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ABSTRACT

Modelling pattern-of-life of non-cooperative space objects is an essential requirement of Space Situational Aware-
ness (SSA). Maneuvers of non-cooperative satellites is an important event of interest in their life pattern. Ground-based 
sensors are predominantly used to collect orbital data of a non-cooperative satellite based on which the maneuver oc-
currence is detected. However, the active satellites to be monitored is huge in number and the available ground 
surveillance sensors are limited as well as costly. Due to this limitation, a non-cooperative satellite may go unobserved 
by ground based sensors. Therefore, there exists a problem of gaps in the available orbital data of non-cooperative 
satellites. Moreover, the satellite maneuver (event of interest) occurrence information of some samples may be lost, 
due to noise in the ground sensor observations or due to observation window limits or losing tracks. Therefore, a need 
arises for detection of maneuvers from incomplete data as well as to devise a methodology for optimal use of ground 
sensors to collect data. If the probability of maneuver occurrence of a non-cooperative satellite at each time point 
and estimation of time until occurrence of a maneuver are available, then the ground sensors can be more effectively 
scheduled.

Conventional machine learning regression methods are not suited to be able to include both the event and time 
aspects as the outcome. The conventional models are also are not equipped to handle censored examples (incomplete 
data due to non-observability). Therefore, in this work, we introduce a solution methodology by applying Time-to-
Event data analysis (survival analysis) techniques to assess whether a satellite maneuvered, that is whether the event 
of interest occurred or not, and also estimate when the next maneuver would occur. Time-to-Event analysis is a branch 
of statistics concerned with analyzing temporal data and predicting the probability of occurrence of an event and has 
an inherent capability to accommodate censored data samples.

We have explored a variety of approaches including Cox proportional hazards model, Weibull distribution model, 
Kaplan-Meier model, Nelson-Aalen model, Random survival forest, Survival Support Vector Machines, Gradient 
boosted survival analysis and Deep learning based survival analysis. Detailed experimental results based on real life 
satellite orbital datasets and discussions on the results are presented.

1. INTRODUCTION

1.1 Problem Statement
The Space based capabilities and space power has taken centre stage in deciding the overall power of a Nation and 
therefore the space is becoming an increasingly contested domain. Space Situational Awareness (SSA) or Space 
Domain Awareness (SDA) is therefore essential for a Nation to safeguard its own assets. SSA is defined a s the 
comprehensive knowledge of Resident Space Objects [RSO] which may include satellites, rocket bodies, debris etc. 
and the ability to understand and predict their behaviour and future location with required accuracy. SSA solutions 
should provide a quantifiable and timely technical evidence of behavioural attributes of specific space domain threats, 
hazards and its implications.

L.Chen et al., [2] brings out that Situational analysis based on space catalogue data is realized by modelling and 
analyzing the orbital data to understand all space situations. Orbital Maneuvers are an essential part of a life pattern 
of a satellite. The orbital maneuvers can be benign, for example a maneuver essential for housekeeping of a satellite 
or a maneuver essential for maintaining a specific mission objective of the satellite in o rbit. The types of maneuvers 
performed by Low Earth orbit (LEO) and Geostationary (GEO) satellites are briefly explained below.
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1.1.1 Types of Satellite Maneuvers

The following are the types of maneuvers performed by the LEO satellites

Inclination Adjustment Maneuver (IAM) : An IAM is commonly referred to as a Delta-Inclination (Delta-I) maneuver.
This out-of-plane maneuver is performed in the cross-track direction (i.e. perpendicular to the direction, the spacecraft
is moving.) An IAM changes the angle of the equatorial plane to the orbital plane. This type of maneuver is performed
periodically to maintain the mission’s Mean Local Time (MLTAN).

Drag Makeup Maneuver (DMM) : This type of maneuver is also referred to as a delta-velocity (Delta-V) maneuver
(or an orbit altitude adjustment maneuver). It is used to raise (or lower) the orbit’s semi-major axis and is an in-
plane maneuver. A DMM is a specific type of Delta-V (positive) which increases the orbital velocity thus increasing
the orbital altitude and is used to counteract the effects of atmospheric drag on the spacecraft and maintain orbit
circulation as well as maintain the strict constraints on the projected spacecraft ground track. (A negative ”DMM” is
a retrograde maneuver to lower the altitude).

Risk Mitigation Maneuver (RMM) : This type of maneuver is also a Delta-V maneuver to change the orbit altitude.
An RMM is executed to avoid orbital debris and may be either a velocity increase (prograde maneuver -semi-major
axis increase) or a velocity decrease (retrograde maneuver - semi-major axis decrease). An RMM is only performed if
the flight operations team determines that the Probability of Collision (Pc) meets certain thresholds as determined by
complex conjunction assessments.

Similarly for the Geostationary (GEO) orbital regime, besides the dominant 2 body acceleration, various other acceler-
ations affect the motion of a satellite in GEO orbital regime. Due to this, the satellite location drifts and to bring it back
to its designated location, station keeping maneuvers are required. The station keeping maneuvers can be classified
into East-West stationkeeping maneuvers and North-South stationkeeping maneuvers. The third body gravitational
effects from the Sun and the Moon affect the Inclination and RAAN orbital parameters of a GEO satellite and a North-
South stationkeeping maneuver corrects it. These maneuvers require larger delta-V on the order of 1 m/s. Whereas
the solar radiation pressure and higher order gravity terms in the Earth’s gravitational field affect the Semi-major axis
and eccentricity parameters and a East-West stationkeeping maneuver corrects it. These maneuvers require delta-V of
the order of 0.01 to 0.1 m/s.

1.1.2 Anomalous and Threatening Maneuvers

A non-cooperative space object is defined as a non-friendly object in space and can be perceived as a threat if it
performs anomalous maneuvers in space. A non-cooperative space object does not share information like operational
mission objectives, orbital maneuvers, special orbital events, and station keeping maneuvers, unlike civilian satellite
missions which publish orbital maneuver details in the open domain. Hall,Z. and Singla,P. [6] elegantly bring out that
an important aspect of space object monitoring is detection and tracking of non-cooperative maneuvering space objects
in a data-sparse environment.They also bring out that although there has been a lot of work in terms of maneuvering
targets, relatively a little of this work is applicable to non-cooperative space objects. Some satellites may perform
maneuvers which may be anomalous and not benign. For example, a maneuver by a non-cooperative chaser satellite
to pursue another satellite, a maneuver to perform Rendezvous and Proximity Operations (RPO), etc. To identify
the threatening maneuvers, the non-cooperative space objects needs to be tracked and observed for collecting orbital
position and velocity data. The foremost challenge of SSA is the huge rate of increase of RSOs in recent years.
Therefore the space objects to be monitored is huge in number and the available ground surveillance sensors are very
limited as well as costly. This is depicted by the authors in Figure 1 below where S1,S2, ...,Sn are satellites to be
observed and T1,R2, ...,Tm are ground based Telescope and Radar sensors.

The constraint in a real world scenario is that the space objects are very very larger in number as compared to the
available ground based sensors [n >> m]. Due to this limitation, a non-cooperative satellite may go unobserved by
ground sensors and may result in missing or incomplete observed data. Satellite maneuvers of non-cooperative space
objects with adversarial intent needs to be known with such limited data available. Such a real life scenario is explained
in Figure 2 below. A non-cooperative space object is defined as a non-friendly object in space and can be perceived
as a threat if it performs anomalous maneuvers in space. A non-cooperative space object does not share information
like operational mission objectives, orbital maneuvers, special orbital events, and station keeping maneuvers, unlike
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Fig. 1: Depiction of Lack of surveillance resources (Image by authors)

civilian satellite missions which publish orbital maneuver details in the open domain. Understanding the actions of
a non-cooperative object in space is an essential requirement for SSA. Such information of non-cooperative space
objects must be derived from the orbital data obtained through ground-based tracking radars, telescopes, etc.

Therefore there is a need to develop solution methods through which we can estimate the maneuver occurrence time
of non-cooperative satellites. This will help in scheduling the ground sensors to track the non-cooperative objects
only during their respective estimated maneuver time period window. The result would be an optimal sensor schedule
tasking to track the large number of resident space objects with very limited sensors.

Fig. 2: Depiction of Unobservable scenario due to lack of sensors (Image by authors)

1.2 Conventional Machine Learning and Statistical Methods

Incomplete or censored data is a prevalent problem in many research studies [16]. Unfortunately, unlike missing data,
which is very easy to spot, censored data is obscure and can easily evade detection. If this problem of censored data is
not appropriately addressed, it can lead to biases and inefficient estimation that can impact the conclusions of the study.
In conventional statistical concepts, these incomplete data will be disregarded. The use of standard methods to analyze
censored data will generate results that, in a way, has some level of biases because some important information would
be left out. Conventional machine learning methods like logistic and linear regression are not suited to be able to
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include both the event and time aspects as the outcome in the Time-to-Event estimation model. Traditional regression
methods are also not equipped to handle censored examples in the data.

The authors propose a solution methodology to tackle this problem using Time-to-Event data analysis (also called
survival analysis) which has been an active research topic due to its impactful applications in a variety of disciplines
as found in literature survey. To the best knowledge of the authors, Time-to-Event data analysis techniques have not
yet been explored for SSA applications.

2. SOLUTION METHODS

There are two main streams of survival analysis (refer Figure 3 and Figure 4) 1. The first view is based on traditional
statistics scattering in three categories [13]

(i) Non-parametric methods including Kaplan-Meier estimator [8] and Nelson-Aalen estimator [1] are solely based
on counting statistics, which is too coarse-grained to perform personalized modeling.

(ii) Semi-parametric methods such as Cox proportional hazard model [14] and its variants Lasso-Cox [15] assumes
some base distribution functions with the scaling coefficients for fine-tuning the final survival rate prediction.

(iii) Parametric models assume that the survival time or its logarithm result follows a particular theoretical distribu-
tion such as Exponential distribution [9] and Weibull distribution [12].

Fig. 3: Statistical Survival Analysis Methods

These methods are either based on statistical counting information or pre-assume distributional forms for the survival
rate function, which generalizes not very well in real-world situations.The goal of Time-to-Event data analysis (sur-
vival analysis) is to estimate the time until occurrence of the particular event of interest, which can be regarded as a
regression problem [2] [19]). It can also be viewed as to predict the probability of the event occurring over the whole
timeline [9]. Specifically, given the information of the observing object, survival analysis would predict the probability
of the event occurrence at each time point.

Time-to-Event data analysis is a learning framework and a set of techniques that can be used to estimate the time it
takes for an event of interest to occur based on observations. In the research problem at hand, the event of interest may
be considered as the maneuver of a non-cooperative satellite.

In the context of the figure. 3 below, our solutions methodology attempts to answer some of the follwoing pertinent
questions

1Figure reference https://humboldt-wi.github.io/blog/research/information systems 1920/group2 survivalanalysis/
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Fig. 4: Machine Learning Methods for Survival Analysis

Fig. 5: Depiction of Analogy between car failure event and satellite maneuver event

(i) What is the probability of occurrence of event 2 under different combinations of event 1?

(ii) What is the relative risk of occurrence of a satellite maneuver in a specific time period?

(iii) What are the factors influencing the duration between events 1 and 2?

(iv) What is the probability that event 2 will occur before, or at, or after a certain time conditioned upon the influ-
encing covariates?

Time-to-Event estimation model not only helps to assess whether or not a satellite maneuver (event of interest) oc-
curred, but also when that event occurred. Survival analysis is used to analyze or predict when an event is likely to
happen. It originated in medical research, but its use has greatly expanded to many different fields.The real strength of
Survival Analysis is its capacity to handle situations when the event has not happened yet. Predicting the probability of
an event occurring is good and to be able to predict the time remaining before an event occurs is even better. Time-to-
Event data analysis is also called survival analysis, reliability analysis, duration modelling and event history analysis.
Many popular ideas of machine learning such as gradient boosting, random forests and support vector machines have
been adapted from Time-to-Event analysis.

Survival Random Forests, Survival SVM and Bayesian models are some of the techniques available in the second
stream of survival analysis which is based on machine learning perspective. Recently, deep learning, i.e., deep neural
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network has gained traction as the third stream of survival analysis in many tasks (Ranganath et al. 2016; Grob et al.
2018; Lee et al. 2018).

Time-to-Event data is data on how long it takes until some event of interest we care about happens. Time-to-Event data
is unique , because the outcome of interest is “whether event occurred or not” and also “when that event occurred”.
The unknown or incomplete data is taken into account in Time-to-Event data analysis and is regarded as an important
component. Survival models are able to take censoring into account and incorporate the uncertainty, so that instead of
predicting the time of an event, we predict the probability that an event happens at a particular time.

For example, consider a factory containing various machines running in a production line. Using Time-to-Event data
analysis, it is possible to predict with great degree of certainty when a machine will fail. The Data Science team
could predict the machines survival function every day, so that 1 or 2 weeks before the machine is supposed to fail,
the factory manager can be notified so that the necessary actions can be taken. Similarly, in the case of our problem
at hand, the maneuver occurrence time of non-cooperative space objects can be predicted or estimated, so that we
can anticipate and prioritize ground sensor tasking more effectively and optimally to track the non-cooperative space
objects and avoid any imminent threat.

2.1 Key Components of Time-to-Event Data Analysis

Let T be a non-negative random variable denoting the time to event of interest (survival time/event time/failure time).
The distribution of T could be discrete, continuous or a mixture of both. We will focus on the continuous distribu-
tion. The distribution of a random variable T ≥ 0 can be characterized by its probability density function (pdf) and
cumulative distribution function (cdf). However, in Time-to-Event data analysis, we often focus on the following three
functions

2.1.1 Survival Function

Let S(t) be the survival probability, the probability that an event has NOT occurred until time ‘t’. Let F(t) be the failure
probability, the probability that the event occurred by time ‘t’. S(t) and F(t) can thus be represented mathematically as

S(t) = P(T > t)

F(t) = P(T ≤ t)

S(t) = 1−F(t)
(1)

Survival function reflects the cumulative non-occurrence of an event of interest. The theoretical survival function and
a typical survival function in practice is shown in Figure 6 below 1 . T is the random lifetime taken from the population
under study and cannot be negative. The survival function S(t) outputs values between 0 and 1 and is a non-increasing
function of t. In theory the survival function is smooth, in practice the events are observed on a concrete time scale,
e.g. days, weeks, months, etc., such that the graph of the survival function is like a step function.

2.1.2 Hazard Function

Hazard rate is the instantaneous rate or probability that an event has occurred during a very small-time interval ∆t
between t and ∆t, given that the individual did not have an event until ‘t’. It describes the instantaneous potential per
unit time for the event to occur

h(t) = lim
∆t→0

(
P(t < T ≤ t +∆t | T > t)

∆t

)
(2)

Therefore the hazard function models which periods have the highest or lowest chances of an event. In contrast to the
survival function, the hazard function does not have to start at 1 and go down to 0. The hazard rate usually changes
over time. It can start anywhere and go up and down over time. An example hazard function is shown in Figure 7
below 2

1Figure reference https://www.slideshare.net/zhe1/kaplan-meier-survival-curves-and-the-logrank-test
2https://www.statisticshowto.datasciencecentral.com/hazard-function/
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Fig. 6: Survival Function

Fig. 7: Hazard Function

The hazard function h(t) is NOT the probability that the event (such as death) occurs at time t or before time t. h(t)∆t
is approximately the conditional probability that the event occurs within the interval (t, t + ∆t] given that the event has
not occurred before time t for small ∆t >0.

2.1.3 Cumulative Hazard Function

The cumulative hazard function is given by

H(t) =
∫

h(t) ·d(t) (3)

Hazard function is useful in finding the periods that are the safest or riskiest with respect to the occurrence of the event
of interest.It has the advantage in analyzing censored data, analytic simplification and modelling sensibility.

2.1.4 Relation between Survival and Hazard functions

Since we need to estimate the probability of occurrence of event of interest, lets consider 1

P(t < T ≤ t +∆t | T > t) (4)

Using Bayes theorem

1https://towardsdatascience.com/the-mathematical-relationship-between-the-survival-function-and-hazard-function-74559bb6cc34
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P(A | B) =
P(A∩B)

P(B)
, if P(B) ̸= 0 (5)

h(t) = lim
∆t→0

(
P(t < T ≤ t +∆t)∩P(T > t)

P(T > t) ·∆t

)
(6)

The probability of hazard occurring P(t < T ≤ t +∆t)and P(T > t) is actually P(t < T ≤ t +∆t). Therefore,

h(t) = lim
∆t→0

(
P(t < T ≤ t +∆t)

s(t) ·∆t

)
(7)

Rearranging equation (7) gives the following

h(t) = lim
∆t→0

(
P(T ≤ t +∆t)−P(T ≤ t)

S(t) ·∆t

)
(8)

h(t) = lim
∆t→0

(
F(t +∆t)−F(t)

∆t

)
· 1

S(t)
(9)

h(t) =
dF(t)

dt
· 1

S(t)
(10)

h(t) =
f (t)
S(t)

(11)

Rewriting equation (11) into something of an equation containing only h(t) and S(t) by applying the chain rule of
differentiation.

h(t) =
d
dt
(1−S(t)) · 1

S(t)

h(t) =− d
dt

S(t) · 1
S(t)

(12)

Therefore, hazard rate is simply the negative natural logarithm of survival rate (survival probability) differentiated over
the time

h(t) =− d
dt

ln(S(t)) (13)

and the cumulative hazard rate (cumulative hazard function) at time t is the negative logarithm of survival rate at time
t

H(t) =− ln(S(t)) (14)

2.1.5 Censoring

As explained above, censoring occurs when we don’t know the exact time-to-event of an included observation. In our
problem at hand, censoring can occur due to sensor constraints of not able to observe the non-cooperative space object
during a time period in between observations. Censoring can be among any of the following types

(i) Left Censoring : Occurs when the event is observed, but exact event time is unknown.

(ii) Right Censoring : If the events occur beyond the end of the study, then the data is right-censored.

(iii) Interval Censoring : Occurs when the event is observed, but subjects come in and out of observation, so the
exact event time is unknown.

(iv) Random Censoring : A combination of the above three types.
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Fig. 8: Depiction of relation between survival function , hazard function , cumulative hazard (source : Lifelines Python
library documentation)

2.2 Time-to-Event Regression Analysis

Time-to-Event or Survival regression can be used to estimate the conditional probability of an event occurring within
a specific time period or event-horizon. A time-to-event estimation problem thus reduces to estimating the conditional
distribution of survival :

E[1{T > t} | X = x] = P(T > t | X = x) = 1−P(T ≤ t | X = x)] (15)

Note that X is a set of covariates, and T refers to the distribution of censored survival time T = min(T ∗,C) where
T ∗ is the distribution of the true time-to-event and C is the distribution of the censoring time. Assuming conditional
independence between T and C (that is T ⊥ C | X) allows identification of the distribution of P(T |X). Survival
regression naturally allows accounting for censored data. In the case of survival regression, the likelihood ℓ under
censoring is given as

ℓ({x, t,δ}) ∝ P(T = t | X = x)δ P(T > t | X = x)1−δ (16)

Here x ∈ Rd are the covariates, t ∈ R+is the event or censoring time and δ ∈ {0,1} is a binary indicator denoting if
the individual was censored. For the censored individuals, the likelihood corresponds to the probability that the event
takes place beyond the time horizon, t,P(T > t | X = x) also known as the survival function.

The Cox Proportional Hazards is a Time-to-Event semi parametric regression model. It describes the relation between
the event incidence (as expressed by the hazard function) and a set of covariates. The Cox model is written as follows

h(t | X) = hhazard rate (t)︸ ︷︷ ︸
base

×exp(X1β )× . . .× exp(Xmβ )︸ ︷︷ ︸
proportional hazards

(17)

The first part in the above equation describes how the occurrence of event of interest evolves through time and the
second part models the effects of the explanatory covariates on the occurrence of event. So, with Cox regression, we
are interested in how long it takes for something to happen. In Cox regression, the goal is to find the most probable
parameters β = (β1, ...,βm) and the most probable base hazard function h0(t).
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We can choose survival analysis regression when we need to predict the time until a specific event, especially in
situations with censored data and when the focus is on event occurrence. We can choose simple time series forecasting
when we are interested in predicting continuous variables over time, and the timing of specific events isn’t our main
concern.

2.3 Random Survival Forests

Another feasible machine learning approach which can be used to avoid the proportional constraint of the Cox pro-
portional hazards model is a random survival forest (RSF). The random survival forest is defined as a tree method
that constructs an ensemble estimate for the cumulative hazard function. Early applications of random forests (RF)
focused on regression and classification problems. Random survival forests (RSF) [7] was introduced to extend RF to
the setting of right-censored survival data. Implementation of RSF follows the same general principles as RF:

(i) Survival trees are grown using bootstrapped data

(ii) Random feature selection is used when splitting tree nodes

(iii) Trees are generally grown deeply

(iv) The survival forest ensemble is calculated by averaging terminal node statistics

Constructing the ensembles from base learners, such as trees, can substantially improve the prediction performance.
Basically, RSF computes a random forest using the log-rank test as the splitting criterion. It calculates the cumulative
hazards of the leaf nodes in each tree and averages them in following ensemble. The tree is grown to full size under
the condition that each terminal node have no less than a prespecified number of deaths. The out-of-bag samples are
then used to compute the prediction error of the ensemble cumulative hazard function. The presence of censoring is a
unique feature of survival data that complicates certain aspects of implementing RSF compared to RF for regression
and classification. The technical implementation is based on scikit-survival package, which was built on top of scikit-
learn: that allows the implementation of survival analysis while utilizing the power of scikit-learn.

Compared with regression based approaches, random survival forest has several advantages. First, it is completely
data driven and thus independent of model assumptions [18]. Second, it seeks a model that best explains the data and
thus represents a suitable tool for exploratory analysis where prior information of the survival data is limited. Third, in
case of high dimensional data, limitations of univariate regression approaches such as overfitting, unreliable estimation
of regression coefficients, inflated standard errors or convergence problems do not apply to random survival forest [4].
Fourth, similar to survival trees, random survival forest is robust to outliers in the covariate space.

2.4 Survival Support Vector Machine

Survival Support Vector Machines is an extension of the standard Support Vector Machine to right-censored time-to-
event data. Its main advantage is that it can account for complex, non-linear relationships between features and survival
via the so-called kernel trick. A kernel function implicitly maps the input features into high-dimensional feature spaces
where survival can be described by a hyperplane. This makes Survival Support Vector Machines extremely versatile
and applicable to a wide a range of data. A popular example for such a kernel function is the radial basis function.
Instead of modeling the probability that an event will occur, we could look at survival analysis as a Ranking Problem
in the survival SVM modelling.

Survival models based on support vector machines (SVM) [17] are able to incorporate non-linearities in an automatic
way and using non-additive kernels, interactions are automatically incorporated. These methods use an approach
which is different from the standard statistical approach. SVM-based models do not assume a true underlying function
for which the parameters need to be estimated. Instead the empirical risk of misranking two instances with regard to
their failure time, is minimized. The survival problem was therefore reformulated as a ranking problem.

2.5 Deep Learning for Survival Analysis

The initial adaptation of survival analysis to meet neural networks (Farragi and Simon, 1995) was based on general-
ization of the Cox proportional hazards model with only a single hidden layer. The main focus of the initial model was
to learn relationships between primary covariates and the corresponding hazard risk function. Following development
of the neural network architecture with Cox regression proved that in real-world large datasets with non-linear interac-
tions between variables it is rather complicated to keep the main proportionality assumption of Cox regression model.
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However, Farragi and Simon’s network extended this non-linearity quality. A few years ago, the more sophisticated
deep learning architecture, DeepSurv, was proposed by J.L. Katzman et al. as an addition to Simon-Farragi’s network.
It showed improvements of the CoxPH model and the performance metrics when dealing with non-linear data . This
architecture was able to handle the main proportional hazards constraint. In addition to that, while estimating the
log-risk function h(X) with the CoxPH model we used the linear combination of static features from given data X and
the baseline hazards. With DeepSurv we can also drop this assumption out.

2.6 Recurrent events survival analysis
Recurrent events data have two main characteristics viz. within subject correlation and time varying covariates [20].
Recurrent event within subject are very unlikely independent, they are related and this phenomenon is known as within-
subject correlation and there are two possible sources this within subject correlation viz. within-subject. Correlation
due to event dependency and with subject correlation due to heterogeneity. Within-subject correlation due to event
dependency refers to a situation where an event itself accelerates or decelerates the rate of subsequent event.

Another important concern related to recurrent event analysis is how to deal with time-varying covariates. In many
studies there are some covariates which are subject to change over time. The event of interest , maneuvers, in the life
of a satellite are recurrent events and the authors have paid due attention to deal it in its perspective.

Fig. 9: Depiction of right censoring and recurrent events among five subjects

3. DATA COLLECTION

The maneuver histories of some of the civilian satellites are maintained by both the International Laser Ranging Service
(ILRS) housed at NASA Goddard and the International DORIS Service (IDS) formed by the French Space Agency
(CNES). The Orbital data history of ENVISAT, AQUA, SENTINEL-3A, JASON, SPOT, LANDSAT-7 satellites (that
is, the NORAD GP element sets current data) for the respective mission life of each satellite was collected1 along
with the satellite orbital maneuver history2 and used as the event of interest column in the dataset. The JSON format
of the NORAD GP element sets current data of LANDSAT-7 satellite is shown in Table.III for illustration. The
covariates used in the Time-to-Event regression analysis were the orbital parameters of the respective satellites, that is
Semi-Major axis (derived from mean motion), Eccentricity, Inclination, Argument of Pericenter.

4. RESULTS AND DISCUSSION

4.1 Models Tested
The following models were tested on both simulated and real satellite datasets with various covariates and parameters.
The simulated dataset was created to contain 100 satellites with Semi-major axis, Eccentricity and Inclination as co-
variates. The observation time duration in weeks and a event of interest (maneuver) occurrence column with censoring

1https://celestrak.org/
2https://ids-doris.org/doris-system/system-monitoring/table-of-all-events.html, https://airs.jpl.nasa.gov/data/outages/anomalies
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OBJECT NAME ”LANDSAT 7”
OBJECT ID ”1999-020A”
EPOCH ”2022-07-27T22:34:44.879
MEAN MOTION 14.59777691
ECCENTRICITY 0.001356
INCLINATION 97.9764
ARG OF PERICENTER 71.8598
RA OF ASC NODE 255.4786
ARG OF PERICENTER 71.8598
MEAN ANOMALY 288.2735
NORAD CAT ID 25682
REV AT EPOCH 23847
BSTAR 0.000058342
MEAN MOTION DOT 0.00000235

Table 1: Illustration of LANDSAT-7 Orbital Elements in JSON Data

was also generated in the simulation. The simulated dataset contains fifty (50) active remote sensing (LEO) and fifty
(50) passive remote sensing (LEO) satellites to test the dependency of maneuver occurrence on this parameter. For the
real life datasets the historical orbital parameters of satellites like ENVISAT, LANDSAT, SENTINEL-3A, CRYOSAT,
HAIYANG were used along with the corresponding maneuver event information (ground truth for reference) from the
ILRS website.

Non-Parametric Semi-Parametric Parametric Regression Analysis
Kaplan-Meier Cox Propotional Hazards Exponential Distribution Fitter Random Survival Forests
Nelson-Aalen Weibull Distribution Fitter Gradient Boosting Survival Analysis

Aalen-Additive Fast Survival SVM
Fast Kernel Survival SVM

Table 2: Models explored in this work

4.2 Python libraries used

The following python libraries available in the open domain for survival analysis applications were used in the exper-
iments.

(i) Lifelines [3]

(ii) PySurvival [5]

(iii) Scikit-Survival [11]

(iv) Auton-Survival [10]

(v) Deephit

4.3 Metrics for evaluation

When there are multiple models which are available for the study, we can identify the better model by gauging the
model’s performance with evaluation metrics. A good model can predict the maneuver occurrence time more accu-
rately. The following metrics were used for comapring the various models

(i) Concordance Index (c-index) - This is the most commonly used metric for time-to-event analyses. This is a rank
correlation score between predicted risk values with observed time. A c-index of 0.5 is no better at predicting
an outcome than random chance. A c-index around 0.7 indicates a good model and a c-index greater than 0.8
indicates a strong model.

(ii) Akaike Information Criterion (AIC) - It is an estimate of the prediction error of the model. A lower AIC score
corresponds to a better model. The AIC is used when we evaluate model fit with the within-sample validation.
For out-of-sample validation, log-likelihood values are used.
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(iii) Survival function - Estimated as explained above in section 2.1.1

In addition in some models, the coefficients and p-values provide more insights. The hazard ration for each covariate
is equivalent to e to the power of the covariate’s coefficient (ecoe f ).

4.4 Results

The Figure 10 above compares various parametric and non-parametric models tested on the simulated dataset using
the estimated survival function.

Fig. 10: Comparison of parametric and non-parametric models

The Figure 11 (a), (b), (c) below shows the comparison of estimated survival function between active and passive
remote sensing satellites obtained from Kaplan-Meier fitter, the cumulative hazard estimated using Nelson-Aalen
fitter and the comparison between Cox propotional hazards model, Weibull AFT model and Aalen Addditive models
respectively.

Fig. 11: Comparison of estimated survival function

The above table compares the Cox-PH and Aalen Additive models tested on some of the reallife datasets of satellites.
The Cox-PH came out as a better model as compared to the Aalen Additive model in all the satellite datasets except
Cryosat where both models gave similar performance. Also it was noticed that both the models performed slightly
poorer when it was fitted on the Aqua satellite dataset as it had lesser amount of data as compared to other satellite
datasets.
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Cox PH Model Aalen Additive Model
Satellites and Models c-index AIC c-index

ENVISAT 0.70 1159.24 0.52
AQUA 0.69 4771.55 0.42

CRYOSAT 0.78 1840.89 0.77
HAIYANG-2 0.97 946.78 0.89
LANDSAT-7 0.89 1283.52 0.77

SENTINEL-3A 0.85 330.32 0.50

Table 3: Table comparing Cox PH and Aalen Additive Models on reallife Satellite datasets

Cox’s proportional hazard’s model is often an appealing model, because its coefficients can be interpreted in terms
of hazard ratio, which often provides valuable insight. The Figure 12 below explains the effect of covariates on the
probability of occurrence of event. For example, the logarithm of hazard ratio with 95% confidence interval obtained
in the Cox-PH model for ENVISAT satellite dataset is shown below on the left. As explained above, the coefficients
in a Cox regression relate to hazard; In the context of medical applications of patient survival analysis, a positive
coefficient indicates a worse prognosis and a negative coefficient indicates a protective effect of the variable with
which it is associated. In our problem at hand, the semi-major axis and eccentricity orbital parameters of a satellite
are more dominating covariates in the probable occurrence of maneuver. Since the satellites taken for experiment are
all Low Earth Orbit (LEO) satellites and it is known that these satellites in general perform In-Plane maneuvers to
adjust for drag and do not perform an out-of-plane maneuver which is influenced by Inclination orbital parameter. The
impact of covariates on the coefficients is shown on the right.

Fig. 12: Effect of covariates on the probability of occurrence of event

In the Figure 13 below, alpha in the X-axis denotes the hyper-parameter that controls the amount of shrinkage of the
β coefficients of the Cox model to zero. The Y-axis on the right is the scale of β coefficients and Y-axis on the left
corresponds to each co-variate. If the penalty has a large weight (to the right), all coefficients are shrunk almost to
zero. As the penalty’s weight is decreased, the coefficients’ value increases.

The table 4 below lists the Cox-PH model coefficients, ecoe f and p-values for the ENVISAT satellite dataset. The
p-value indicates which covariates have a significant effect on the survival duration. Given the coefficient’s small
p-values (0.005) , it can be established that the semi-major axis and eccentricity orbital parameters are statistically
significant predictors for determining the duration for event of interest.

In the context of survival analysis and the Cox PH model, the coefficients provide insights into how changes in the
covariates affect the hazard rate (risk of an event occurring) for the subjects. The coefficient value with respect to the
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Fig. 13: Relation between hyperparameter and CoxPH model coefficients

covariate is explained in detail below

(i) SemimajorAxis Coefficient (-0.95): A negative coefficient indicates that a decrease in the semimajor axis is
associated with a higher hazard rate (increased risk of an event). In the case of a satellite, this could suggest that
satellites with lower semimajor axes are more likely to experience the event (e.g., a maneuver).

(ii) Eccentricity Coefficient (-0.49): A negative coefficient suggests that a higher eccentricity is associated with a
lower hazard rate (decreased risk of an event). This means that satellites with higher eccentricities are less likely
to experience the event compared to those with lower eccentricities.

(iii) Inclination Coefficient (0.20): A positive coefficient indicates that an increase in inclination is associated with
a higher hazard rate (increased risk of an event). This suggests that satellites with higher inclinations are more
likely to experience the event.

coefficients exp(coef) p-value
Semimajor Axis -0.95 0.39 0.005

Eccentricity -0.49 0.11 0.005
Inclination 0.20 1.23 0.18

Argument of Perigee 0.34 1.40 0.02

Table 4: Cox-PH model coefficients and p-values

The table 5 below compares the c-index obtained by fitting various survival regression models on the real-life satellite
datasets. The overall performance of across multiple models and multiple satellites was observed good as the c-index
score was around 0.7. However, the reasons for poor performance of Fast-kernel survival SVM on the HAIYANG-2
and LANDSAT-7 satellites are still being explored.

Satellites and Models ENVISAT SENTINEL-3A CRYOSAT HAIYANG-2 LANDSAT-7
Random Survival Forest 0.714 0.908 0.940 0.944 0.998

Gradient Boosted Survival Analysis 0.676 0.910 0.818 0.887 0.919
Fast Survival SVM 0.628 0.892 0.748 0.959 0.858

Fast Kernel Survival SVM 0.63 0.893 0.738 0.664 0.656

Table 5: c-index scores obtained from various regression models for various satellites

The box plots shown below are obtained through GridSearchCV method. GridSearchCV is the process of perform-
ing hyperparameter tuning in order to determine the optimal values for a given model. GridSearchCV can leverage
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multiple cores by evaluating multiple parameter settings concurrently. The grid search provided by GridSearchCV
exhaustively generates candidates from a grid of parameter values. We can observe that the regression models seem to
be relative robust with respect to the choice of α for the datasets used.

Fig. 14: Depiction of robustness of regression models

The comparison of concordance index for varying hyperparameter is shown for the four regression models in the
Figure 15 below

Fig. 15: Variation of c-index with hyperparameter of model

Deep Learning models were trained on the real-life satellite datasets using the DeepHit Python library. The training
and validation loss curves are shown on the left in the Figure 16 below and the estimated survival function is shown
on the right. The Brier score and Negative Binomial Log Likelihood [NBLL] was used to evaluate the deeplearning
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experiments. The Brier score is used to evaluate the accuracy of a predicted survival function at a given time t ; it
represents the average squared distances between the observed survival status and the predicted survival probability
and is always a number between 0 and 1, with 0 being the best possible value. The negative binomial log-likelihood at t
measures how close the survival probability is to 1 if the given data survived at t and how close the survival probability
is to 0 if the given data failed before t. The integrated Brier score and NBLL was 0.0061 and 0.022 respectively.

Fig. 16: Results from Deeplearning trials

5. CONCLUSION AND FUTURE WORK

Time-to-event or survival analysis helps us explain how long it will take until some event of interest we care about
happens. In the context of a surveillance resource constrained perspective, the ground surveillance sensors are over-
burdened due to the huge quantum of space objects available for monitoring. Due to the threat perception, in the
case of non-cooperative space objects, we cannot afford to miss the observation to collect data during its maneuver.
Therefore, estimating the probability of maneuver occurrence and time until the maneuver will greatly enhance the
optimal tasking of sparse ground sensors. Conventional statistical , regression and time series forecasting models
fail to accommodate censored data. Ignoring censoring will bias results and ignores much of information collected.
We have presented the novel solution methodology of using survival analysis for modelling maneuver occurrence of
non-cooperative satellites. Different statistical, machine learning and deep learning models have been compared by
experimenting on real-life satellite datasets.

The benefit of Time-to-Event analysis techniques is that it can incorporate data from multiple time points across
various satellites. The data of satellites which have not maneuvered till a time instant or data of satellites unavailable
during a time window can still contribute to the Time-to-Event analysis. Therefore, the behaviour modelling of non-
cooperative satellites can also be done using historical orbital data of cooperative satellites operating in similar orbital
characteristics and operating for similar mission objectives. This is being considered to be explored as part of future
work. The expected behaviour of a benign active satellite can be modelled based on orbital regime in space in which
the satellite is operating (that is LEO, GEO, etc.,) and the mission objectives for which the satellite is operating.
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