimated for the ERP force in the POD accelerometry method. The estimated density errors for both methods
are plotted in Fig. 4. For POD accelerometry, the errors due to ERP slightly degrade the accuracy of the estimated
densities at altitudes higher than 500 km due to the low drag signal. For EDR, errors in ERP do not contribute to the
estimated densities. To minimize the errors due to ERP, a model that accounts for current Earth radiation fluxes should
be used, such as the extended model developed by Vielberg and Kusche (2020) [29] that uses hourly data from the
CERES instrument [28]. Additionally, estimating a global scaling factor improves the results as well.

3.3 Attitude errors
The attitude of a satellite plays a key role in neutral density retrieval. The attitude affects the cross-sectional area in
the ram-facing direction, which in turn determines the magnitude of the drag force acting on the satellite. Therefore,
errors in the attitude directly affect the retrieved densities through the cross-sectional area or the ballistic coefficient.
Additionally, attitude information is required to model SRP and ERP forces accurately. Due to attitude errors, force
modeling errors in SRP and ERP contribute to secondary effects in the density retrieval accuracy.

The errors in attitude are simulated by adding a constant bias in the roll, pitch, and yaw directions. At lower altitudes,
the dominant source of error is the drag-coefficient. For example, at 300 km, the relative error in the density is similar
to the relative error in the drag-coefficient and therefore, not shown here. A maximum error of around 10% is seen
in the drag-coefficient and, consequently, the estimated densities for a bias in the pitch/yaw of 10 degrees. But at
800 km, the errors in the densities are much larger though the drag-coefficient errors remain the same, as can be seen
in Fig. 5. The resulting SRP and ERP errors dominate the retrieved densities’ accuracy at this altitude. With POD
accelerometry, the errors can be constrained by estimating force scaling factors similar to the previous section. The
estimated parameters absorb the errors introduced due to attitude and improve the accuracy of the retrieved densities.
A global scaling factor is estimated for ERP, and the Three constants model is used for SRP in Fig. 5.
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Fig. 4: Solar minimum (F10.7 = 72.5, Ap = 9): Relative density estimation errors for ERP modeling errors in the filter
with (a) POD accelerometry and (b) EDR method.

3.4 POD accuracy in different drag environments

The accuracy of the available POD can vary depending on the method employed — kinematic, dynamic, or reduced-
dynamic, type of tracking data, and measurement noise. In highly precise science missions, an accuracy of a few
centimeters in position and tens of micrometers per second is commonly achieved [13, 30, 31]. In commercial satel-
lites with scientific data products such as Spire, POD accuracy of tens of centimeters in position and a few hundred
micrometers per second is reported [32]. For most other satellites, where orbit accuracy is not critical, the accuracy of
orbit solutions can be at the order of meters or more and might not even classify as POD anymore. Up until this point
in our analysis, the POD data have been treated as ideal, with no errors. This section investigates the impact of POD
errors on density accuracy.

The measurement noise is usually modeled as white Gaussian noise in the estimation methods employed in orbit de-
termination. Therefore, errors in the POD are introduced using a white noise process with a specified RMS value. It
should be noted that the POD errors obtained from the orbit determination will not remain Gaussian due to the nonlin-
earity of orbital dynamics. Since POD data are obtained by processing raw, noisy measurements (where Gaussianity
of the noise is a more accurate approximation) in an orbit determination framework, the errors in POD may become
more systematic than stochastic, with correlation to errors in the orbital dynamics model and measurement biases.
The errors in POD may also vary during the data-arc so that the POD may be more accurate in certain parts of the arc
than others. But assuming the POD errors to be Gaussian is a good first-order approximation, and the results provide
a rule-of-thumb for the relative performances of the techniques in different drag regimes. Modeling the nature of the
POD errors can become quite complex [33] and is not addressed in this work. Introducing noise in the POD changes
the arc-lengths that minimize the density error using EDR. Therefore, the arc-lengths for perfect POD in Fig. ?? will
no longer apply to noisy POD measurements. In order to compare the EDR results for different POD noise levels, the
arc-lengths that minimize the density error RMS at each POD noise level are selected.

The density retrieval accuracy strongly depends on the drag SNR, which is a function of the POD noise level, altitude,
space weather conditions, and the satellite AMR. In order to determine the accuracy of retrieved densities that can be
expected with either method, it is more informative to use the drag acceleration magnitude as a metric to represent
the drag regime instead of analyzing each of the parameters separately. Therefore, the altitude (300−800 km), AMR
(0.01−10), and space weather conditions (F10.7 = 72−280, Ap = 9−203) are varied to obtain a plausible range of
drag acceleration magnitudes encountered in orbit. The densities obtained with the two methods are compared for the
range of drag acceleration magnitudes with POD data of varying accuracy (1 cm - 50 cm). The velocity noise level is
assumed to be 1/(1000 s) of the position noise level. The error RMS of the retrieved densities are plotted in Fig. 6 for
both methods. For low SNR regimes (< 10−6 m/s2 drag and > 0.25 m POD noise), the errors render the estimated
instantaneous densities unusable for both methods, though the “high-error regions” stretch larger for EDR. In these
regions, the averaging length required for EDR quickly increases leading to a loss of geophysical information. Since
we are comparing the retrieved densities to the instantaneous true density, the errors for EDR are expected to be larger
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Fig. 5: Solar minimum (F10.7 = 72.5, Ap = 9): Mean and RMS of relative density estimation error with (a),(c) POD
accelerometry and (b),(d) EDR method at 800 km. The upper panel shows the error mean for the two methods while
the lower panel shows the RMS. Three-constants model is used for SRP and a global scaling factor is estimated for
ERP with POD accelerometry

than POD accelerometry. Some typical satellite scenarios are shown in the signal-noise plot as described in Table
1. Starlink satellites are launched at a lower parking orbit and then boosted to operational altitudes of around 550
km. At the parking orbit, the solar panels are kept tangential to the atmosphere in an open-book configuration while
at the operational altitudes, the solar panels may assume an orientation perpendicular to the relative velocity vector
(shark-fin configuration). The noise in the orbit determination solutions for Starlink is observed to be relatively larger,
and therefore the Starlink scenarios are placed at the top of the plot. An overlap analysis of the Spire POD arcs reveals
the noise RMS to be around 10 cm [34]. The POD accuracy for science missions like GRACE and GOCE is typically
in the order of a few centimeters [35, 36].
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Case Space weather
activity Perigee altitude AMR

Starlink 1
F10.7 = 127, Ap = 52
(G1 storm)

550 km (Operational
orbit)

0.005 (Open-book
configuration)

Starlink 2
F10.7 = 280, Ap = 203
(G5 storm)

550 km (Operational
orbit)

0.05 (Shark-fin
configuration)

Starlink 3
F10.7 = 127, Ap = 52
(G1 storm)

210 km (Parking
orbit)

0.005 (Open-book
configuration)

Starlink 4
F10.7 = 280, Ap = 203
(G5 storm)

210 km (Parking
orbit)

0.005 (Open-book
configuration)

Spire 1
F10.7 = 127, Ap = 52
(G1 storm) 475 km 0.02

Spire 2
F10.7 = 280, Ap = 203
(G5 storm) 475 km 0.02

GRACE
F10.7 = 127, Ap = 52
(G1 storm) 470 km 0.002

GOCE
F10.7 = 127, Ap = 52
(G1 storm) 350 km 0.0008

Table 1: Description of representative satellites in the drag signal-noise plots of Figs. 6 and 7
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Fig. 6: RMS of relative density estimation error for varying drag regimes and POD noise levels using (a) POD ac-
celerometry and (b) EDR method. The arc-length of the EDR method is chosen for each altitude such that the error
RMS is minimized. The color scale is capped at 100%. The representative scenarios for different satellites are de-
scribed in Table 1

Since the density estimates obtained using EDR are averaged over a chosen time interval, some of the error in the
density estimates obtained is due to averaging or the loss of geophysical information. Therefore, comparing the
averaged density estimates with the instantaneous true densities at measurement cadence (typically, 1-10 s) yields
poor results for EDR. Even in the case of POD accelerometry, providing density corrections to the baseline model at
measurement cadence is not physically meaningful in low-drag SNR regimes. This is evidenced by the large errors
between the density estimates and the true instantaneous densities seen at measurement cadence (10 s) in Fig. 6 for low
SNR regions. In many applications, such as data-assimilation techniques for density modeling, an accurate average
density over a given time interval is sufficient. However, one would ideally want the time interval to be small to capture
geophysical variations. Therefore, it is useful to compare the minimum averaging arc-lengths for the two methods for
which the density can be obtained with a given accuracy. The arc-lengths for which the density can be obtained with
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10% RMS accuracy are plotted in Fig. 7. It is immediately noticeable that a good portion of the signal-noise region
is missing in the EDR plot; this simply means that EDR cannot estimate average densities better than 10% within
the maximum averaging arc-length of 20 hours that was used in this study. In addition, the EDR technique is able
to estimate densities better than 10% for drag accelerations less than 10−8 m/s2 for averaging lengths of 10-16 hours
but only for noise levels of 5 cm. On the other hand, POD accelerometry can provide average densities within 10%
accuracy for all the drag SNR regimes investigated here, with a maximum arc-length of 8 hours for the lowest SNR
region. Given the ease of implementation and simple tuning process (selecting an averaging arc-length), EDR proves
to be a viable option when retrieving densities in the high SNR regions (> 10−6 m/s2 drag acceleration and < 2.5
cm POD position noise). For lower SNR regions, POD accelerometry should be used to obtain densities with shorter
arc-lengths.
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Fig. 7: Averaging arc-lengths required to obtain density errors with less than 10% error using (a) POD accelerometry
and (b) EDR method. Note that arc-lengths up to 20 hours were investigated for a day’s worth of processed data. The
representative scenarios for different satellites are described in Table 1

4. DENSITY ESTIMATES USING REAL POD DATA

In this section, real POD data from the Spire constellation is used to estimate atmospheric densities along the orbital
tracks of the Spire satellites. Two sources of Spire POD data are used in this work - 1) Spire’s own internally processed
POD data, available through the NASA Commercial Smallsat Data Acquisition (CSDA) Program (earthdata.nasa.
gov/esds/csdap). The POD data is available at a per-second cadence.

2) An updated POD dataset processed by the University Corporation for Atmospheric Research (UCAR) (https:
//data.cosmic.ucar.edu/gnss-ro/spire/noaa/nrt/), hereon referred to as UCAR POD. The data is available
at a per-minute cadence.

Both datasets have data-gaps depending on the duty cycle of the onboard GPS receiver. The newer satellites with
satellite IDs > 99 have duty cycles approaching 80-90 %. Spire also publishes their satellite attitude in the form of
quaternions. The attitude information is available at a 15-minute cadence, interpolated to 10 s intervals using Spherical
Linear IntERPolation (SLERP) [37]. The POD datasets from Feb 5, 2022, are used in this analysis. POD data for 27
satellites are available through Spire’s internal POD, while 15 of those satellites have POD data through UCAR as
well.

An estimate of the POD errors can be obtained by comparing orbit overlaps, i.e., overlapping arcs of POD data. An
example of orbit overlaps for both datasets is plotted in Fig. 8. The RMS values of orbit overlap differences are plotted
for all the available satellites in Fig. 9. The RMS values of differences between the Spire and UCAR POD data, at
common time-stamps (not interpolated) are also plotted in the figure. The orbit overlap errors seem to indicate that the
UCAR-processed POD data contain larger errors than Spire’s internally processed PODs. The POD data differences

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 

earthdata.nasa.gov/esds/csdap
earthdata.nasa.gov/esds/csdap
https://data.cosmic.ucar.edu/gnss-ro/spire/noaa/nrt/
https://data.cosmic.ucar.edu/gnss-ro/spire/noaa/nrt/


between the two datasets are large enough to cause differences in retrieved densities.

(a) (b)

Fig. 8: Orbit overlaps for (a) Spire internal POD and (b) UCAR POD for Feb 5, 2022

(a) (b)

Fig. 9: (a) RMS values of orbit overlap differences for both datasets, (b) RMS values of POD differences between
Spire and UCAR for Feb 5, 2022

The error analyses in the preceding sections indicate that POD accelerometry can provide accurate densities at shorter
averaging arc-lengths compared to EDR in low-drag SNR environments. Since some Spire satellites are at an altitude
of around 580 km, and the Spire POD noise can be up to 50 cm RMS, as seen in Fig. 9, POD accelerometry is used
to process the datasets. JB2008 is used as the baseline density model to which corrections are estimated using the
POD data. HASDM densities are used as the ”truth” source for comparison. The estimated densities are averaged
at an orbital cadence whenever a full orbital arc is available. All other arcs are ignored. A moving window average
is used to obtain an averaged density at every time-step of the data (excluding the end of the data-arcs). In order to
compare the densities obtained using Spire and UCAR data, the Spire data are used at a minute cadence, and only
the 15 satellites common to both datasets are used. The estimated density errors compared to HASDM are binned by
altitude levels and plotted in Fig. 10. The estimated densities are closer to HASDM at 450 and 550 km than JB2008
for both datasets. But at 500 km, the errors are slightly larger compared to JB2008. The densities estimated with
the Spire POD data are slightly closer to HASDM than those estimated with UCAR POD data. Any differences in
estimated densities due to different POD noise levels are essentially washed out at an averaging arc-length of an orbit.
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However, it should be noted that a fair comparison of the estimated densities from the two datasets is complicated
because the POD data from the two sources are not the same length or at the same time stamps.

(a) (b)

Fig. 10: Mean and RMS of estimated density errors compared to HASDM with the (a) Spire POD data and (b) UCAR
POD data for Feb 5, 2022

If all the 27 satellites for which Spire internal POD is available are processed, the estimated densities at 500 km are
closer to HASDM, as seen in Fig. 11. The errors in daily averaged densities are much smaller, as seen in Fig. 11 (b),
which implies the errors can be further reduced by increasing the averaging length. The data above 600 km is scarce;
therefore, the corrections to the baseline model are limited.

(a) (b)

Fig. 11: (a) Mean and RMS of estimated density errors compared to HASDM at an orbital cadence with the Spire
POD data and (b) Error in the daily-averaged density for Feb 5, 2022, using 27 satellites

5. CONCLUSIONS

In this paper, we explored two classes of methods using Precise Orbit Determination (POD) - 1) processing tracking
data in an orbit determination scheme (POD accelerometry) and 2) using the tracking information directly to calculate
densities (Energy Dissipation Rate (EDR)). Their sensitivities to various possible errors across the 300-800 km altitude
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regime during solar minimum conditions (F10.7 = 72.5) were compared to understand the applicability of each method
in different scenarios.

Both methods are sensitive to errors in the dynamics models. SRP and ERP model errors have a smaller effect on
the EDR-derived densities than POD accelerometry. This is because the integral of the EDR due to SRP or ERP
over a data-arc may approximately average out, in contrast to the drag EDR. Therefore, depending on the orbital
regime and chosen data-arc, the energy dissipation due to SRP and ERP may essentially be ignored. Though the POD
accelerometry results are more sensitive to errors in the SRP and ERP models, a significant portion of the error may
be mitigated by estimating scale factors for the forces. Choosing the appropriate force parameters to estimate for POD
accelerometry is important, as Fig. 3 demonstrates. Similarly, for errors in attitude, the resulting errors in the SRP
and ERP forces can be reduced by estimating appropriate scale factors for POD accelerometry. Note that one of the
most dominant error sources, i.e., the drag-coefficient has not been considered directly in this work due to the almost
one-to-one relationship of their error correlations (nearly one). On the other hand, the errors due to other unmodeled
forces and the attitude have a more complicated relationship to the retrieved densities, and this work sought to provide
more insight into their nature.

For perfect POD, i.e., without any errors, EDR works as well as POD accelerometry until around 500 km. But EDR
degrades in accuracy at low drag SNR regimes, as shown in Fig. 6. Comparatively, POD accelerometry is less
sensitive to POD noise since it processes the POD in a filtering framework. The main advantage of EDR lies in the
ease of implementation and simplicity of the setup required to obtain the densities. There are fewer tuning knobs
for EDR compared to POD accelerometry. The loss of geophysical information or averaging error introduced in the
EDR estimates will be reduced for satellites that are in near-circular terminator orbits or where the variations due
to eccentricity balance out the day-night variations in density. EDR is a viable option for density retrieval for high
drag SNR regimes, i.e., for high cadence and low-noise POD solutions at lower altitudes, high solar activity, and high
AMR satellites. But for low-drag SNR regions, POD accelerometry should be used to retrieve densities to retain more
geophysical information in the density.

POD accelerometry was used to estimate densities using real POD data from the Spire constellation. The densities
estimated at orbital cadence from two POD sources of different fidelity - Spire internally processed POD data and
UCAR processed POD data - were compared. At orbital cadence, the errors in estimated densities compared to
HASDM were similar for both sources, using the 15 satellites common to both datasets. The differences would be
more evident if the densities were estimated at a higher cadence. The corrected densities are closer to HASDM than
the baseline model (JB2008) at 450 and 550 km but show some degradation in accuracy at 500 km. But including all
27 satellites for which Spire POD data are available improves the errors. The daily-averaged densities are much closer
to HASDM than the baseline JB2008.

The long-term goal of this project is to provide the community with an atmospheric model calibrated in near real-
time with tracking data from satellite constellations. The results of this study indicate the potential of using POD
data from commercial satellites to provide accurate density estimates. We are currently using POD accelerometry
and EDR to obtain neutral density estimates over several years using POD data from commercial constellations like
Spire and Starlink. These estimates can eventually be ingested in a data-assimilation framework to obtain a calibrated
atmospheric density model.
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[36] Heike Bock, Adrian Jäggi, Gerhard Beutler, and Ulrich Meyer. GOCE: precise orbit determination for the entire
mission. Journal of Geodesy, 88:1047–1060, 2014.

[37] Ken Shoemake. Animating rotations with quaternion curves. In SIGGRAPH ’85: Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pages 245–254, 1985.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 


	Introduction
	Methodology
	Error analysis
	Gravitational force modeling error
	Non-conservative force modeling errors
	Attitude errors
	POD accuracy in different drag environments

	Density estimates using real POD data
	Conclusions
	Acknowledgements
	References



