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1. INTRODUCTION

Radio frequency (RF) observations are an attractive source for characterization of transmitting satellites. For purposes 
of orbit determination, relevant RF measurements include time difference of arrival (TDOA) and frequency difference 
of arrival (FDOA). TDOA measurements are related to the difference in range from the transmitter to two receivers. 
FOA measurements are related to the range rate from the transmitter to each receiver. Extensive work in the literature 
has developed signal processing methods to extract these measurements from received RF signals [1, 2]. These types 
of measurements have been broadly studied for the purposes of geolocation [3–7]. The use of these measurements 
for orbit determination has also been considered [8–10]. These studies have fallen into two categories: initial orbit 
determination without full characterization of probability density function of the state, or iterative refinement o f a 
current estimate or initial guess.

This paper addresses initial orbit determination using TDOA and FOA or FDOA measurements with no a priori knowl-
edge of the transmitter’s orbit. An initial set of a TDOA measurement and frequency measurements leaves a manifold 
in the six-dimensional state space of the transmitter’s orbit over which the probability distribution is assumed to be 
uniform. In the position space, the uniform distribution is supported on the hyperboloid defined by the TDOA mea-
surement with the receivers at the foci. For a given position, the frequency measurements leave a uniform distribution 
over certain components of the transmitter’s velocity. This distribution is approximated via Gaussian mixture (GM) 
using Cartesian coordinates of the transmitter’s position and velocity. The use of GM approximation is similar to 
Reference [6], but that work focused on tracking of terrestrial emitters. The use of GM for probabilistic initial orbit 
determination using angles-only observations was introduced by DeMars & Jah [11].

The remainder of the paper is organized as follows. Section 2 describes the TDOA, FOA, and FDOA measurements 
and their Jacobians. Section 3 describes how the probability density resulting from an underdetermined set of measure-
ments can be modeled as a uniform-Gaussian distribution. Sections 4-7 develop GM approximations for the uniform 
distributions in the position and velocity space separately. These distributions are combined to create the GM approx-
imation of the uniform-Gaussian distribution of the orbital state in Section 8. Section 9 describes the incorporation 
of subsequent measurements via a GM extended Kalman filter. A  numerical example and concluding r emarks are 
provided in Sections 10 and 11, respectively.
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2. MEASUREMENT MODEL

A time difference of arrival (TDOA) measurement relates the arrival times of a transmitted signal at two different
receivers. This TDOA is related by the speed of light to the difference in range from the transmitter to each receiver.

∆r = rt,2 − rt,1 =
√
(rrr− rrr2)T(rrr− rrr2)−

√
(rrr− rrr1)T(rrr− rrr1) (1)

Here, rrr is the unknown position of the transmitter, and rrr1 and rrr2 are the known positions of the two receivers. A
noise-free TDOA measurement places the transmitter on one sheet of a two-sheeted hyperboloid with the receivers at
the foci.

The frequency of arrival (FOA) at each receiver is related to the Doppler shift due to the range rate from the transmitter
to each receiver. For a continuous wave of a single frequency, measuring the received frequencies does not allow for
solution of the range rates and the unknown transmit frequency. However, some knowledge about the frequency
content of the signal allows for solution of the range rates.

ṙt,i =
(rrr− rrri)

T(vvv− vvvi)√
(rrr− rrri)T(rrr− rrri)

for i = 1,2 (2)

Here, vvv is the unknown velocity of the transmitter, and vvvi is the known velocity of the ith receiver.

Alternatively, a frequency difference of arrival (FDOA) measurement is related to the difference in range rate from the
transmitter to each receiver.

∆ṙ = ṙt,2 − ṙt,1 =
(rrr− rrr2)

T(vvv− vvv2)√
(rrr− rrr2)T(rrr− rrr2)

− (rrr− rrr1)
T(vvv− vvv1)√

(rrr− rrr1)T(rrr− rrr1)
(3)

The measurement vector yyy is formed subject to additive, Gaussian noise www with zero mean and covariance matrix RRR.
For the case of TDOA and FOA measurements, the measurement vector has the following form.

yyy =

 ∆r
ṙt,1
ṙt,2

+www (4)

Defining the orbital state xxx = [rrrT vvvT]T, the measurement Jacobian can be evaluated.

HHH ≡ ∂yyy
∂xxx

=

[
HHH∆r,r 000
HHH ṙ,r HHH ṙ,v

]
=


(rrr−rrr2)

T
√

(rrr−rrr2)
T(rrr−rrr2)

− (rrr−rrr1)
T

√
(rrr−rrr1)

T(rrr−rrr1)
000

(vvv−vvv1)
T

√
(rrr−rrr1)

T(rrr−rrr1)
− (rrr−rrr1)

T(vvv−vvv1)(rrr−rrr1)
T

((rrr−rrr1)
T(rrr−rrr1))

3
2

(rrr−rrr1)
T

√
(rrr−rrr1)

T(rrr−rrr1)

(vvv−vvv2)
T

√
(rrr−rrr2)

T(rrr−rrr2)
− (rrr−rrr2)

T(vvv−vvv2)(rrr−rrr2)
T

((rrr−rrr2)
T(rrr−rrr2))

3
2

(rrr−rrr2)
T

√
(rrr−rrr2)

T(rrr−rrr2)

 (5)

The measurement vector and measurement Jacobian for the case of TDOA and FDOA measurements is shown below.

yyy =
[

∆r
∆ṙ

]
+www (6)

HHH =

[
HHH∆r,r 000
HHH∆ṙ,r HHH∆ṙ,v

]
(7)

=


(rrr−rrr2)

T
√

(rrr−rrr2)
T(rrr−rrr2)

− (rrr−rrr1)
T

√
(rrr−rrr1)

T(rrr−rrr1)
000

(vvv−vvv2)
T

√
(rrr−rrr2)

T(rrr−rrr2)
− (rrr−rrr2)

T(vvv−vvv2)(rrr−rrr2)
T

((rrr−rrr2)
T(rrr−rrr2))

3
2

− (vvv−vvv1)
T

√
(rrr−rrr1)

T(rrr−rrr1)
− (rrr−rrr1)

T(vvv−vvv1)(rrr−rrr1)
T

((rrr−rrr1)
T(rrr−rrr1))

3
2

(rrr−rrr2)
T

√
(rrr−rrr2)

T(rrr−rrr2)
− (rrr−rrr1)

T
√

(rrr−rrr1)
T(rrr−rrr1)


Note that HHH∆r,r = HHH∆ṙ,v. Evaluation of the state vector and measurement Jacobian would typically be performed with
components in some inertial reference frame. But for convenience, they are shown here in tensor form. Given an
initial set of measurements, the following section describes how the probability density function can be modeled as a
uniform-Gaussian distribution, by first considering the simple case of linear measurements. The goal will then be to
approximate the probability density of the orbital state using a Gaussian mixture.
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3. UNDERDETERMINED MEASUREMENTS WITH GAUSSIAN NOISE

Consider a linear measurement system with a state xxx ∈ Rn, measurements yyy ∈ Rm, and measurement noise www ∈ Rm,
where m < n.

yyy = HHHxxx+www (8)

Let www obey a Gaussian probability distribution with zero mean and covariance RRR.

pw(www) = |2πRRR|−
1
2 exp

(
−1

2
wwwTRRR−1www

)
(9)

The matrix HHH is m×n with m independent rows. It has an m dimensional row space, P, and an (n−m)-dimensional
nullspace, N. The state consists of two components: xxx∥ ∈ P and xxx⊥ ∈ N.

xxx = xxx∥+ xxx⊥ (10)

The goal is now to describe the posterior probability density functions of xxx∥ and xxx⊥.

The value of xxx⊥ does not affect the measurement.

yyy = HHH
(
xxx∥+ xxx⊥

)
+www = HHHxxx∥+www (11)

Therefore, the measurements do not provide any information on the distribution of xxx⊥. Instead, xxx⊥ can be assumed to
have a uniform distribution over some subspace A⊂ N.

px⊥(xxx⊥) =

{
1∫

A dxxx if xxx⊥ ∈ A
0 if xxx⊥ /∈ A

(12)

Whereas yyy and xxx∥ have different dimensions, they are one-to-one. The solution for xxx∥ is given by the Moore-Penrose
pseudoinverse, which is the minimum-norm solution that satisfies the measurements.

xxx∥ = HHHT(HHHHHHT)−1 (yyy−www) (13)

Clearly this solution lies in the row space of HHH. To describe the probability density of xxx∥, the property that linear
combinations of independent, Gaussian variables are also Gaussian can be used. Therefore, xxx∥ is Gaussian with mean
mmm∥ and covariance PPP∥.

mmm∥ = HHHT(HHHHHHT)−1yyy (14)

PPP∥ = HHHT(HHHHHHT)−1RRR(HHHHHHT)−THHH (15)

px∥(xxx∥) = |2πPPP∥|−
1
2 exp

(
−1

2
(
xxx∥−mmm∥

)T PPP−1
∥
(
xxx∥−mmm∥

))
(16)

Thus, the state can be modeled as a uniform-Guassian distribution, being uniform over A and being Gaussian along
P. To approximate this distribution with a GM, one approach is to create a grid of points in A and select a covariance,
PPP⊥, with nonzero variances in N to model the uniform distribution over A. The means of the Gaussian components are
computed by adding mmm∥ to the grid point locations in A. The covariances of the Gaussian components are computed
by adding PPP∥ and PPP⊥.

For smooth, nonlinear measurements, yyy = hhh(xxx)+www, there is an (n−m)-dimension manifold that produces identical
measurement values. The posterior probability density for xxx can be approximated as uniform-Gaussian, being uniform
over this manifold and Gaussian along dimensions spanned by the Jacobian ∂hhh/∂xxx. Approximation by GM can be
performed by defining a mesh over the manifold, and selection of PPP⊥ with nonzero variances in the nullspace of the
measurement Jacobian evaluated locally at each mesh point. The covariance PPP∥ can be computed at each mesh point
also using the local evaluation of the measurement Jacobian. The means of the Gaussian components are defined at
the mesh points, and the covariances of the Gaussian components are computed by adding PPP∥ and PPP⊥.

The following sections describe selection of means, variances in the nullspace, and weights given nonlinear measure-
ments of the position and linear measurements of the velocity. The values are combined to consider the full orbital
state along with the Gaussian distribution in the rowspace in Section 8.
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4. GM APPROXIMATION OF UNIFORM DISTRIBUTION ON A CIRCLE

This section describes the GM approximation of a uniform distribution on a circle. This approximation will be used
as a kernel for defining the GM approximation of a uniform distribution on a hyperboloid.

4.1 Background: GM Approximation of a Univariate Uniform Distribution

The use of GM approximations for probabilistic intial orbit determination was introduced by DeMars & Jah in Refer-
ence [11]. Based on angle and angular-rate observations of an object, their approach defined a constrained admissible
region within the range and range-rate subspace. A uniform probability density over this region was approximated us-
ing a GM. This approximation of a univariate uniform distribution was used as a kernel to approximate the constrained
admissible region by taking multiple slices of the two-dimensional subspace. The following assumptions for the GM
were made:
1. The weights are equal for all components.
2. The means are evenly distributed across the support of the uniform distribution.
3. The Gaussian mixture is homoscedastic.
A condition was derived for the optimal standard deviation of the Gaussian components to minimize the L2 distance
between the uniform distribution and the GM approximation. This condition can be numerically solved. For example,
for 10 components approximating a uniform distribution over 0 ≤ x ≤ 1, the optimal standard deviation is 0.0696. The
resulting GM approximation is illustrated in Fig. 1.
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p

GM approximation

uniform distribution

individual GM components

Fig. 1: Gaussian mixture approximation of a univariate uniform distribution

Before continuing, note that the constrained admissible region is the union of a one-dimensional manifold in position
space and a one-dimensional manifold in velocity space. Each of these manifolds is linear in the Cartesian coordinates
for position or velocity, respectively. Other measurement types can lead to manifolds that are curvilinear with respect
to the Cartesian coordinates. Assembling GM approximations for uniform distributions over such manifolds is more
challenging, particularly because the uniform distribution and the Gaussian components have different support.

4.2 Circular Distribution

Consider a uniform probability distribution over a circle with radius r. The circle can be parameterized by an angle
θ whose probability density has a constant value of 1/(2πr) for all values of θ ∈ [0,2π). This distribution will be
approximated by a GM in Cartesian components, associated with a reference frame C. At each location on the circle
define radial, êeer, and transverse, êeeθ , coordinate vectors.

[êeer]C =

[
cosθ

sinθ

]
[êeeθ ]C =

[
−sinθ

cosθ

]
(17)
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Assume that the mean locations are located within the support of the uniform distribution, i.e. on the radius r circle.
Further assume that all components have equal weight, αl = 1/L, and equal transverse spacing ∆θ = 2π/L.

θl =
2π(l −1)

L
(18)

[mmml ]C = r
[

cosθl
sinθl

]
(19)

The covariances for all Gaussian components are related by rotations through ∆θ , with each Gaussian component
having nonzero variance, σ2

t , in the transverse direction, which is tangential to the circle. A schematic illustration of
the GM is shown in Figure 2.

Alternative GMs could be considered where the means are located inside the circle, and with nonzero variances in
the radial direction. Here, the placement of the means on the radius r circle is motivated by the intention for the
orbit-determination problem to update the GM for additional measurements using a GM extended Kalman filter, as
further described in a later section. (Variance in the radial direction would also be added to model a uniform-Gaussian
distribution due to sensor noise in the circular measurement, but this component is neglected in this section.) Therefore
the GM distribution can be defined by selecting σt .

��

r

Fig. 2: Illustration of GM approximation of uniform distribution on a circle

In Reference [11], the L2 distance between the univariate uniform distribution and the GM approximation was min-
imized. The “faceted” GM approximation chosen here has a different support than the targeted uniform distribution
on a circle. The different supports of the distributions causes the evaluation of the L2 distance to be challenging.
Therefore an alternative condition for the variance value is chosen.

Because the value of σt is equal for all Gaussian components, the condition can be written in local radial and transverse
coordinates, or without loss of generality, for a Gaussian component aligned with θl = 0 so that x is in the radial
direction and y is in the transverse direction. An approximation of uniformity along the radius r circle can be obtained
by specifying that for each Gaussian component, the probability density at the mean is twice the probability density at
the point of intersection with the neighboring Gaussian components.

1√
2πσt

exp

{
−1

2

(
0
σt

)2
}

= 2
1√

2πσt
exp

−1
2

(
r tan ∆θ

2
σt

)2
 (20)

σ
2
t =

(
r tan ∆θ

2

)2

ln4
(21)
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Because the GM approximation uses Gaussian components with principal variances aligned with the local radial and
transverse directions, the components will not overlap as smoothly as in the univariate case, illustrated in Figure 1.
The GM approximation has local maxima at the mean of each Gaussian component and near the midpoint between
adjacent components (where there is strong overlap in the probability density contributions). The selected uniformity
approximation condition essentially attempts to balance the value of these local maxima. For a circle with r = 1 and
L = 10, the solution for σt is 0.2344. By comparison, the GM approximation with 10 components for a univariate
uniform distribution over a support of 2π results in an optimal standard deviation of 0.4372.

5. GM APPROXIMATION OF UNIFORM DISTRIBUTION ON A HYPERBOLA

Consider a uniform probability distribution over a portion of one branch of a hyperbola in a plane. Define a reference
frame C with coordinate vectors îii pointing in the direction from receiver 2 to receiver 1 and ĵjj orthogonal to îii. The
positions of the receivers relative to the midpoint between them have components of [c 0]T and [−c 0]T. For an arbitrary
location [x y]T, the ranges to each foci are given by the following.

rt,1 =
√

(x− c)2 + y2 (22)

rt,2 =
√

(x+ c)2 + y2 (23)

The range difference is ∆r = rt,2 − rt,1. Without loss of generality, assume that ∆r ≥ 0.

For a given range difference, define the following parameters.

a =
∆r
2

(24)

b =
√

c2 −a2 (25)

The locus of points that share that range difference is given by a hyperbola.

x2

a2 − y2

b2 = 1 (26)

The hyperbola can be described by a parameter ψ .

x = acoshψ (27)

y = bsinhψ (28)

The apex of the hyperbola is at ψ = 0. Locations along the asymptotes of the hyperbola are approached as ψ goes to
infinity. (The value of ψ is equal to twice the area of the hyperbolic sector at x and y.)

At each location on the hyperbola, another local reference frame E can be defined with coordinate vectors êeeh tangential
to the hyperbola (i.e. in the nullspace of the ∆r measurement Jacobian) and êeen normal to the hyperbola (i.e. in the
rowspace of the ∆r measurement Jacobian).

êeen =
−HHHT

∆r,r√
HHH∆r,rHHHT

∆r,r

(29)

=

rrr−rrr1√
(rrr−rrr1)

T(rrr−rrr1)
− rrr−rrr2√

(rrr−rrr2)
T(rrr−rrr2)√(

rrr−rrr1√
(rrr−rrr1)

T(rrr−rrr1)
− rrr−rrr2√

(rrr−rrr2)
T(rrr−rrr2)

)T(
rrr−rrr1√

(rrr−rrr1)
T(rrr−rrr1)

− rrr−rrr2√
(rrr−rrr2)

T(rrr−rrr2)

)

=

rrr−rrr1√
(rrr−rrr1)

T(rrr−rrr1)
− rrr−rrr2√

(rrr−rrr2)
T(rrr−rrr2)√

2−2 (rrr−rrr1)
T(rrr−rrr2)√

(rrr−rrr1)
T(rrr−rrr1)

√
(rrr−rrr2)

T(rrr−rrr2)
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êeeh =

rrr−rrr1√
(rrr−rrr1)

T(rrr−rrr1)
+ rrr−rrr2√

(rrr−rrr2)
T(rrr−rrr2)√(

rrr−rrr1√
(rrr−rrr1)

T(rrr−rrr1)
+ rrr−rrr2√

(rrr−rrr2)
T(rrr−rrr2)

)T(
rrr−rrr1√

(rrr−rrr1)
T(rrr−rrr1)

+ rrr−rrr2√
(rrr−rrr2)

T(rrr−rrr2)

) (30)

=

rrr−rrr1√
(rrr−rrr1)

T(rrr−rrr1)
+ rrr−rrr2√

(rrr−rrr2)
T(rrr−rrr2)√

2+2 (rrr−rrr1)
T(rrr−rrr2)√

(rrr−rrr1)
T(rrr−rrr1)

√
(rrr−rrr2)

T(rrr−rrr2)

The target probability distribution is uniform over the portion of the hyperbola from ψmin ≥ 0 to some ψmax. The
Gaussian mixture approximation of this distribution uses L components. Reference points on the hyperbola are defined,
separated by equal step ∆ψ of the parameter.

∆ψ =
ψmax −ψmin

L+1
(31)

ψl = ψmin + l∆ψ (32)

The mean locations, rrrl = [xl yl ]
T, are computed by evaluating Eqs. (27) and (28) at ψl . The equal steps of ∆ψ place

the means closer together near the apex of the hyperbola, and further apart near the asymptote of the hyperbola. This
is attractive to provide the GM greater resolution in the region of the hyperbola with smaller radius of curvature.

The principal components of the covariance of each Gaussian component will be aligned with the tangential and
normal directions at the reference point. The unit vectors along the tangential direction can be formed by taking
derivatives of x and y with respect to ψ .

x′ = asinhψ (33)

y′ = bcoshψ (34)

[êeeh]C =
1√

(x′)2 +(y′)2

[
x′

y′

]
=

1√
a2 sinh2

ψ +b2 cosh2
ψ

[
asinhψ

bcoshψ

]
(35)

The unit vector in the normal direction is orthogonal to the tangential unit vector.

[êeen]C =
1√

a2 sinh2
ψ +b2 cosh2

ψ

[
−bcoshψ

asinhψ

]
(36)

The standard deviation along the tangential direction is defined using a localized version of the Gaussian mixture
approximation of a uniform distribution on a circle. The local radius of curvature at the reference point and the
angular spacing to the neighboring reference points is used to evaluate the parameters for the approximation of a
circular distribution. Evaluating the radius of curvature also requires the second derivatives of x and y.

x′′ = acoshψ (37)

y′′ = bsinhψ (38)

ρ =

∣∣∣∣∣∣
(
(x′)2 +(y′)2

) 3
2

x′y′′− y′x′′

∣∣∣∣∣∣=
∣∣∣∣∣∣
(
a2 sinh2

ψ +b2 cosh2
ψ
) 3

2

absinh2
ψ −abcosh2

ψ

∣∣∣∣∣∣= 1
ab

(
a2 sinh2

ψ +b2 cosh2
ψ
) 3

2 (39)

This expression defines the radius of curvature anywhere on the hyperbola. The radii of curvature at the reference
points, ρl , are computed by evaluation at ψl .

The arclength, s, from the apex to any point on the hyperbola is given by the following.

gdψ = atan(sinhψ) (40)

s(ψ) = b

(
F
(

gdψ|− a2

b2

)
−E

(
gdψ|− a2

b2

)
+

√
1+

a2

b2 tanhψ sinhψ

)
(41)
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Here, gd is the Gudermannian function, F is the incomplete elliptic integral of the first kind, and E is the incomplete
elliptic integral of the second kind. The arclength to each reference point as well as the points on the hyperbola at ψmin
and ψmax are evaluated.

s0 = s(ψmin) (42)

sl = s(ψl) for l = 1, . . . ,L (43)

sL+1 = s(ψmax) (44)

The angular spacing used in the local circular approximation is evaluated from the arc lengths between neighboring
mean locations and the local radius of curvature.

∆θl =
sl+1 − sl−1

2ρl
for l = 1, . . . ,L (45)

For each Gaussian component, the values of ρl and ∆θl are used in Eq. (21) to evaluate σ2
t , and is here labeled σ2

h,l .
Because the GM is not homoscedactic, certain components are intended to approximate larger regions of the uniform
distribution than other components. Thus, the weight for each component is selected to scale the probability densities
of each component at that component’s mean to be equal.

αl =
σt,l

∑
L
k=1 σt,k

(46)

6. GM APPROXIMATION ON A HYPERBOLOID

Augment the reference frame C with a third coordinate vector k̂kk = îii× ĵjj. Consider receiver locations [rrr1]C = [c 0 0]T

and [rrr2]C = [−c 0 0]T. For an arbitrary location [x y z]T, the ranges to each foci are given by the following.

rt,1 =
√

(x− c)2 + y2 + z2 (47)

rt,2 =
√

(x+ c)2 + y2 + z2 (48)

The range difference is ∆r = rt,2 − rt,1. Without loss of generality, assume that ∆r ≥ 0. For a given range difference,
the generating hyperbola has parameters a and b defined in Eqs. (24) and (25).

The GM approximation of a uniform distribution over a hyperboloid is constructed by combining the GM approxima-
tions of uniform distributions over a hyperbola and a circle. Mean locations are defined in a mesh along the generating
hyperbola and the circle of revolution about the axis of symmetry of the hyperboloid. The number of mean locations
along the generating hyperbola is Lh, and the number of mean locations along the circle of revolution is Lc. Steps
of ∆ψ along the generating hyperbola are used as described in Eqs. (31) and (32), replacing L with Lh in Eq. (31).
Steps of ∆θ along the circle of revolution are used as described in Eq. (18), replacing L with Lc. The resulting mean
locations are given by the following.

[rrri j]C =

 acoshψi
bsinhψi cosθ j
bsinhψi sinθ j

 for i = 1, . . . ,Lh and j = 1, . . . ,Lc (49)

Augment the reference frame E with a third coordinate vector êeec = êeeh × êeen, which is tangential to the circle of revo-
lution (and lies in the nullspace of the ∆r measurement Jacobian). The local coordinate vectors can be expressed in
components of the C frame.

[êeeh]C =
1√

a2 sinh2
ψ +b2 cosh2

ψ

 asinhψ

bcoshψ cosθ

bcoshψ sinθ

 (50)

[êeec]C =

 0
−sinθ

cosθ

 (51)
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[êeen]C =
1√

a2 sinh2
ψ +b2 cosh2

ψ

 −bcoshψ

asinhψ cosθ

asinhψ sinθ

 (52)

The values of êeeh,i j, êeec, j, and êeen,i j are found by evaluation at the corresponding values of ψi and θ j.

For each value of ψi, the approximation on a hyperbola is evaluated using the local radius of curvature and the spacing
between neighboring values of ψi. The value of σh,i is computed as described in Section 5. For each value of ψi, the
approximation on a circle is evaluated using the radius of the circle of revolution, bsinhψi, and the spacing of ∆θ . The
value of σt is computed as described in Section 4, and is here labeled as σc,i.

PPP⊥∆r,i j =
[

êeeh,i j êeec, j
][ σ2

h,i 0
0 σ2

c,i

][
êeeT

h,i j
êeeT

c, j

]
(53)

Similar to the GM approximation for a hyperbola, the weights are selected to equalize the probability density contri-
bution of each Gaussian component at that component’s mean.

αi j =
σh,iσc,i

Lc ∑
Lh
i=1 σh,iσc,i

(54)

7. GM APPROXIMATION OF FREQUENCY MEASUREMENTS

For a given transmitter position, the FOA measurements provide two conditions for the three components of the trans-
mitter’s velocity, or the FDOA measurements provide a single condition. This section describes GM approximation
for the resulting uniform-Gaussian distribution in velocity space. These are conditions on the velocity components in
the plane of the relative positions from the transmitter to each receiver, which is the êeehêeen plane. In particular, for a
given transmitter position, the frequency measurements become nonhomogeneous linear equations for the transmitter
velocity. The approach described in Section 3 can be combined with the univariate GM reviewed in Section 4.1 to
develop the GM approximation.

The FOA measurements can be rewritten as follows.[
ṙt,1
ṙt,2

]
=

 (rrri j−rrr1)
T

√
(rrri j−rrr1)T(rrri j−rrr1)

(rrri j−rrr2)
T

√
(rrri j−rrr2)T(rrri j−rrr2)

vvv−

 (rrri j−rrr1)
Tvvv1√

(rrri j−rrr1)T(rrri j−rrr1)

(rrri j−rrr2)
Tvvv2√

(rrri j−rrr2)T(rrri j−rrr2)

 (55)

 (rrri j−rrr1)
T

√
(rrri j−rrr1)T(rrri j−rrr1)

(rrri j−rrr2)
T

√
(rrri j−rrr2)T(rrri j−rrr2)

vvv =
[

ṙt,1
ṙt,2

]
+

 (rrri j−rrr1)
Tvvv1√

(rrri j−rrr1)T(rrri j−rrr1)

(rrri j−rrr2)
Tvvv2√

(rrri j−rrr2)T(rrri j−rrr2)

 (56)

bbb ≡
[

ṙt,1
ṙt,2

]
+

 (rrri j−rrr1)
Tvvv1√

(rrri j−rrr1)T(rrri j−rrr1)

(rrri j−rrr2)
Tvvv2√

(rrri j−rrr2)T(rrri j−rrr2)

 (57)

The unique solution for the component of vvv lying in the plane of the relative positions is labeled vvv∥ and is given by the
Moore-Penrose pseudoinverse.

vvv∥ = HHHT
ṙ,v
(
HHH ṙ,vHHHT

ṙ,v
)−1 bbb (58)

The velocity component in the êeec direction does not affect the FOA measurements. Therefore, the probability distri-
bution along the êeec velocity component is uniform within some some bound vc,max.

pvc(vc) =

{ 1
2vc,max

vc ∈ [−vc,max,vc,max]

0 vc /∈ [−vc,max,vc,max]
(59)

This uniform distribution is approximated with a GM with Lv components using the approach developed in [11], and
summarized in Section 4.1. The mean values are given by the following.

vc,k =−vc,max +
2vc,maxk
Lv +1

for k = 1, . . . ,Lv (60)
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vvvk = vvv∥+ vc,kêeec (61)

The standard deviation σv is evaluated numerically.

PPP⊥ṙ = σ
2
v êeecêeeT

c (62)

The FDOA measurement can be similarly manipulated.

∆ṙ =

(
(rrr− rrr2)

T√
(rrr− rrr2)T(rrr− rrr2)

− (rrr− rrr1)
T√

(rrr− rrr1)T(rrr− rrr1)

)
vvv−

(
(rrr− rrr2)

Tvvv2√
(rrr− rrr2)T(rrr− rrr2)

− (rrr− rrr1)
Tvvv1√

(rrr− rrr1)T(rrr− rrr1)

)
(63)

(
(rrr− rrr2)

T√
(rrr− rrr2)T(rrr− rrr2)

− (rrr− rrr1)
T√

(rrr− rrr1)T(rrr− rrr1)

)
vvv = ∆ṙ+

(rrr− rrr2)
Tvvv2√

(rrr− rrr2)T(rrr− rrr2)
− (rrr− rrr1)

Tvvv1√
(rrr− rrr1)T(rrr− rrr1)

(64)

b = ∆ṙ+
(rrr− rrr2)

Tvvv2√
(rrr− rrr2)T(rrr− rrr2)

− (rrr− rrr1)
Tvvv1√

(rrr− rrr1)T(rrr− rrr1)
(65)

Note that only the component of the transmitter’s velocity in the direction equal to the difference in the relative
position unit vectors affects the TDOA measurement. The solution for this velocity component is again given by the
Moore-Penrose pseudoinverse.

vvv∥ = HHHT
∆ṙ,v

b
HHH∆ṙ,vHHHT

∆ṙ,v
(66)

The solution for vvv∥ lies in the row space of HHH∆ṙ,v = HHH∆r,r, which is the same direction as êeen.

Velocity components in the êeeh and êeec directions do not affect the FDOA measurement. Therefore, the probability
distribution of the velocity is uniform in the êeehêeec plane within some some bound vmax.

pvh,vc(vh,vc) =

{
1

4v2
max

(vh ∈ [−vmax,vmax])∧ (vc ∈ [−vmax,vmax])

0 otherwise
(67)

This uniform distribution is approximated with a Gaussian mixture with L2
v components. The mean velocities are

distributed on a grid on the êeehêeec plane.

vh,i =−vmax +
2vmaxi
Lv +1

for i = 1, . . . ,Lv (68)

vc, j =−vmax +
2vmax j
Lv +1

for j = 1, . . . ,Lv (69)

vvvi j = vvv∥+ vh,iêeeh + vc, j êeec (70)

The standard deviation σv is evaluated numerically, and each Gaussian component is assigned a covariance matrix
with this standard deviation in principal directions of êeeh and êeec.

PPP⊥∆ṙ = σ
2
v
(
êeecêeeT

c + êeehêeeT
h
)

(71)

8. GM APPROXIMATION OF THE ORBITAL STATE

For the posterior distribution of the orbital state given a set of TDOA and FOA measurements, there is a three-
dimensional manifold of the state space that satifies the measurements and over which the distribution is uniform. To
develop a GM approximation of the posterior distribution, a mesh of mean locations must be constructed over this
manifold, and covariances must be selected to approximate the uniform distribution.

The previous sections described the GM approximation of a TDOA hyperboloid in position space, and for a given
position, the velocity components undetermined by the frequency measurements. But given a set of TDOA and
frequency measurements it is desired to describe the uniform-Gaussian distribution in the full orbital state space.
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The means for this GM approximation will be concatenations of the mean positions on the TDOA hyperboloid and
mean velocities satisfying the frequency measurements. These mean states form a mesh spaced along the generating
hyperboloid and circle of rotation in position space and along the undetermined velocity components. For FOA
measurements, the total number of components is N = LhLcLv, and components are here notated with i as the index
along the generating hyperbola, j as the index along the circle of revolution, and k as the index along the velocity
component in the êeec direction. The mean states are written as follows.

mmmi jk =

[
rrri j

vvv∥,i j + vc,kêeec, j

]
(72)

Here, rrri j was defined in Eq. (49). For FDOA measurements, the total number of components is N = LhLcL2
v , and l is

the additional index along the velocity component in the êeeh direction. The mean states are shown below.

mmmi jkl =

[
rrri j

vvv∥,i j + vc,kêeec, j + vh,l êeeh,i j

]
(73)

The GM approximation of a circle and of a univariate variable provided guidance for sizing the desired variances
along the mesh directions. But the requirement for the covariance components that approximate the uniform aspects
of the distribution is that they should span the nullspace of the Jacobian of the full measurement vector (i.e. TDOA
and frequency measurements) with respect to the full state vector (i.e. position and velocity components).

The covariances of the Gaussian components in the nullspace of the measurement Jacobian, HHH, approximate the
uniform distribution. One direction in the nullspace has zero position components and velocity components along
the êeec direction. Therefore, the variance σ2

v can be associated with this direction. The covariance PPP⊥∆r,i j defined in
Eq. (53) was designed to approximate a uniform distribution over the TDOA hyperboloid. Whereas a variation δ rrr in
position over the hyperboloid produces no change in the TDOA measurement, variation in position along êeeh without
a corresponding variation δvvv in velocity will produce a change in the FOA measurements. (This is precisely the same
reason that the solution for vvv∥ is a function of rrr).

Define HHH i jk as the evaluation of HHH at the mean state mmmi jk. The solution for the covariance in the velocity components
and the covariance between the position and velocity to associated with the position variance will be illustrated here
for the case of FOA measurements. To construct additional components of the nullspace of HHH i jk, it will be convenient
to define HHH ṙr,i jk as the lower-left 2×3 partition, and HHH ṙv,i jk as the lower-right 2×3 partition.

HHH ṙr,i jkδ rrr+HHH ṙv,i jkδvvv = 000 (74)

Given a deviation δ rrr the solution for the deviation δvvv in the rowspace of HHH ṙv,i jk is given by the Moore-Penrose
pseudoinverse.

δvvv =−HHHT
ṙv,i jk

(
HHH ṙv,i jkHHHT

ṙv,i jk
)−1 HHH ṙr,i jkδ rrr (75)

This solution can be used to find the velocity covariance to associate with the position covariance, and the cross
covariance between them.

E
{

δvvvδvvvT
}
= E

{
HHHT

ṙv,i jk
(
HHH ṙv,i jkHHHT

ṙv,i jk
)−1 HHH ṙr,i jkδ rrrδ rrrTHHHT

ṙr,i jk
(
HHH ṙv,i jkHHHT

ṙv,i jk
)−T HHH ṙv,i jk

}
(76)

PPPv,i jk = HHHT
ṙv,i jk

(
HHH ṙv,i jkHHHT

ṙv,i jk
)−1 HHH ṙr,i jkPPP⊥∆r,i jHHHT

ṙr,i jk
(
HHH ṙv,i jkHHHT

ṙv,i jk
)−T HHH ṙv,i jk (77)

E
{

δ rrrδvvvT
}
= E

{
−δ rrrδ rrrTHHHT

ṙr,i jk
(
HHH ṙv,i jkHHHT

ṙv,i jk
)−T HHH ṙv,i jk

}
(78)

PPPrv,i jk =−PPP⊥∆r,i jHHHT
ṙr,i jk

(
HHH ṙv,i jkHHHT

ṙv,i jk
)−T HHH ṙv,i jk (79)

The solution for the case of an FDOA measurement is similar, using the associated partitions of the measurement
Jacobian evaluate at mmmi jkl .

With this, the covariance components modeling the uniform distribution can be assembled. For the case of FOA
measurements, the covariance matrix has the following form.

PPP⊥,i jk =

[
PPP⊥∆r,i j PPPrv,i jk
PPPT

rv,i jk PPPv,i jk

]
+

[
000 000
000 PPP⊥ṙ, j

]
(80)
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For an FDOA measurement, the covariance matrix is shown below.

PPP⊥,i jkl =

[
PPP⊥∆r,i j PPPrv,i jkl
PPPT

rv,i jkl PPPv,i jkl

]
+

[
000 000
000 PPP⊥∆ṙ,i j

]
(81)

For the GM described in the previous section, and its corresponding covariance values, was designed to approximate
the uniform distribution over the manifold satisfying the TDOA and FOA measurements. To account for the Gaussian
distribution in the directions orthogonal to this manifold due to measurement noise, additional components must be
added to the state covariance. As described in Section 3, this state covariance is related to the measurement noise
covariance by the Moore-Penrose pseudoinverse of the measurement Jacobian.

The value HHH i jk is the evaluation of HHH at the mean position and velocity of the (i, j,k)th Gaussian component. The
covariance for each component due to measurement noise is given by the following for the case of FOA measurements.

RRR =

 σ2
∆r 0 0
0 σ2

ṙ,1 0
0 0 σ2

ṙ,2

 (82)

For an FDOA measurement, the measurement noise covariance matrix is shown below.

RRR =

[
σ2

∆r 0
0 σ2

∆ṙ

]
(83)

PPP∥,i jk = HHHT
i jk(HHH i jkHHHT

i jk)
−1RRR(HHH i jkHHHT

i jk)
−THHH i jk (84)

The total covariance for each component is the sum of the covariance approximating the dimensions with uniform
distribution and the contribution due to sensor noise.

PPPi jk = PPP⊥,i jk +PPP∥,i jk (85)

Lastly, the weight of each Gaussian component is computed. For FOA measurements, the weight of the (i, j,k)th
component is shown below.

αi jk =

√
|PPPi jk|

∑
Lh
i=1 ∑

Lc
j=1 ∑

Lv
k=1

√
|PPPi jk|

(86)

For an FDOA measurement, the weight of the (i, j,k,l)th component is similar.

αi jkl =

√
|PPPi jkl |

∑
Lh
i=1 ∑

Lc
j=1 ∑

Lv
k=1 ∑

Lv
l=1

√
|PPPi jkl |

(87)

9. GM EXTENDED KALMAN FILTER

The preceding sections described the initialization of a GM using a set of TDOA and frequency measurements. The
propagation of the GM and update of the GM from subsequent measurements can be performed using a GM extended
Kalman filter. In the propagation step, the nonlinear orbital dynamics are modeled using a selected propagator, subject
to process noise.

ẋxx =
[

vvv
fff (xxx)

]
+

[
000
III

]
uuu (88)

Here the process noise uuu is assumed to be Gaussian with spectral density QQQ.

E{uuu(t)uuuT(τ)}= QQQδ (t − τ) (89)

The mean values are propagated from time tk to tk+1 by numerical solution of the noise-free dynamic model.

ẋxxi =

[
vvvi

fff (xxxi)

]
for i = 1, . . . ,N (90)
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The covariance matrices are propagated using the state-transition matrix ΦΦΦi(tk+1, tk) evaluated along the associated
mean value.

PPPi(tk+1) = ΦΦΦi(tk+1, tk)PPPi(tk)ΦΦΦT
i (tk+1, tk)+

∫ tk+1

tk
ΦΦΦi(tk+1,τ)

[
000
III

]
QQQ
[

000 III
]

ΦΦΦ
T
i (tk+1,τ)dτ for i = 1, . . . ,N

(91)

The update step is performed when measurements are received. The measurement Jacobian is evaluated at each mean
state, and notated as HHH i.

KKKi = PPP−
i HHHT

i
(
HHH iPPP−

i HHHT
i +RRR

)−1 (92)

The Kalman gain is used to update the means and covariances, with the prior values notated with a superscript − and
the posterior values notated with a superscript +.

xxx+i = xxx−i +KKKi
(
yyy−hhh(xxx−i )

)
(93)

PPP+
i = (III −KKKiHHH i)PPP−

i (94)

The evaluation of the measurement residuals at the mean states is the motivation, mentioned in an earlier section, for
initializing the GM with states that satisfy the initial measurements. The weights are updated using the measurement
likelihood given the posterior means and covariances.

ωi =
1√

|2π
(
HHH+

i PPP+
i HHH+T

i +RRR
)
|

exp
(
−1

2
(
yyy−hhh(xxx+i )

)T (HHH+
i PPP+

i HHH+T
i +RRR

)−1 (yyy−hhh(xxx+i )
))

(95)

Here, HHH+
i is the evaluation of the measurement Jacobian at xxx+i .

w+
i =

ωiwi

∑
N
k=1 ωkwk

(96)

Note that the propagation of the covariances depend on linearization of the dynamics (via the state-transition matrix),
and the update of the means and covariances depend on linearization of the measurement model (via the measurement
Jacobian). Both linearizations are evaluated at the mean. Approximation of uniform-Gaussian distributions with highly
accurate measurements using a small number of GM components will result in covariance matrices with high “aspect
ratio”, i.e. small covariances in the row space of the measurement Jacobian and large covariances in the nullspace.
Components with large differences in the variance magnitudes are sensitive to roundoff error. This roundoff error can
be somewhat alleviated by using a square-root implementation of the extended Kalman filter.

However, components of this type are also particularly sensitive to linearization error. Components with large aspect
ratios are being used to approximate a large portion of the uniform distribution. The linearization evaluated at the com-
ponent’s mean may not be a good approximation over this entire portion. Specifically, the Gaussian components were
initially constructed with large variances in the nullspace of the measurement Jacobian. But linearized propagation
and update of the covariance means that linearization error may result in projections of these components erroneously
falling in the rowspace of the measurement Jacobian when evaluated at future mean values. These errors can cause
large updates to these components, which essentially opens up probability-density gaps in the mesh of Gaussian com-
ponents approximating the original uniform-Guassian distribution. To alleviate these linearization errors, nonlinear
filtering techniques could be applied to covariance update. Alternatively, sufficient Gaussian components can be used
so that the eigenvalues of the covariance matrices are all similar magnitudes. Therefore, a high resolution GM may be
needed to reduce linearization error in the filtering of highly accurate measurements, but at increased computational
expense.

10. EXAMPLE RESULTS

The GMEKF is illustrated here using passive RF measurements of a transmitting object by a pair of receiver satellites.
All three satellites are simulated as obeying Keplerian orbits about the Earth with 7000 km semimajor axis. The two
receivers are in circular, equatorial orbits offset from each other by 1 deg of true anomaly. The transmitting object has
an eccentricity of 0.01, inclination of 1 deg, and is offset by an additional degree in true anomaly.
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The GM for the transmitter’s orbital state was created by simulating time-difference of arrival between the receivers
and frequency of arrival measurements at each receiver, which correspond to the range difference from the transmitter
to the receivers and the range rate from the transmitter to each receiver. RF measurements are simulated once per
minute starting at an initial time of t = 0. The simulated measurements included Gaussian noise of 0.1 km in the range
difference and 0.001 km/s in the range rates. The GM used 27,000 components.

An illustration of the GM during the search campaign is shown in Figure 3. Figure 3(a) shows the initial GM, and
Figures 3(b-f) show the posterior GM after each subsequent RF measurement. For each subfigure, the transmitter’s and
receivers’ positions are shown in Earth-centered inertial coordinates, with the green square indicating the transmitter
and green × indicating the receiver. For each component of the GM, the 2σ ellipsoid of the marginal probability
density function for the position components is shown, with shading proportional to the product of the component
weight and the probability density evaluated at the mean location.

The approximation of the TDOA hyperboloid is apparent in the initial GM. In the final distribution, the probability
density has collapsed to two small regions, each of which looks like it could be reasonably approximated as Gaussian.
The GM appears to effectively describe the complex geometry as the probability density evolves from the initial to the
final distribution.

11. CONCLUSION

An initial set of TDOA and frequency measurements results in a uniform-Gaussian distribution for the transmitter’s
orbital state, with uniform distribution over a manifold with complicated geometry. This paper presented a method to
initialize a GM approximation of this distribution. Using this GM, subsequent RF measurements can be incorporated
via a GM extended Kalman filter.

The GM characterizes the probability density of the transmitter’s orbital state from the first detection. This approach
contrasts to other common techniques for initial orbit determination, which wait until sufficient measurements have
been collected so that the probability density function can be approximated as a single component. The characteriza-
tion of the probability density during the early stages after detection has the potential to speed up other responses to
the detection, such as cueing a follow-on sensor to search for the transmitter.
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Fig. 3: Illustration of GM EKF
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