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ABSTRACT 

Unsupervised machine learning techniques can be used to describe historical satellite behavior in the geosynchronous 
orbital regime with higher fidelity than the colloquial terms most often used by satellite operators and the space 
situational awareness research community. Although satellite behavior is often described with a handful of shorthand 
operational modes—east-west station-keeping, libration orbits, and retirement drift in the graveyard orbit, for 
example—more detailed behavioral modes that differentiate station-keeping maneuver frequencies, magnitudes, and 
propulsion type can be identified via machine learning. This paper contributes to the GEO satellite pattern-of-life 
characterization literature in a novel way: dissecting historical GEO satellite position time-histories into short 
segments and sorting them into groups of similar features using time-series k-means clustering. Once sorted, the 
populations within each cluster can be analyzed further to uncover similarities that may be differentiating observed 
behavior, including the type of propulsion mechanisms on board and the age of the satellite bus. Unlike previous 
efforts in behavioral mode clustering, the algorithm presented in this work can be deployed on long-duration satellite 
position time-histories across many different behavioral modes, with a single learning step from input to output (“end-
to-end”). Additionally, there is no requirement to first identify pattern-of-life (PoL) nodes, in which on-orbit behavior 
drastically shifts from one behavioral mode to another; instead the presented algorithm can identify segments that 
contain PoL nodes, effectively identifying the nodes themselves as part of the process.  

1. INTRODUCTION

Satellites in geosynchronous Earth orbit (GEO) typically spend the majority of their operational lifetimes performing 
station-keeping maneuvers to maintain a near-fixed position in the Earth-centered, Earth-fixed inertial reference 
frame. Although almost all satellite operators command their GEO satellites to perform some kind of station-keeping 
maneuvers, there is remarkable diversity amongst station-keeping protocols across the regime’s population. Some 
satellites perform infrequent, but high-magnitude maneuvers using chemical thrusters, while others exercise more 
frequent, long-duration burns using electric propulsion to accomplish the same task [12]. Despite decades of heritage 
operations in the GEO environment, there is no comprehensive rulebook for GEO satellite behavior. Due to the 
availability of historical GEO satellite orbital element data and the periodic nature of both perturbative and artificial 
forces in the geosynchronous space environment, machine learning techniques are particularly well suited to identify 
and describe patterns of behavior amongst the GEO satellite population, often with a higher fidelity than terms used 
most frequently in the satellite operator community.  

This work uses the GEO satellite patterns of life (PoL) formulation—where satellite behavior can be described as 
periods of behavioral modes, separated by nodes during which behavior switches from one mode to another—to 
identify and characterize GEO satellite behavior in a single, end-to-end algorithm via unsupervised machine learning 
[15]. Using historical geographic longitude positions derived from publicly available two-line element data (TLEs), 
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satellite behavior between PoL nodes can be sorted into groups by a k-means clustering algorithm adapted for time-
series data using dynamic time warping (DTW), as shown previously by the author team [13]. The background section 
offers further insight into how previous methodologies were adapted for this work. 
 
The methodology section describes the application of a time-series k-means clustering algorithm for this problem, 
including how orbital element data is prepared to be used as input. The results section visualizes the clustered outputs 
for a particular case study—segments of GEO satellite position time-histories sampled from the entire GEO satellite 
population from 2010 to 2021—as a two-dimensional map, where objects that appear closer in the visualization are 
also closer together in the DTW-informed distance formulation embedded in the clustering algorithm. The discussion 
section interprets the results by commenting on operational similarities between the identified clusters, such as the 
types of propulsion used by the satellites assigned to each cluster and their average age, and formulates an additional 
clustering study for further analysis. The concluding section summarizes the work, describes how it can be used for 
an array of space situational awareness research initiatives, and comments on opportunities for future study.   
 

2. BACKGROUND 

 
This work directly references the PoL framework for describing long-term satellite behavior in GEO, in which satellite 
activities on orbit can be described as a sequence of behavioral modes—such as station-keeping to one position in the 
geostationary belt or drifting in longitudinal space either above or below geostationary altitude—separated by nodes 
[5]. PoL nodes can refer to initiating or ending a longitudinal drift or adjusting the rate of a longitudinal drift once one 
is already underway, as well as marking the beginning and end of the study period for which GEO satellite position 
time-histories are being considered by the algorithm.  
 
Previous work by the author team discusses methodologies with which to identify PoL nodes, including by inspection 
and algorithmically [10, 11, 15]. Since PoL nodes and behavioral modes are perfectly interspersed by definition—a 
PoL node always separates two behavioral modes and a behavioral mode always starts and ends with a PoL node—
identifying PoL nodes effectively identifies behavioral modes, too. Previous work segmented historical GEO satellite 
position time-histories using node-labeled truth data, ensuring that each segment to be subjected to the clustering 
algorithm did not itself contain a PoL node, and thus was likely to represent a single behavioral mode. In the 
methodology described in the following section, GEO satellite position time-histories are considered in their entirety, 
with no regard to the locations of various PoL nodes, meaning some segments contain one or more PoL nodes, as 
shown in Figure 1. 
 
The visualizations and analysis strategy presented in the results and discussion sections build on the work of one 
member of the author team, dedicated to using self-supervised machine learning methods to enhance a variety of space 
traffic management tasks [16]. The previous work extracted representations of clustering results using Uniform 
Manifold Approximation and Projection (UMAP) dimensionality reduction, while those presented in the results 
section of this work use a t-distributed stochastic neighbor embedding (t-SNE) formulation [4, 19].  
 

3. METHODOLOGY 

 
The following subsections describe the data selection and cleaning process, the segmentation strategy with which 
GEO satellite position time-histories are dissected into smaller pieces, and the clustering algorithm applied to this 
problem. 
 
3.1 Data Selection and Cleaning 
 
The clustering algorithm takes segments of data from GEO satellite position time-histories, which describe the 
historical longitudinal positions of a satellite at evenly spaced time intervals. These time-histories can be derived from 
TLEs published by the U.S. Space Force’s 18th Space Defense Squadron on Space-Track.org [18]. This process is 
documented in previous works by the author team and replicable using a publicly available code repository [5]. 
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Fig. 1: Segments created with a segmentation strategy with a 28-day kernel size and a 7-day stride. This figure illustrates 
how six weeks of a GEO position time-history—in this case, describing Intelsat 901 (Satellite ID: 26824) from March 20 to May 
1, 2018—might be broken into segments to feed into a time-series k-means clustering algorithm. During this time, two PoL nodes 
can be identified by inspection: one corresponding to initiating a westward longitudinal drift (“ID”) and another for ending it 
(“ED”). Since segments cannot be shorter than their defined kernel size, this short GEO position time-history can be divided into 
just three segments: the first with one enclosed node (shown in blue), the second with two (shown in purple), and the third with 
one (shown in red). 
 
GEO satellite position time-histories referenced in this study start and end at the bounds of the selected study period—
January 1, 2010, to December 31, 2021—and feature a two-hour time step. Position time-histories were created for 
918 satellites with at least one TLE on Space-Track.org with an epoch in the bounds of the study period and orbital 
elements that place it in residence in the protected GEO region as defined by the Interagency Debris Coordination 
Committee [2]. Not all position time-histories are of equal length: those satellites launched during the study period 
will not have longitudinal position data for timesteps corresponding to dates prior to their GEO orbital insertion. Large 
gaps of more than 28 days between TLE epochs for a particular satellite will also lead to gaps in position time-histories, 
as the orbital elements from TLEs are not propagated more than two weeks forwards or backwards when position 
time-histories are created. 
 
3.2 Segmentation Strategy 
 
A GEO satellite’s longitudinal position at a given moment in time is insufficient to determine the satellite’s broader 
on-orbit behavior. Instead, that position should be contextualized within the positions that come before and after it; 
these stretches of longitudinal positions can form identifiable signatures of behavior. In this work, that shortlist of 
longitudinal positions before and after a point of interest is called a segment, as it represents a mere portion of the 
satellites’ often-much-longer operational lifetime. Segments are created from position time-histories using a two-
parameter segmentation strategy [9]. The first parameter describes the width of each segment: the number of days’ 
worth of longitudinal position data enclosed in each one. In the design of convolutional neural networks (CNNs), this 
parameter is known as the kernel size. The second parameter describes the displacement between the first timestep 
enclosed in two adjacent segments, measured in days. In CNNs, this parameter is known as the stride. Figure 1 shows 
how segments would be created using a segmentation strategy with a 28-day kernel size and a 7-day stride. 
 
Larger kernel sizes allow the clustering algorithm to search for longer-duration patterns, like those associated with 
sustained station-keeping, but increases the frequency with which PoL nodes are enclosed in segments. When the 
stride is smaller than the kernel size, individual data points from the longitudinal position time-histories appear in 
more than one segment, offering multiple opportunities to identify and later characterize the behavior associated with 
that time step. For the segmentation strategy described in Figure 1, each segment contains 336 longitudinal positions: 
12 per day in the segment due to the selected GEO position time-history’s two-hour timestep and 28 days in the 
segment. If a segment is missing one or more internal longitudinal positions, those missing positions are interpolated 
using a quadratic polynomial interpolation scheme. If a segment is missing one or more longitudinal positions at its 
beginning or end, the segment is removed from the study and not included in the clustering algorithm described in the 
following subsection. 
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All segments created from the 918 GEO satellites included in this study can be fed into the clustering algorithm 
described in the following subsection or they can be downsampled to decrease the computational resources needed to 
execute the algorithm. Reasonable strategies for downsampling to consider might include reducing segments to those 
associated with a shortlist of particular objects of interest or satellites of a particular age. For this study, segments are 
rebalanced such that three subgroups were approximately equally represented: one with those likely to be describing 
station-keeping behavior, one with those likely to be describing longitudinal drift behavior, and one with segments 
that contain one or more PoL nodes. This rebalancing strategy requires a labeled PoL node dataset for the GEO satellite 
population being studied [13, 15]. 
 
As a final pre-processing step, segments should be normalized. The Python package used for time-series clustering in 
the following subsection, tslearn, includes a rescaling tool, which can be used for normalization [17]. Normalizing 
the segments encourages the clustering algorithm to group together behaviors with similar patterns independent of 
magnitude. Under this formulation, longitudinal drifts with vastly different drift rates, but the same direction, are more 
likely to be clustered together. Similarly, station-keeping patterns with similar protocols, but different central 
longitudinal positions, are also more likely to be clustered together. 
 
3.3 Clustering Algorithm 
 
Because behavioral mode classification requires an understanding of how longitudinal positions change over the 
course of a segment, it is critical to select a distance metric to feed into the clustering algorithm that accounts for the 
time-series nature of the data it receives as input. The tslearn Python package is equipped with two variations of 
dynamic time warping (DTW), a tool specifically developed to measure similarities between time series: the DTW 
Barycenter Averaging (DBA) and soft-DTW algorithms [1, 7, 17]. When these two variants were tested on pre-labeled 
segment data from GEO satellite position time-histories created using the same methodology as the one described in 
the previous subsection, the DBA variant produced the smaller sum of the squared error, and was thus selected for 
this analysis.  
 
The DBA-enabled k-means clustering algorithm from tslearn can sort segments into any number of clusters. For this 
study, the segments were sorted into 24 clusters—a number hypothesized to exceed the number of meaningfully 
unique behavioral modes in the GEO satellite population—with 10 iterations for the barycenter computational process. 
 

4. RESULTS 

 
The results presented in this section were developed using a segmentation strategy with a 28-day kernel size and a 2-
day stride, which produced nearly 1.6 million individual segments. Of these segments, 30,000 were selected for 
clustering using the downsampling strategy and clustering algorithm described in the previous section. The clustering 
algorithm was executed using the MIT Lincoln Laboratory’s SuperCloud supercomputing system [8]. 
 
The clustering results can be visualized in multiple ways. One method, shown in Figure 2, depicts the input segments 
as thin gray lines in the subplot corresponding to their assigned cluster. Recall that input segments have been 
normalized, and thus the vertical axis of each subplot in Figure 2 does not directly refer to longitudinal degrees. The 
centroid of each cluster is shown with a line colored to match one of three broad classes—station-keeping, longitudinal 
drift, or transitioning between the two. These classes can be labeled by inspection or by noting the number and 
distribution of PoL nodes contained in each cluster. Henceforth, station-keeping behaviors will be shown in the color 
blue, longitudinal drift in red, and transitions in purple. 
 
In some cases, like those clusters represented in the first row of Figure 2, classification by inspection is trivial: the 
centroid of Cluster 1 clearly depicts the signature of a satellite in more than one behavioral mode; Clusters 2 and 4 
depict eastward and westward longitudinal drift, respectively; and Cluster 3 depicts station-keeping. In other cases, 
like determining whether Clusters 5 and 6 represent station-keeping or a transition between two behavioral modes, it 
may be beneficial to compare the population of each cluster with the number of PoL nodes contained in its segments, 
should that labeled data be available. Figure 3 shows the population of each of the clusters shown in Figure 2 and the 
number of PoL nodes contained in each one. Note that the number of PoL nodes in some clusters is higher than that  
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Fig. 2: Segments sorted into 24 clusters. Individual segments—each 28 days long, with normalized values that no longer directly 
measure longitudinal position in absolute terms—are shown in gray in the background of their corresponding cluster. The centroid 
of each cluster is shown in the foreground in color. Classes are labeled by a combination of inspection and an analysis of PoL node 
populations in each cluster. Centroids corresponding to the station-keeping class of behaviors are shown in blue, those 
corresponding to the longitudinal drift class are in red, and those that correspond to the transition between the two are shown in 
purple. 
 
cluster’s population, because individual segments can, and often do, contain more than one PoL node, as was the case 
for Segment 2 in Figure 1. Because the number of PoL nodes in Cluster 5 relative to that cluster’s population is higher 
than those clusters that more clearly depict station-keeping behavior, it can be labeled as belonging to the transitions 
class and colored in purple. Similarly, since the number of PoL nodes in Cluster 6 is small compared to that cluster’s 
population, and the plotted centroid if Figure 2 does not align with the expected behavior of longitudinal drift, it can 
be labeled as belonging to the station-keeping class and colored in blue. A similar methodology of combining 
classification by inspection and population analysis can be applied to the remaining clusters. 
 
Although Figure 2 works well to compare segment behavior across clusters, it fails to describe how similar the various 
clusters are to one another. Each segment appears just once in the visualization, with no indication about whether 
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Fig. 3: Segment and PoL node population of each cluster. Segment populations are shown in dark colors; PoL node populations 
are shown in light colors. The number of PoL nodes relative to the segment population of a cluster can be used to sort the clusters 
into the three broad behavioral classes: station-keeping, shown in blue; longitudinal shift, shown in red; and transitioning between 
the two, shown in purple. 
 
segments were near or distant to other identified clusters in the DBA distance space. Figure 4 sheds light on these 
patterns by representing each segment as a single point on a dimension-reduced representation of the cluster space, 
where points are closer to some clusters’ centroids than they are to others, based on the distance results outputted by 
the algorithm. Figure 4’s three subplots refer to the broad behavioral classes identified in Figure 2, each created using 
t-SNE for dimensionality reduction with a perplexity value of 100 [19]. 
 
Note that the horizontal and vertical dimensions of Figure 4 hold no significance in the physical GEO environment. 
 

 
Fig. 4: Two-dimensional representations of the cluster space by behavioral class. In this visualization, created using t-SNE, 
each point represents a segment. Like Figure 2, each segment appears just once in the plot above, in the subplot corresponding to 
their broader class: station-keeping at left, longitudinal drift in the center, and transitions at right. Each of the 24 clusters’ centroids 
are labeled with their corresponding cluster index. 
 

5. DISCUSSION 

 
The relative distances between cluster centroids in Figure 4 match intuitive readings from Figure 2. In the station-
keeping class, the centroids for Clusters 7 and 23 are relatively close in Figure 4, and their corresponding segments 
are distant from those in other clusters in the same class. Unsurprisingly, this same pair of clusters exhibit similar 
patterns in Figure 2: oscillations around a near constant longitudinal position. Clusters 3 and 15 are also adjacent in 
Figure 4 and similar in Figure 2: they appear to exhibit the flattest centroids of the remaining station-keeping clusters.  
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Patterns in the longitudinal drift class are even easier to assess. Cluster 4—by far the largest class, as shown in Figure 
3—is adjacent to Cluster 16 in Figure 4. The two clusters clearly correspond to westward drift when inspected in 
Figure 2. Clusters 2 and 20 are adjacent in Figure 4 and separated from the others. These smaller clusters depict 
eastward drift in Figure 2, the less common of the two drift directions in GEO. Similar analysis could be pursued on 
the third subplot of Figure 4 to better understand how PoL nodes are recognized by the clustering algorithm, but that 
is not the focus of this study. 
 
Beyond the similarity of the longitudinal position signatures in Figure 2, what satellite characteristics could shed light 
on the distribution of clusters in Figure 4? Using data from Slingshot Aerospace’s Seradata space object catalog, the 
segments in each cluster can be assigned propulsion types: chemical, electric, hybrid, or unknown [14]. The start date 
of each segment can also be compared to the corresponding satellite’s launch date in the Space-Track.org catalog to 
provide summary statistics on the age of the satellite buses in each cluster. 
 
On average, segments in both Clusters 7 and 23 correspond to satellites that have been in GEO longer than average—
21.4 and 23.6 years, respectively—longer than those sorted into the other station-keeping clusters. Cluster 3 and 15 
correspond to satellites of a more modest age—approximately nine years—while the remaining four clusters all 
correspond to younger satellites. The segments sorted into Cluster 11 disproportionately correspond to satellites 
equipped with electric propulsion. The same is true for Cluster 11’s adjacent neighbors in Figure 4—Clusters 6, 19  
 
Table 1: Average characteristics for segments’ corresponding satellites by cluster. 

Cluster Behavioral Class 
Propulsion Type Satellite Age (years) 

Chemical Electric Hybrid Unknown Mean Standard 
Deviation 

1 Transitioning 63.5% 1.1% 21.3% 14.2% 11.8 7.4 

2 Longitudinal drift 26.5% 2.0% 9.8% 61.6% 22.4 11.4 

3 Station-keeping 71.2% 0.3% 20.4% 8.1% 9.4 6.0 

4 Longitudinal drift 68.8% 2.0% 10.5% 18.7% 19.8 7.8 

5 Transitioning 41.6% 2.4% 44.0% 11.9% 5.6 4.9 

6 Station-keeping 59.9% 3.5% 22.2% 14.4% 6.8 4.8 

7 Station-keeping 69.5% 0.1% 11.3% 19.1% 21.4 9.5 

8 Transitioning 55.3% 2.0% 31.3% 11.5% 6.5 7.2 

9 Transitioning 59.5% 2.2% 18.7% 19.6% 11.7 8.8 

10 Transitioning 57.9% 1.1% 28.4% 12.6% 9.3 7.2 

11 Station-keeping 38.7% 8.6% 33.8% 18.8% 6.9 4.9 

12 Transitioning 53.7% 1.1% 24.1% 21.1% 5.3 7.1 

13 Transitioning 55.8% 1.4% 29.2% 13.6% 5.1 6.7 

14 Transitioning 66.4% 0.6% 19.5% 13.5% 12.5 7.6 

15 Station-keeping 66.2% 1.5% 18.5% 13.8% 8.9 5.7 

16 Longitudinal drift 29.4% 1.8% 10.8% 58.0% 23.1 10.8 

17 Transitioning 37.7% 5.1% 38.0% 19.2% 5.2 5.3 

18 Transitioning 48.8% 2.3% 32.3% 16.5% 5.3 6.6 

19 Station-keeping 69.6% 2.3% 19.3% 8.9% 7.8 4.9 

20 Longitudinal drift 23.2% 1.2% 15.9% 59.7% 26.8 8.7 

21 Transitioning 52.2% 1.4% 24.4% 22.0% 6.1 7.4 

22 Station-keeping 59.7% 1.8% 22.2% 16.2% 8.2 5.3 

23 Station-keeping 56.0% 0.7% 17.4% 25.8% 23.6 8.8 

24 Transitioning 48.0% 2.2% 31.9% 17.9% 4.5 5.9 
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Fig. 5: Two-dimensional representations of the cluster space after first dividing segments by behavioral class. This 
visualization, created using t-SNE with a perplexity parameter of 100, represents the results of an independent execution of the 
clustering algorithm. Thus the eight clusters shown in each subplot do not correspond to one another, nor the clusters shown in 
Figure 4. Instead, they offer an illustration of how one clustering process can inform another. 
 
and 22— but to a lesser extent. In the longitudinal drift class, Cluster 4 is an outlier because of the propulsion types 
featured on its corresponding satellites: 68.8 percent, more than twice as high a fraction as the other longitudinal drift 
clusters. Cluster 20, Cluster 4’s neighbor in Figure 4, corresponds to more hybrid-propulsion satellites than those with 
segments sorted into Clusters 2 and 20. 
 
To clarify the differences between the clusters within the station-keeping and longitudinal drift behavioral classes, the 
original segments can be first divided into the classes assigned to each cluster in Figure 2 and then fed through the 
same clustering algorithm. Figure 5 shows the dimension-reduced cluster results space for eight clusters in both the 
station-keeping and longitudinal drift classes. Here, the clusters in the station-keeping class show less overlap than 
those in Figure 4, but the distinction between new and old satellites still dominates the distribution, suggesting a 
pattern of observable shifts in station-keeping protocols as satellites age. Clustering the longitudinal shift class into 
eight clusters—allowing analysts to consider the possibility that there are more meaningfully unique behavioral modes 
than the four identified in Figure 4—breaks the westward drift group into five clusters and the eastward drift group 
into three. Further analysis on the available satellite characteristics of these clusters could offer further insights on 
how the algorithm may have produced the results seen in Figure 5. Alternatively, such analysis could reveal that the 
algorithm was asked to identify more clusters than there are meaningfully differentiable behavioral modes. In that 
case, clusters with similar features could be combined and the number of unique modes could be used to inform the 
number of clusters on future iterations of the algorithm. 
 
Future research should explore concepts of soft clustering (where the probability of belonging to each cluster is 
computed), test the effect of varying kernel size and stride in the segmentation strategy, and compare the observed 
results of the k-means clustering algorithm with a hierarchical clustering one, such as CHAMELEON or Hierarchical 
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) [3, 6]. 
 

6. CONCLUSIONS 

 
One output of this work—segment-by-segment results for every satellite in a study list—can be used to describe a 
GEO satellite’s PoL as a history of cluster assignments. A satellite that is first inserted into the GEO belt, then 
maintains a single longitudinal position with high-frequency east-west and north-south station-keeping, and finally 
retires to the graveyard orbit, all within the study period, would perhaps be grouped into only a small number of 
clusters: those associated with its three behavioral modes and the two nodes during which it was transitioning. 
Segment-level results could describe the satellites’ PoL on a day-by-day or week-by-week basis. 
 
In addition to contributing to the burgeoning literature on satellite pattern-of-life characterization, this work can also 
be used to describe historical GEO satellite station-keeping behavior at low resolution. That is, a satellite’s historical 
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behavior could be described by behavioral mode classes and short lists of relevant parameters, as opposed to the high-
resolution longitudinal position time-history data on which the algorithm was trained. 
 
Together, this sort of information could contribute to international coordination in GEO, specifically the evaluation 
of the use of orbital allocations from the International Telecommunication Union (ITU), a specialized agency of the 
United Nations. Future studies could use PoL behavioral mode assignments created from this work to inform 
compliance studies. That is, when the end-to-end clustering algorithm identifies that a satellite is in one of many 
station-keeping modes, the corresponding satellite could be assessed for compliance with the physical orbital position 
described in active ITU satellite networks, and thus protected from harmful interference in the radio-frequency 
spectrum. 
 
In short, the results from this work demonstrate that machine learning techniques show promise for assisting human-
led analysis efforts in space situational awareness: desaturating the high-volume, high-dimensional data associated 
with historical space object tracking while preserving key insights that describe how satellites in GEO are controlled. 
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