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ABSTRACT

We provide a framework for the automatic refining and tracking of conjunction probability estimates, which we call
conjunction-based sensor tasking. This differs from traditional custody-based sensor tasking which instead refines
resident space object coordinate uncertainties. Our algorithm utilizes inferential variance [1] as its objective function,
which ranks conjunction scenarios by the amount their conjunction probabilities are expected to deviate in response
to measurement. We simulate many conjunction sensor tasking scenarios and demonstrate that our approach is more
effective at refining conjunction probabilities in terms of mean square error than information theoretic methods and
seemingly reasonable “rule-of-thumb” methods that are perhaps in use today. We also present two secondary results:
The first is a theoretical extension of the inferential moment approach to custody-based sensor tasking, for complete-
ness. The second involves characterizing a few aspects of the optimal custody and conjunction-based sensor tasking
problems at hand. We prove in general that the inferential variance is non-decreasing and supermodular under the
addition of more sensors. In addition, we prove that the Mutual Information is non-decreasing and supermodular
given that all the sensors are conditionally independent from one another, which is an assumption that aligns with the
Kalman Filter paradigm for custody-based sensor tasking. Some approximate polynomial complexity algorithms exist
for this class of size constrained, non-decreasing, supermodular NP-hard optimization problems, which we hope to
explore in future work.

1. INTRODUCTION

The problem of custody-based sensor tasking and tracking for Space Domain Awareness (SDA) has been studied
extensively in the literature. Due to the presence of process noise in the Kalman Filter paradigm or the possibility
of an unscheduled maneuver, the position-velocity state uncertainties of Resident Space Objects (RSOs) tend to grow
with time; however, by making measurements with sensors, these uncertainties may be kept in check [2, 3, 4, 5, 6,
7]. Keeping custody of RSOs enables more accurate reasoning and situational SDA, for instance, by enabling more
informed computation of future events like conjunctions.

Because sensing resources are finite and imperfect, not every space object can be tracked with certainty at all times;
thus, sensor tasking optimization schemes are developed to make the most of finite resources. Mutual Information
(MI), Information Gain (IG), and the trace of the Fisher Information Matrix (FIM) are often used as objective functions
for optimizing custody-based sensor tasking schedules. Traditional optimization schemes have been applied to the
problem of optimized sensor tasking schedules [2, 3, 5, 6] as well as newer-age reinforcement learning schemes like
[8]. By choosing optimal schedules according to information-based objective functions, one seeks solutions that
reduce track uncertainty in an informational sense.

A recent article, “Inferential Moments of Uncertain Multivariable Systems” [1], defines a new set of quantities called
“inferential moments” that can be used for optimal sensor tasking. Inferential moments are formulated from Bayes
Rule updating. According to Bayes Rule, the probability of an occurrence a ∈ A,

p(a) B−→ p(a|b), (1)

is updated from its prior value p(a) to a posterior value p(a|b) given a new measured (or learned old) value b ∈ B.
However, prior to measurement, the true value of B is unknown and is distributed according to p(b). Thus it is
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uncertain as to which value the prior probability p(a) will update to... will p(a) update to p(a|b) or to some other
probability value, e.g. p(a|b′) 6= p(a|b)? From this perspective, p(a|b) itself may be treated as a random variable and
inferential moments capture the statistical moments corresponding to this randomness. The first inferential moment
corresponds to the equation for a (marginal) prior probability distribution, which in this context is understood to be the
expected value of the conditional probability p(a) = EB[p(a|b)] = ∑b∈B p(b)p(a|b). Higher order inferential moments
EB[p(a|b)n] quantify behavioral information about how the distribution is expected to respond to new information. In
particular, the second-order central inferential moment, the inferential variance,

VarB

[
p(a|b)

]
= σ

2
B[p(a|b)] = EB

[
(p(a|b)− p(a))2

]
= ∑

b∈B
p(a|b)2 p(b)− p(a)2, (2)

quantifies how much the probability p(a) is expected to fluctuate due to the utilization of a measurement device B.
Variation of this type is shown in Fig. 1.

Fig. 1: The inferential variance of p(a) due to an unknown or random, but conditionally dependent, measurable
variable b ∈ B.

Reference [1] finds an expansion of the Mutual Information in terms of inferential moments, which indicates that
inferential moments are quantities that may be able to help with tasks normally tackled with information theoretic
quantities, e.g. optimal sensor tasking. The inferential variance of p(a) due to a measurement B can be interpreted as
an unbiased Mean Squared Error (MSE) between p(a|b) and p(a),

VarB

[
p(a|b)

]
= EB

[(
p(a|b)−EB

[
p(a|b)

])2
]
= EB

[
(p(a|b)− p(a))2

]
= MSE

(
p(a|b), p(a)

)
, (3)

thus the inferential variance can also be interpreted as the expected square error of probability incurred by using p(a)
to estimate the random variable p(a|b) (as shown in Fig. 1). This is a helpful notion as it provides a direct quantitative,
error-based, interpretation of the “goodness of fit” gained by making a measurement as compared to quantities like
the “amount of information gained”, which is a quantity typically only understood by experts or understood in ratio to
other amounts of information. Thus, ranking sensors according to which sensor yields the largest inferential variance
provides a error-centric, rather than information-centric, objective function for sensor tasking.

We develop two optimal sensor tasking objectives using inferential moments in this article. The first objective is the
traditional objective of maintaining accurate position-velocity tracks of RSOs, e.g. custody-based tracking. Because
the FIM is a measure of local MI and because the MI is the unique functional for quantifying global (linear or non-
linear) correlations between pairs of variables [9, 10], it is suspected that the MI is a superior objective function for
custody-based sensor tasking than the FIM [6, 11]. Recently, [6] performed an in-depth analysis using the Mutual
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Information as an objective function for dynamic custody-based sensor tasking of UAVs and satellites. They proposed
several greedy approaches to approximate the NP-hard optimal solution by maximizing MI sequentially in time, sen-
sors, and/or RSOs. For linearly correlated (Gaussian) variables in the Kalman Filter paradigm, we find similarities
between the exhaustive inferential variance objective function and the Mutual Information: both lead to the same
custody-based sensor tasking ranking scheme for single RSOs due to being monotonic in the same decision variables
and both are non-decreasing and supermodular (contrary to [6] which claims submodularity and which differs from
the conclusions under related conditions from [12, 13]). The maximization of a size-constrained, supermodular, ob-
jective function is an NP-hard optimization problem with limited guarantees (i.e. there is no e−1

e greedy algorithm
performance guarantee as there is for constrained, non-decreasing submodular functions). This class of optimization
problem is still under investigation in the literature, but progress has been made recently resulting in an algorithm that
computes a portion of the exact solutions in polynomial time using minimum norm base [14], which may be sufficient
for this problem.

The second sensor tasking objective we consider optimizes sensor tasking for refining and more accurately tracking
conjunction probability estimates, which we call “conjunction-based” sensor tasking. In contrast to custody-based
sensor tasking, which is optimized toward maximally reducing position-velocity RSO state uncertainties, we seek a
sensor tasking ranking scheme that provides the most valuable knowledge towards updating and refining conjunction
probabilities themselves.

Reference [15] outlines the state of the art and future needs in Conjunction Analysis (CA). CA is broken into four
stages (paraphrased here):

(CA 1) Screening for potential conjunctions

(CA 2) Conjunction risk probability computation

(CA 3) Refinement of risk using updated orbital data from measurements

(CA 4) Conjunction avoidance action

Our aim is to formalize stage CA 3. The authors are not aware of formalized approaches for studying something like
“conjunction-based” sensor tasking outside of rule-of-thumb approaches such as tasking by the largest: conjunction
probability, covariance, asset value, etc. The primary outcome of this article is the formulation and demonstration
of a conjunction-based sensor tasking objective function that yields better conjunction probability estimates in terms
of mean squared error over information theoretic and rule-of-thumb based methods, which we simulate over a large
variety of scenarios.

Because operators typically have two options for evaluating a potential conjunction event – Probability of Collision
(PoC) or exclusion volume – we evaluate conjunction-based sensor tasking over a large range of exclusion volumes
from ones that tightly couple collision radii to exclusion volumes that may be much larger than current positional
covariances. An interesting observation about the latter is that more probability can be gained/lost at the boundary of
the exclusion volume than in the center, which implies “nearest approach” conjunction probability schemes may be
insufficient for some conjunction-based sensor tasking scenarios. To not introduce unnecessary complication into our
simulation and to keep the analysis generally applicable in a variety of space domains and orbital volumes, we did
not simulate full orbital propagation and full dynamic sensor tasking. We instead focused on varying a large number
of representative conjunction scenarios near and through the boundary with simple dynamics to explore how different
methods rank the value of tasking sensors in these scenarios.

2. THEORY

We use a looser definition of “conjunction” than is common in the literature. Because we will always define a con-
junction boundary with some inter-RSO distance, we let “conjunction” mean either a physical collision (when the
boundary is very small) or an exclusion zone (when the boundary is large).

We will first describe how traditional custody-based sensor tasking can be done using inferential moments and compare
it functionally with the Mutual Information. We then introduce and discuss some potential rule-of-thumb approaches
for conjunction-based sensor tasking before formulating optimal conjunction-based sensor tasking using inferential
moments.
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2.1 Custody-Based Sensor Tasking with Inferential Moments
The aim of custody-based sensor tasking is to best track the multidimensional coordinates of an RSO of interest x ∈ X
using the continuous multidimensional measurement variables of a sensor y ∈ Y . Optimal sensor tasking involves the
selection of which sensors Y → Y= {Y (k)} of a set of K sensors to task to measure which RSOs X → X= {X (m)} of
a set of M RSOs such that an objective function J[X,Y,Θ] is optimized. We seek a sensor configuration Θ = {θ (m,k)},
where each decision variable θ (m,k) ∈ {0,1} represents the tasking of the kth sensor to the mth entity, subject to
sensor availability ∑k θ (m,k) ≤ K (this constraint may be modified if a sensor can be tasked to simultaneously view
multiple RSOs). Thus, optimal custody-based sensor tasking is a constrained nonlinear binary-integer programming
(optimization) problem [6]:

argmax
{θ (m,k)}

J[X,Y,Θ] s.t. ∑
m,k

θ
(m,k) ≤ K. (4)

This can be expanded to a dynamic optimal sensor tasking framework with a finite time horizon of τ simply by
expanding the entity variables X (m) → X (m)

0:τ ≡ ∏
τ
t=0 X (m)

t = X (m)
0 ×X (m)

1 × ...×X (m)
τ over τ and similarly expanding

Y (k) → Y (k)
0:τ and Θ→ Θ0:τ . Given J[X,Y,Θ] is non-decreasing, and due to the size constraint, this class of sensor

tasking algorithms is known to be NP-hard.

We explore custody-based sensor tasking with inferential moments. In the continuous domain, the inferential variance
is,

VarY

[
ρ(x|y)

]
= EY

[(
ρ(x|y)−ρ(x)

)2
]
≡ σ

2
Y

[
ρ(x|y)

]
, (5)

which is an expression of how much the uncertainty of a continuous state variable x, described by the probability
density ρ(x), is expected to vary in response to an uncertain measurement variable y. We quantify the point to point
effect of a measurement over the entire domain of X using the “exhaustive inferential variance”.

42(X)Y ≡
∫

x∈X
VarY

[
ρ(x|y)

]
dx≥ 0, (6)

which is a “sum of squares”. It may be interesting to note that VarY

[∫
x∈X ρ(x|y)dx

]
= VarY

[
1
]
= 0 due to normaliza-

tion.

Because multiple sensors may be tasked to measure the same entity m, let Y(m) ≡∏k∈κ(m) Y (k) ⊆ Y be the Cartesian
product of the set of sensors tasked to measure m, y(m) ∈ Y(m) be a coordinate of Y(m), and κ(m) be the set of k’s that
have been tasked to m (i.e. the set of k’s for which θ (m,k) = 1). In this notation, the exhaustive inferential variance is

42(X (m))Y(m) ≡
∫

x(m)∈X(m)
VarY(m)

[
ρ(x(m)|y(m))

]
dx(m). (7)

Given M independent entities and K sensors, we propose the following custody-based sensor tasking optimization
using inferential moments,

argmax
{θ (m,k)}

(
∑
m
42(X (m))Y(m)

)
s.t. ∑

m,k
θ
(m,k) ≤ K. (8)

Due to the MSE-to-inferential variance relationship in (3), tasking sensors such that this quantity is maximized aims to
produce an updated probability state that has removed the maximum amount of MSE between its current prior estimate
of the distribution and its set of possible posterior distributions had the RSO been fully measured, following [1].

The Kalman Filter paradigm can be characterized as the propagation and measurement updating of multivariate Gaus-
sian distributed variables (for review see [6, 16]). Let the pair of coordinates (x,y) ≡ z be distributed according
to z ∼ N

(
µZ ,ΣZ

)
, which is a kZ = kX + kY dimensional multivariate Gaussian with parameters µZ = (µX ,µY ) and

ΣZ =

[
ΣX ,ΣXY
ΣT

XY ,ΣY

]
. We are interested in the inferential variances of x’s given measurements of y’s. The conditional

multivariate Gaussian is,

ρ(x|y) = N
(

µ
′
X (y),Σ

′
X

)
≡ N

(
µX +ΣXY Σ

−1
Y (y−µY ),ΣX −Σ

T
XY Σ

−1
Y ΣXY

)
, (9)
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and the relevant marginal distributions are ρ(y) = N
(

µY ,ΣY

)
and ρ(x) = N

(
µX ,ΣX

)
. The computation of the ex-

haustive inferential variance for this case is in Appendix 7.1, the result of which is

42(X)Y =
∫

x,y∈X ,Y
N
(

µ
′
X (y),Σ

′
X

)2
ρ(y)dydx−

∫
x∈X

N
(

µX ,ΣX

)2
dx

=
1√

2(2π)kX/2

( 1

|Σ′X |
1
2
− 1

|ΣX |
1
2

)
. (10)

Note that because ΣX is the prior covariance of the physical variables of interest, it is constant under a change of
measurement device Y (k) → Y (k′), while Σ′X = ΣX − ΣT

XY Σ
−1
Y ΣXY is not. Further note that 4(X)Y is a monotonic

function of |Σ′X |.
Similarly, the Mutual Information between X and Y is [6, 17],

MI[X ;Y ] =
1
2

ln
( |ΣX |
|Σ′X |

)
, (11)

which is also monotonic in |Σ′X | and can be interpreted as the prior to posterior (post-measurement) covariance ra-
tio. Because both the exhaustive inferential variance and MI are monotonic in |Σ′X |, they necessarily achieve the
same ranking for all sensor tasking combinations for a single RSO, i.e. when the |ΣX | term can effectively be ig-
nored. However, if there are multiple RSOs, the tasking is different. As an example, consider that the MI of two

different RSOs is equal if the ratio of their prior to posterior determinants is constant, i.e. r = |Σ(1)
X |
|Σ′(1)X |

=
|Σ(2)

X |
|Σ′(2)X |

≥ 1 im-

plies MI[X (1);Y (k)] = MI[X (2);Y (k′)] = 1
2 ln
(

r
)

. On the other hand, the exhaustive inferential variance does not have

this property because 4(X)Y ∝
r−1
|ΣX | . The exhaustive inferential variance is larger on a point-by-point basis over the

probability density function for narrower Gaussian distributions (at least when determinant ratios are held constant).

In Appendix 7.2.1 we prove that the exhaustive inferential variance is non-decreasing and supermodular under the
addition of more sensors and in Appendix 7.2.2 we similarly prove the MI is non-decreasing and supermodular, so
there is no greedy algorithm efficiency guarantee as there would if it were submodular. This does not imply that simple
approximate (or sometimes exact) algorithms cannot be found. Letting the generalization (8) to the dynamic optimal
sensor tasking framework be summed over time,

argmax
{θ (m,k)

t }

(
τ

∑
t=0

∑
m
42(X (m)

t )
Y(m)

0:t

)
s.t. ∑

m,k
θ
(m,k)
t ≤ K, ∀ t ∈ τ, (12)

the framework remains non-decreasing and supermodular. Due to the size constraints ∑m,k θ
(m,k)
t ≤ K and super mod-

ularity, this is a combinatorial NP-hard optimization problem with complexity 2M×K×τ . Efficiency and computational
complexity guarantees for approximate algorithms that solve this class of optimization problem are still under investi-
gation in the literature, but progress has been made recently resulting in an algorithm that computes a portion of exact
optimal solutions in polynomial time through minimum norm base [14]. More research and exploration is needed for
this class of optimization problems in this setting. We shift to conjunction-based sensor tasking.

2.2 Conjunction-based Sensor Tasking with Rule-of-Thumb (RoT) Tasking

Once M RSOs have been identified as potentially being at risk for conjunction in CA 1 and a probability of conjunction
p(c(m,m′)) is calculated in CA 2 (forward equation (13)), operators aim to refine conjunction risk by updating orbital
data from measurements in CA 3. Imagine a scenario where an operator has a limited number of available sensors and
must make choices about which sensors to task to which RSOs to improve conjunction awareness and SDA. One can
imagine the use of the following RoT schemes to task sensors based on which RSO has (or would have) the:

(RoT 1) Max probability of conjunction at closest approach

(RoT 2) Min trace or determinant posterior covariance

(RoT 3) Max custody-based MI – Prior to posterior (post-measurement) covariance ratio, eq. (11)
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(RoT 4) Max asset value – max
({

v(m)+ v(m
′)
})

(RoT 5) Max expected asset risk value – max
({

(v(m)+ v(m
′))p(c(m,m′)

})
[18]

At first glance, many of the items in the list seem reasonable – prioritize high probability conjunctions (RoT 1),
reperform custody-based sensor tasking on the screened set (RoT 2, 3), or prioritize conjunction risk to high value
assets (RoT 4, 5). Tasking based on any of those schemes would seemingly lead to a refinement of risk or the
probability of a conjunction, but by how much? In an extreme scenario, imagine there is a 100% probability of
conjunction. According to RoT 1, sensors would be tasked to measure RSOs from the 100% conjunction probability
pair over any other conjunction pair; however, the probability of conjunction will remain at 100% post-measurement
by definition – nothing about the probability of the conjunction was learned in the case where RoT 1 was supposed to
be most effective.

The main point here is to emphasize that the overall objective of conjunction-based sensor tasking should be to re-
fine risk assessment or conjunction probabilities, but the RoTs provided here are not optimizing some “amount of
conjunction refinement”, and thus they are bound to be suboptimal in some sense. RoT 2 and 3 aim to refine conjunc-
tion probabilities by refining custody-based state information. While custody-based state information is functionally
related to the probability of a conjunction, optimizing for custody awareness does not guarantee optimizing for con-
junction awareness. We will explore RoT 1, 2 and 3 in our conjunction-based sensor tasking simulation. RoT 4
is independent of conjunction and custody uncertainties, which is likely suboptimal when compared to RoT 5. It is
worth emphasizing for RoT 5 that here we should be concerned with trying to refine the estimate of risk through sensor
tasking, not reduce it by maneuvering, as we are concerned with CA 3 not CA 4; however, improving CA 3 can lead
to more effective maneuvers in CA 4. We make some preliminary remarks about refining RoT 5 theoretically with
inferential moments, but we believe more research is needed.

2.3 Conjunction-based Sensor Tasking with Inferential Moments
Let the conjunction boundary have radius L . Given the positional probability distribution of two RSOs (for conjunction-
based analysis let X be purely positional), both of which being independent multivariate Gaussian distributions, the
probability of conjunction (i.e. they are within L ) is,

p(c(1,2)) ≡ p(c(1,2)|~µL(1,2) ,ΣL(1,2))

=
1

(2π)k/2|ΣL(1,2) |
1
2

∫
~L(1,2)

1
(

L(1,2) ≤L
)

exp
(
− 1

2
(~L(1,2)−~µL(1,2))

T
Σ
−1
L(1,2)

(~L(1,2)−~µL(1,2))
)

d~L(1,2)

= E~L(1,2)

[
1
(

L(1,2) ≤L
)]
∼ 1

N

N

∑
n=1

1
(

L(1,2)
(n) ≤L

)
= p̂(c(1,2)). (13)

Here, 1(...) ∈ {0,1} is the indicator function,~L(1,2) =~x(1)−~x(2) is the displacement vector, L(1,2) ≡ |~L(1,2)|, ~µL(1,2) =
~µX(1) −~µX(2) is the miss distance, and ΣL(1,2) ≡ ΣX(1) +ΣX(2) is the displacement covariance. The integral involved
in computing p(c(1,2)) is written as an expectation value of a binary variable, which can be estimated via Monte
Carlo sampling (last line in (13)) – the estimation is unbiased and the variance of error of the estimation is simply
σ2[p̂(c(1,2))] = p(c(1,2))(1− p(c(1,2)))/N.

If a measurement is made of one of the RSOs using Y , the probability of conjunction is updated in (13),

p(c(1,2)) Y−→ p(c(1,2)|y) = p(c(1,2)|~µ ′L(1,2)(y),Σ
′
L(1,2))≡ p(c(1,2)|~µ ′L(1,2) ,Σ

′
L(1,2)), (14)

where it is understood that fusing this measurement using a Kalman Filter paradigm results in an update of ~µL(1,2) and
ΣL(1,2) :

~µL(1,2)
Y−→ ~µ ′L(1,2)(y)≡~µ ′L(1,2) ,

ΣL(1,2)
Y−→ Σ

′
L(1,2) . (15)

Thus, prior to the measurement, one can consider the inferential variance of the conjunction probability due to a
measurement from Y , which is,

VarY

[
p(c(1,2)|y)

]
= EY

[
p(c(1,2)|y)2

]
−EY

[
p(c(1,2)|y)

]2
=
∫

y∈Y
p(c(1,2)|y)2

ρ(y)dy− p(c(1,2))2, (16)
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which again can be computed using Monte Carlo. Because the conjunction probability is a binary variable, the theo-
retical (yet unrealistic) maximum inferential deviation is

√
p(c(1,2))(1− p(c(1,2))), which occurs if measurements of

the system could determine the displacement vector ~L(1,2) with complete certainty such that the updated probability
of conjunction is 0 or 1. As we will compare this quantity to a conjunction-based Mutual Information, we note it for
completeness,

MI
[
C(1,2);Y

]
= ∑

c(1,2)∈C(1,2)

∫
y∈Y

p(c(1,2)|y)ρ(y) ln
( p(c(1,2)|y)ρ(y)

p(c(1,2))ρ(y)

)
dy

= ∑
c(1,2)∈C(1,2)

∫
y∈Y

p(c(1,2)|y)ρ(y) ln
( p(c(1,2)|y)

p(c(1,2))

)
dy, (17)

which can be estimated using the same Monte Carlo estimated distributions as the inferential variance.

Because conjunction probability is normalized, 1 = p(c(1,2)) + p(c(1,2)), and the variable is binary, the exhaustive
inverential variance,

42(C(1,2))Y = ∑
c(1,2)∈C(1,2)

VarY

[
p(c(1,2)|y)

]
= VarY

[
p(c(1,2)|y)

]
+VarY

[
1− p(c(1,2)|y)

]
= 2VarY

[
p(c(1,2)|y)

]
,

is simply twice the inferential variance. Due to this, without loss of optimality, we write the dynamic sensor tasking
problem for conjunction-based sensor tasking:

argmax
{θ (m,k)

t }

(
τ

∑
t=0

M

∑
m>m′

M

∑
m′=1

Var
Y(m)

0:t Y
(m′)
0:t

[
p(c(m,m′)

t |y(m)
0:t ,y

(m′)
0:t )

])
s.t. ∑

m,k
θ
(m,k)
t ≤ K, ∀ t ∈ τ, (18)

Due to the result in Appendix 7.2.1, the objective function is non-decreasing and supermodular, and because it is
constrained, the optimization problem is again NP-hard.

2.3.1 Risk and Asset Value Preliminary Remarks

We make some initial remarks about how conjunction-based tasking using inferential variance could help refine the
expected risk profile, RoT 5. Let Rt = Rt({v(m)}) be the risk function at time t in terms of asset value (cost) v(m) [18].
The expected risk (e.g. loss of value) due to conjunctions at time t is,

EC[Rt ] =
M

∑
m>m′

M

∑
m′=1

(v(m)+ v(m
′))p(c(m,m′)

t ) (19)

Given sensors are tasked up to time t, Y0:t , the posterior expected risk is the conditional risk of the measured values:

EC[Rt |y0:t ] =
M

∑
m>m′

M

∑
m′=1

(v(m)+ v(m
′))p(c(m,m′)

t |y(m)
0:t ,y

(m′)
0:t ). (20)

From an inferential moment perspective, if y0:t ’s are unknown, then p(c(m,m′)
t |y(m)

0:t ,y
(m′)
0:t )’s are random variables and

(v(m) + v(m
′))’s can be treated as constants. The variation of the expected conditional risk with respect to possible

measurement outcomes (in the special case that RSOs are only involved in one conjunction at a time) is,

VarY0:t

[
EC[Rt |y0:t ]

]
=

M

∑
m>m′

M

∑
m′=1

Var
Y(m)

0:t Y
(m′)
0:t

[
(v(m)+ v(m

′))p(c(m,m′)
t |y(m)

0:t ,y
(m′)
0:t )

]
,

=
M

∑
m>m′

M

∑
m′=1

(v(m)+ v(m
′))2 Var

Y(m)
0:t Y

(m′)
0:t

[
p(c(m,m′)

t |y(m)
0:t ,y

(m′)
0:t )

]
(21)

which is a reweighting of the objective function in (18). The standard deviation of the conditional expected risk is√
VarY0:t

[
EC[Rt |y0:t ]

]
and the standard deviation of an individual risk due to a particular measurement assignment
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takes a natural form. It is the inferential deviation scaled by the risk value

(v(m)+ v(m
′)) ·σ

Y(m)
0:t Y

(m′)
0:t

[
p(c(m,m′)

t |y(m)
0:t ,y

(m′)
0:t )

]
, (22)

and so, the expected risk ,plus or minus the deviation of its risk due to measurement, is,

(v(m)+ v(m
′))
(

p(c(m,m′)
t )±σ

Y(m)
0:t Y

(m′)
0:t

[
p(c(m,m′)

t |y(m)
0:t ,y

(m′)
0:t )

])
.

3. CONJUNCTION-BASED SENSOR TASKING SIMULATION AND RESULTS

We begin this section by gaining an intution for conjunction-based sensor tasking. Fig. 2 explores conjunction proba-
bility distributions and inferential variance in the large conjunction boundary case.

Fig. 2: A field of possible conjunction probabilities are plotted at points near the conjunction boundary. Each value
in the heat map indicates a possible probability of a conjunction that could be realized if the displacement mean takes

the coordinate ~µL(1,2) =
[
µ

L(1,2)x
, µ

L(1,2)y

]T
and has a covariance with the size diagrammed by the red ellipse in the

corresponding figure.

This document does not contain technology or technical data controlled under either the U.S. International Traffic in
Arms Regulations or the U.S. Export Administration Regulations.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



We find that because conjunction probability varies the most as RSOs approach their mutual conjunction boundary,
it’s there that the inferential variance is largest. This implies there is more to learn about trajectories that, by the
nature of their approach angle, spend more time near the boundary than those that pass directly through it. This
“boundary effect” for large conjunction boundaries, indicates closest-approach conjunction probability strategies may
be insufficient for some cases, which corresponds to our criticism of RoT 1 in Section 2.2. Thus we find that prior and
posterior covariance size and location dictates the amount of inferential variation. We will focus on these parameters
in the simulation.

3.1 Simulation

We will simulate conjunction configurations, compute sensor tasking objective functions, and from these results create
pairs of configurations to test the decision making of the sensor tasking schemes. We compare their ability to refine
conjunction probabilities in the next subsection.

We simulated 180 conjunction configurations from combinations of the parameter values below:

Simulation Parameter Interpretation Relation Values
L Conjunction Boundary L 1
α Measurement Noise Scale ΣY = ΣL +αI (0.1, 0.5, 1)
β Prior Cov Scale βΣL (0.01, 1 ,10)

Miss-Distance Closest prior mean displac. µLy k(L +σLy) for k = (0, 1
4 ,

1
2 ,

3
4 ,1)

Prior Cov. Shape circular or elongated/rotated ΣL (circular, horizontal, diagonal, vertical)

The simulation results are recorded in the table in Appendix 7.3. For the horizontal, diagonal, and vertical covariance
shapes, one axis is set 5 times longer than the other. The miss distances varies from 0 to one standard deviation outside
of the conjunction boundary (L +σLy), where σLy is the square root of the yy component of the prior displacement
covariance ΣL. The posterior covariance is obtained using the standard Kalman Filter update with the linearized
measurement function matrix H being identity: Σ′L = (I−βΣL(βΣL +αI)−1)βΣL. We depict a representative subset
of the 180 conjunction configurations in Fig. 3.

For each conjunction configuration, we computed results for five candidate sensor tasking objective functions: conjunction-
based inferential variance, conjunction-based Mutual Information MI[C;Y ], closest approach conjunction probability
RoT 1, trace of the posterior covariance Σ′L RoT 2, and the custody-based Mutual Information RoT 3. The three
RoT’s are computed in a straight-forward manner from the configuration parameters (RoT 2 and 3) and Monte Carlo
sampling for the conjunction probability at the closest approach (RoT 1). Because the conjunction-based inferential
variance and the conjunction-based Mutual Information are used for optimal dynamic sensor tasking and are functions
of the posterior conjunction probabilities p(c(1,2)t |y), the measure variables ρ(y), and prior conjunction probabilities
p(c(1,2)t ), more complex simulation is needed.

To keep the dynamics conceptually simple and generally applicable in a variety of space domains and orbital volumes,
we focused on varying conjunction scenarios near and through the boundary with simple linear dynamics between
the RSOs, i.e. we used prior mean displacement vectors of the form ~µL(1,2)(t) ≡ ~µL(t) =

[
µLx + tvx, µLy

]T , with
µLx ,µLy being constant initial conditions. The x spacing of evaluations is equal to the standard deviation of the
smallest posterior covariance so potential boundary effects are captured. We calculate the conjunction probability at
every time t, using 105 samples, along the trajectory. This gives us a prior distribution of conjunction probabilities
p(c(1,2)t ) for every time in the configuration. We then take 4 · 103 samples from ρ(y) representing different possible
realizations from a measurement device, which result in 4 · 103 different posterior horizontal trajectories, which we
compute posterior conjunction probabilities p(c(1,2)t |y) along, again using 105 samples at every time step. We use these
Monte Carlo estimates to estimate conjunction-based inferential variance and Mutual Information for each time step,
which we then sum over time, respectively. The summed values are recorded per configuration in the table.

Now that all five of the candidate sensor tasking objective functions have been evaluated per configuration, we create
a set of

(180
2

)
= 16,110 sensor tasking decision scenario pairs from the 180 different conjunction configurations. In

the next section we examine the effectiveness of sensor tasking according to the five candidate methods over the set of
scenarios. That is, we do the simplest form of conjunction-based sensor tasking where a single sensor (with a single
observation) is forced to choose between measuring an RSO from one conjunction configuration or another.
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(a)

(
α = 0.1,β = 1,µLy = 0.7236, Horizontal

)
(b)

(
α = 1,β = 0.01,µLy = 0.5, Vertical

)

(c)

(
α = 1,β = 10,µLy = 0, Circular

)
(d)

(
α = 0.1,β = 1,µLy = 1, Diagonal

)

Fig. 3: Depicted are 4 of the 180 simulated conjunction configurations. Each figure notes its simulation parameters.

3.2 Results

The table below is a summary of the results of our pair-wise conjunction configuration sensor tasking experiment.
Once a sensor is tasked to a configuration in the pair, the conjunction probability from the observed configuration is
updated, and its mean squared error is removed. Mean squared error remains, however, for the unobserved configu-
ration, which is the error between the current prior estimate and the possible conjunction probability posteriors that
it might have been updated to if it was measured instead (i.e. measuring how well the prior approximates possible
posteriors, Fig. 1 and (3)). Our method uses inferential variance to minimize the remaining mean squared error, lead-
ing to 100% of the scenarios being optimally tasked in this sense. While the conjunction-based Mutual Information
performs well, at the end of the day, maximum information gain does not imply maximal error reduction. In terms of
“refining probabilities” we take “epistemic probability error reduction” to be a more concrete measure of probabilistic
refinement than information gain as it provides direct evidence of how much an estimate has improved.
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The RoT methods do not perform as well for a number of reasons. The maximum conjunction probability method
is agnostic to how much a configuration would be updated by a measurement and to potential conjunction boundary
effects. The last two objective functions are custody-based and thus fail to take miss distance into account, which is a
crucial variable in the conjunction probability calculation. How much they improve our knowledge of the conjunction
probability becomes more of a matter of chance.

We demonstrate the “small covariance boundary effect” suggested in Fig. 2 by looking at a subset of the configuration
data table in Appendix 7.3. Each row in this table uses the smallest measurement scale in our simulations (α = 0.1):

Prior Covariance Scale (β ) Miss Distance Inferential Variance
0.01 0 0.061
0.01 0.275 0.064
0.01 0.55 0.07
0.01 0.825 0.121
0.01 1.1 0.032

1 0 1.566
1 0.5 1.923
1 1 1.584
1 1.5 0.258
1 2 0.005

Bolded are the maximum summed inferential variances along the fixed (α,β ) trajectory for this set of miss distances.
We plot these maximum cases relative to their zero miss distance counterparts below:

From these figures it is clear that more inferential variance can be gained or lost the longer these configurations stay
“near” the conjunction boundary, where “nearness” is a function of the prior covariance. For the large β = 10 case,
which has covariances that are much larger than the conjunction boundary, inferential variance is maximized for zero
miss distances, i.e. the case that envelops the conjunction boundary the most.
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4. CONCLUSION AND FUTURE WORK

We have demonstrated the utility and effectiveness of using inferential variance as an objective function for optimal
conjunction-based sensor tasking to improve SDA. Our approach outperforms existing methods (including Mutual
Information) in terms of its ability to refine conjunction probability estimates by optimally tasking sensors to directly
remove the most conjunction probability estimation error. While we used this framework to solve the problem of
optimally refining conjunction probability estimates, nothing in principle prevents extending this framework to other
space domain scenarios beyond conjunction scenarios that might benefit from this type of targeted scenario-based
optimal sensor tasking.

Exploring the concept of optimal conjunction-based sensor tasking yielded a few insights into the nature of conjunction
probabilities and risk refinement. We found, while conjunction probabilities are maximal when the miss distance
~µL = 0, that the variation of conjunction probabilities is largest near the conjunction boundary ~µL ≈L instead for
the large conjunction boundary case. This is to say that just because an RSO has a large conjunction probability, it
doesn’t mean tasking a sensor is expected to update the conjunction probability very much. This implies that “nearest
approach” conjunction probability estimates may be insufficient for optimal conjunction-based sensor tasking and that
considering approach and trajectory information near the boundary is useful. We found that the inferential variance
may play an interesting role in refining expected asset risk profiles – not minimizing them – but instead for obtaining
better estimates of the current risk forecast through risk weighted optimal sensor tasking, which seems new (22).

While we set up the theoretical framework for optimal multiple sensor and RSO dynamic conjunction-based sensor
tasking, we only simulated optimal single sensor dynamic sensor tasking as a proof of concept. In doing so, we did
not need to integrate with a full orbital propagator, consider effects of covariance non-realism [19], or worry about
scalability. Further, while we proved that the inferential variance (and the Mutual Information) is a non-decreasing and
supermodular objective function, due to the simplicity of our simulation scenarios, we were able to implement a brute
force solution, although the problem is NP-hard in general. Future work in this space could involve taking advantage
of recent work on scalable approximate algorithms for non-decreasing supermodular size constrained optimization
problems of this type and perhaps combining those approaches with scalable integration methods.
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7. APPENDIX

7.1 Computation of the multivariate Gaussian exhaustive inferential variance

Because the square of an exponential is the exponential with its argument doubled, the exhaustive inferential variance
is exactly solvable using the following trick,

4(X)Y =
∫

x,y∈X ,Y
ρ(x|y)2

ρ(y)dydx−
∫

x∈X
ρ(x)2 dx

=
∫

x,y∈X ,Y
N
(

µ
′
X ,Σ

′
X

)2
ρ(y)dydx−

∫
x∈X

N
(

µX ,ΣX

)2
dx

=
1

√
2(2π)kX/2|Σ′X |

1
2

∫
x,y∈X ,Y

N
(

µ
′
X ,

Σ′X
2

)
ρ(y)dydx− 1

√
2(2π)kX/2|ΣX |

1
2

∫
x∈X

N
(

µX ,
ΣX

2

)
dx

=
1√

2(2π)kX/2

( 1

|Σ′X |
1
2
− 1

|ΣX |
1
2

)
(23)

=
1√

2(2π)kX/2

( 1

|ΣX −ΣT
XY Σ

−1
Y ΣXY |

1
2
− 1

|ΣX |
1
2

)
=

1√
2(2π)kX/2

( |ΣY |
1
2

|ΣZ |
1
2
− 1

|ΣX |
1
2

)
, (24)

where equation (23) is true due to normalization and equation (24) used the block matrix determinant identity |ΣZ |=
|ΣY ||ΣX −ΣT

XY Σ
−1
Y ΣXY |.
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7.2 Non-Decreasing and Supermodular Proofs

Definitions of a non-decreasing and supermodular set function are provided by [20]. We use the following definition
of a non-decreasing function,

f (C)≥ f (A), (25)

where A ⊂C ⊂ E. Further, we use the following definition of a supermodular function (negative of the submodular
definition),

4e(C)≥4e(A) (26)

again where A⊂C ⊂ E but where e ∈ E−B, and where, for any S,

4e(S) = f (S∪{e})− f (S). (27)

We will deviate from previous notation in this section for simplicity by letting YS be the joint variable space of the
sensors in S and yS ∈ YS.

7.2.1 Inferential Variance and Exhaustive Inferential Variance

Because the exhaustive inferential variance is a sum of inferential variances, we only need to prove the inferential
variance is non-decreasing and supermodular because the sum of non-decreasing supermodular functions is non-
decreasing supermodular. For this proof and the next, we will use the following variance decomposition relationship
from [1],

VarYA,YB

[
ρ(x|yA,yB)

]
= EYB

[
VarYA

[
ρ(x|yA,yB)

∣∣∣yB

]]
+VarYA

[
ρ(x|yA)

]
, (28)

which is the expected posterior inferential variance (due to an unknown measurement from YB) plus the partial infer-
ential variance.

We now prove the inferential variance is non-decreasing. Working with the variables of a single RSO (x), let A,B,C
be sets of sensors such that A∩B = /0 and C = A∪B such that A⊂C and let

fIV (S)≡ VarYS

[
ρ(x|yS)

]
.

Because variances and expected variances are non-negative, the inferential variance is non-decreasing,

fIV (C) = VarYC

[
ρ(x|yC)

]
= VarYA,YB

[
ρ(x|yA,yB)

]
≥ VarYA

[
ρ(x|yA)

]
= fIV (A), (29)

where we used (28) and definition (26). Note that while we used the variables x and y, the relations hold in general for
the inferential variance of any quantities.

We now prove the inferential variance is supermodular. Let Se = S∪{e}. Because the variance for three variables can
be decomposed as,

fIV (Ce) = VarYA,Ye,YB

[
ρ(x|yA,ye,yB)

]
= EYB

[
VarYAYe

[
ρ(x|yA,ye,yB)

∣∣∣yB

]]
+VarYAYe

[
ρ(x|yA,ye)

]
, (30)

and,

fIV (C) = VarYA,YB

[
ρ(x|yA,yB)

]
= EYB

[
VarYA

[
ρ(x|yA,yB)

∣∣∣yB

]]
+VarYA

[
ρ(x|yA)

]
, (31)

we have,

4e(C) = fIV (Ce)− fIV (C) = EYB

[
VarYA,Ye

[
ρ(x|yA,ye,yB)

∣∣∣yB

]]
−EYB

[
VarYA

[
ρ(x|yA,yB)

∣∣∣yB

]]
+4e(A)≥4e(A), (32)
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proving supermodularity. The inequality is due to the non-negativity of

EYB

[
VarYA,Ye

[
ρ(x|yA,ye,yB)

∣∣∣yB

]]
−EYB

[
VarYA

[
ρ(x|yA,yB)

∣∣∣yB

]]

= EYB

[
VarYA,Ye

[
ρ(x|yA,ye,yB)

∣∣∣yB

]
−VarYA

[
ρ(x|yA,yB)

∣∣∣yB

]]
, (33)

because every term in the expectation value is non-negative,

VarYA,Ye

[
ρ(x|yA,ye,yB)

∣∣∣yB

]
≥ VarYA

[
ρ(x|yA,yB)

∣∣∣yB

]
(34)

again due to (28) or the non-decreasing property of the inferential variance (both hold for the conditional variance as
well). Thus, the inferential variance, and by extension the exhaustive inferential variance, are in general non-decreasing
and supermodular.

7.2.2 Mutual Information (MI)

We provide a proof the MI is non-decreasing and supermodular (modeled after the strategy used in [12, 13], but
yielding results contrary to [6]), in the sensor tasking framework. We use the following relations: let

fMI(S)≡MI[X ;Y ] =
∫

y∈Y

∫
x∈X

ρ(x,y) ln
(

ρ(x,y)
ρ(x)ρ(y)

)
dxdy≥ 0,

be the MI. The MI is symmetric MI[X ;Y ] = MI[Y ;X ] and has a chain rule:

MI[X ;Y,Z] = MI[X ;Y ]+MI[X ;Z|Y ] = MI[X ;Z]+MI[X ;Y |Z] (35)

where

MI[X ;Y |Z] =
∫

z∈Z
ρ(z)

(∫
y∈Y

∫
x∈X

ρ(x,y|z) ln
(

ρ(x,y|z)
ρ(x|z)ρ(y|z)

)
dxdy

)
dz≥ 0, (36)

is the conditional MI.

The chain rule implies the MI is non-decreasing as new sensors are added to measure X ,

fMI(C) = MI[X ;YC] = MI[X ;YA,YB] = MI[X ;YA]+MI[X ;YB|YA]

≥ MI[X ;YA] = fMI(A), (37)

which is definition (25).

The proof of supermodularity is done under the assumption that, given the of the knowledge of X , that sensors are
conditionally independent of one another, i.e. ρ(yA,yB,ye|x) = ρ(yA|x)ρ(yB|x)ρ(ye|x). This assumption is equally
used in [6]. The validity of the assumption is apparent from the form of the measurement equations in the Kalman
Filter paradigm y(k) = θ (m,k)(h(x(m))+ω(m,k)). The y(k) does not have dependence on other y(k

′), given x(m), which is
a statement of the conditional independence of sensors.

We now prove the supermodularity of the MI under conditionally independent sensor variables. First note

4e(A) = fMI(Ae)− fMI(A)

= MI[X ;YA,Ye]−MI[X ;YA]

= MI[X ;YA]+MI[X ;Ye|YA]−MI[X ;YA] (chain)
= MI[X ;Ye|YA] = MI[Ye;X |YA] (symmetry)
= MI[Ye;X ,YA]−MI[Ye;YA] (chain) (38)
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and

4e(C) = fMI(Ce)− fMI(C)

= MI[X ;YA,Ye,YB]−MI[X ;YA,YB]

= MI[X ;YA,YB]+MI[X ;Ye|YA,YB]−MI[X ;YA,YB] (chain)
= MI[X ;Ye|YA,YB] = MI[Ye;X |YA,YB] (symmetry)
= MI[Ye;X ,YA,YB]−MI[Ye;YA,YB] (chain) (39)

is the same form. Continuing on4e(C) and doing the chain rule on both terms,

4e(C) =
(

MI[Ye;X ,YA])−MI[Ye;YB|X ,YA])
)
−
(

MI[Ye;YA]−MI[Ye;YB|YA]
)

(chains)

= MI[Ye;YB|YA])+MI[Ye;X ,YA])−MI[Ye;YA] (conditional independence)
= MI[Ye;YB|YA])+4e(A)≥4e(A), (40)

which is definition (26). For the conditional independence step, we used

MI[Ye;YB|X ,YA] =
∫

yA∈YA

∫
x∈X

ρ(x,yA)

(∫
ye∈Ye

∫
yB∈YB

ρ(ye,yB|x,yA) ln
(

ρ(ye,yB|x,yA)

ρ(ye|x,yA)ρ(yB|x,yA)

)
dye dyB

)
dyA dx

=
∫

yA∈YA

∫
x∈X

ρ(x,yA)

(∫
ye∈Ye

∫
yB∈YB

ρ(ye|x)ρ(yB|x) ln
(

ρ(ye|x)ρ(yB|x)
ρ(ye|x)ρ(yB|x)

)
dye dyB

)
dyA dx

= 0 (41)

which is due to ρ(ye,yB|x,yA)= ρ(ye|x,yA)ρ(yB|x,yA,ye)= ρ(yB|x)ρ(ye|x). Further, it should be noted that MI[Ye;YB|YA]≥
0 because conditional independence does not imply marginal independence as

∫
x∈X ρ(x)ρ(yA|x)ρ(yB|x)ρ(ye|x)dx 6=

ρ(yA)ρ(yB)ρ(ye) in general. Thus, the MI is supermodular in terms of the number of conditionally independent sen-
sors tasked to measure an RSO. These relations hold trivially for multi-RSO dynamical systems X →X0:τ and as well
supermodularity extends to sums of MIs that might appear in a MI-based sensor tasking scheme.

7.3 Simulated Conjunction Configurations

Measure-
ment

Scale (α)

Prior
Cov.

Scale (β )

Miss
Distance

Cov.
Type

Inferential
Variance

Conj.-
based

MI

Close.
Appr.
Conj.
Prob.

(RoT 1)

Trace of
Posterior
(RoT 2)

Custody-
based MI
(RoT 3)

0.1 0.01 0 Circular 0.061 0.098 1 0.018 0.095
0.1 0.01 0.275 Circular 0.064 0.102 1 0.018 0.095
0.1 0.01 0.55 Circular 0.07 0.11 1 0.018 0.095
0.1 0.01 0.825 Circular 0.121 0.168 0.954 0.018 0.095
0.1 0.01 1.1 Circular 0.032 0.159 0.148 0.018 0.095
0.5 0.01 0 Circular 0.013 0.021 1 0.02 0.02
0.5 0.01 0.275 Circular 0.014 0.022 1 0.02 0.02
0.5 0.01 0.55 Circular 0.016 0.025 1 0.02 0.02
0.5 0.01 0.825 Circular 0.027 0.037 0.954 0.02 0.02
0.5 0.01 1.1 Circular 0.007 0.036 0.146 0.02 0.02
1 0.01 0 Circular 0.007 0.011 1 0.02 0.01
1 0.01 0.275 Circular 0.007 0.011 1 0.02 0.01
1 0.01 0.55 Circular 0.009 0.013 1 0.02 0.01
1 0.01 0.825 Circular 0.013 0.019 0.955 0.02 0.01
1 0.01 1.1 Circular 0.003 0.018 0.146 0.02 0.01

0.1 1 0 Circular 1.57 2.51 0.947 0.182 2.4
0.1 1 0.5 Circular 1.92 2.98 0.813 0.182 2.4
0.1 1 1 Circular 1.58 3.31 0.42 0.182 2.4
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0.1 1 1.5 Circular 0.258 1.54 0.085 0.182 2.4
0.1 1 2 Circular 0.005 0.176 0.005 0.182 2.4
0.5 1 0 Circular 1.47 3.08 0.593 0.667 1.1
0.5 1 0.5 Circular 1.5 3.24 0.52 0.667 1.1
0.5 1 1 Circular 1.22 3.26 0.331 0.667 1.1
0.5 1 1.5 Circular 0.614 2.64 0.163 0.667 1.1
0.5 1 2 Circular 0.157 1.39 0.054 0.667 1.1
1 1 0 Circular 0.971 2.47 0.486 1 0.693
1 1 0.5 Circular 0.985 2.53 0.435 1 0.693
1 1 1 Circular 0.905 2.74 0.306 1 0.693
1 1 1.5 Circular 0.511 2.31 0.165 1 0.693
1 1 2 Circular 0.177 1.48 0.069 1 0.693

0.1 10 0 Circular 1.8 2.91 0.919 0.198 4.62
0.1 10 1.04 Circular 1.52 3.43 0.373 0.198 4.62
0.1 10 2.08 Circular 0.007 0.208 0.005 0.198 4.62
0.1 10 3.12 Circular 2.20E-8 1.12E-4 1.17E-6 0.198 4.62
0.1 10 4.16 Circular 0 0 0 0.198 4.62
0.5 10 0 Circular 1.51 4.07 0.418 0.952 3.04
0.5 10 1.04 Circular 1.3 4.27 0.265 0.952 3.04
0.5 10 2.08 Circular 0.322 2.37 0.069 0.952 3.04
0.5 10 3.12 Circular 0.013 0.43 0.006 0.952 3.04
0.5 10 4.16 Circular 1.97E-4 0.033 2.46E-4 0.952 3.04
1 10 0 Circular 0.857 3.67 0.25 1.82 2.4
1 10 1.04 Circular 0.769 3.66 0.193 1.82 2.4
1 10 2.08 Circular 0.391 2.97 0.087 1.82 2.4
1 10 3.12 Circular 0.074 1.3 0.022 1.82 2.4
1 10 4.16 Circular 0.005 0.29 0.003 1.82 2.4

0.1 0.01 0 Horizontal 0.061 0.097 1 0.011 0.095
0.1 0.01 0.261 Horizontal 0.062 0.099 1 0.011 0.095
0.1 0.01 0.522 Horizontal 0.061 0.098 1 0.011 0.095
0.1 0.01 0.784 Horizontal 0.07 0.111 1 0.011 0.095
0.1 0.01 1.04 Horizontal 0.02 0.111 0.136 0.011 0.095
0.5 0.01 0 Horizontal 0.014 0.022 1 0.012 0.02
0.5 0.01 0.261 Horizontal 0.014 0.022 1 0.012 0.02
0.5 0.01 0.522 Horizontal 0.014 0.022 1 0.012 0.02
0.5 0.01 0.784 Horizontal 0.015 0.024 1 0.012 0.02
0.5 0.01 1.04 Horizontal 0.004 0.026 0.135 0.012 0.02
1 0.01 0 Horizontal 0.007 0.011 1 0.012 0.01
1 0.01 0.261 Horizontal 0.007 0.011 1 0.012 0.01
1 0.01 0.522 Horizontal 0.007 0.012 1 0.012 0.01
1 0.01 0.784 Horizontal 0.008 0.013 1 0.012 0.01
1 0.01 1.04 Horizontal 0.002 0.013 0.136 0.012 0.01

0.1 1 0 Horizontal 1.64 2.63 0.98 0.109 2.4
0.1 1 0.362 Horizontal 1.64 2.65 0.966 0.109 2.4
0.1 1 0.724 Horizontal 1.75 2.85 0.804 0.109 2.4
0.1 1 1.08 Horizontal 0.692 2.29 0.215 0.109 2.4
0.1 1 1.45 Horizontal 0.004 0.141 0.004 0.109 2.4
0.5 1 0 Horizontal 2.04 3.58 0.786 0.4 1.1
0.5 1 0.362 Horizontal 1.94 3.5 0.73 0.4 1.1
0.5 1 0.724 Horizontal 1.67 3.51 0.516 0.4 1.1
0.5 1 1.08 Horizontal 0.79 2.8 0.218 0.4 1.1
0.5 1 1.45 Horizontal 0.099 1.1 0.043 0.4 1.1
1 1 0 Horizontal 1.6 3.08 0.704 0.6 0.693
1 1 0.362 Horizontal 1.55 3.09 0.642 0.6 0.693
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1 1 0.724 Horizontal 1.31 3.04 0.453 0.6 0.693
1 1 1.08 Horizontal 0.656 2.47 0.213 0.6 0.693
1 1 1.45 Horizontal 0.109 1.14 0.054 0.6 0.693

0.1 10 0 Horizontal 1.82 2.94 0.972 0.119 4.62
0.1 10 0.604 Horizontal 1.9 3.06 0.87 0.119 4.62
0.1 10 1.21 Horizontal 0.253 1.51 0.086 0.119 4.62
0.1 10 1.81 Horizontal 3.33E-7 6.20E-4 7.65E-6 0.119 4.62
0.1 10 2.41 Horizontal 0 0 0 0.119 4.62
0.5 10 0 Horizontal 2.63 5.29 0.636 0.571 3.04
0.5 10 0.604 Horizontal 2.26 5.09 0.479 0.571 3.04
0.5 10 1.21 Horizontal 0.786 3.55 0.149 0.571 3.04
0.5 10 1.81 Horizontal 0.024 0.604 0.011 0.571 3.04
0.5 10 2.41 Horizontal 8.10E-5 0.019 1.70E-04 0.571 3.04
1 10 0 Horizontal 2.06 5.55 0.442 1.09 2.4
1 10 0.604 Horizontal 1.77 5.29 0.343 1.09 2.4
1 10 1.21 Horizontal 0.803 4.08 0.141 1.09 2.4
1 10 1.81 Horizontal 0.124 1.69 0.031 1.09 2.4
1 10 2.41 Horizontal 0.004 0.224 0.002 1.09 2.4

0.1 0.01 0 Vertical 0.027 0.043 1 0.011 0.095
0.1 0.01 0.275 Vertical 0.033 0.052 1 0.011 0.095
0.1 0.01 0.55 Vertical 0.049 0.072 1 0.011 0.095
0.1 0.01 0.825 Vertical 0.102 0.133 0.959 0.011 0.095
0.1 0.01 1.1 Vertical 0.031 0.146 0.152 0.011 0.095
0.5 0.01 0 Vertical 0.006 0.009 1 0.012 0.02
0.5 0.01 0.275 Vertical 0.007 0.012 1 0.012 0.02
0.5 0.01 0.55 Vertical 0.011 0.016 1 0.012 0.02
0.5 0.01 0.825 Vertical 0.023 0.03 0.958 0.012 0.02
0.5 0.01 1.1 Vertical 0.007 0.033 0.156 0.012 0.02
1 0.01 0 Vertical 0.003 0.005 1 0.012 0.01
1 0.01 0.275 Vertical 0.004 0.006 1 0.012 0.01
1 0.01 0.55 Vertical 0.006 0.008 1 0.012 0.01
1 0.01 0.825 Vertical 0.012 0.015 0.958 0.012 0.01
1 0.01 1.1 Vertical 0.004 0.017 0.156 0.012 0.01

0.1 1 0 Vertical 0.746 1.15 0.981 0.109 2.4
0.1 1 0.5 Vertical 1.31 1.7 0.881 0.109 2.4
0.1 1 1 Vertical 1.52 2.62 0.489 0.109 2.4
0.1 1 1.5 Vertical 0.299 1.42 0.107 0.109 2.4
0.1 1 2 Vertical 0.009 0.209 0.008 0.109 2.4
0.5 1 0 Vertical 0.936 1.55 0.788 0.4 1.1
0.5 1 0.5 Vertical 1.19 1.88 0.697 0.4 1.1
0.5 1 1 Vertical 1.32 2.49 0.46 0.4 1.1
0.5 1 1.5 Vertical 0.742 2.23 0.232 0.4 1.1
0.5 1 2 Vertical 0.183 1.22 0.076 0.4 1.1
1 1 0 Vertical 0.746 1.38 0.7 0.6 0.693
1 1 0.5 Vertical 0.906 1.59 0.628 0.6 0.693
1 1 1 Vertical 0.999 2.02 0.441 0.6 0.693
1 1 1.5 Vertical 0.655 1.94 0.247 0.6 0.693
1 1 2 Vertical 0.246 1.35 0.105 0.6 0.693

0.1 10 0 Vertical 0.882 1.35 0.972 0.119 4.62
0.1 10 1.04 Vertical 1.58 2.89 0.448 0.119 4.62
0.1 10 2.08 Vertical 0.008 0.196 0.007 0.119 4.62
0.1 10 3.12 Vertical 1.37E-9 2.44E-5 3.85E-7 0.119 4.62
0.1 10 4.16 Vertical 0 0 0 0.119 4.62
0.5 10 0 Vertical 1.28 2.43 0.63 0.571 3.04

This document does not contain technology or technical data controlled under either the U.S. International Traffic in
Arms Regulations or the U.S. Export Administration Regulations.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



0.5 10 1.04 Vertical 1.46 3.21 0.41 0.571 3.04
0.5 10 2.08 Vertical 0.419 2.07 0.109 0.571 3.04
0.5 10 3.12 Vertical 0.022 0.43 0.011 0.571 3.04
0.5 10 4.16 Vertical 1.44E-04 0.025 4.04E-04 0.571 3.04
1 10 0 Vertical 0.988 2.55 0.44 1.09 2.4
1 10 1.04 Vertical 0.995 2.82 0.338 1.09 2.4
1 10 2.08 Vertical 0.59 2.59 0.156 1.09 2.4
1 10 3.12 Vertical 0.129 1.28 0.041 1.09 2.4
1 10 4.16 Vertical 0.008 0.273 0.006 1.09 2.4

0.1 0.01 0 Diagonal 0.028 0.044 1 0.011 0.095
0.1 0.01 0.275 Diagonal 0.032 0.05 1 0.011 0.095
0.1 0.01 0.55 Diagonal 0.047 0.07 1 0.011 0.095
0.1 0.01 0.825 Diagonal 0.104 0.135 0.958 0.011 0.095
0.1 0.01 1.1 Diagonal 0.029 0.139 0.152 0.011 0.095
0.5 0.01 0 Diagonal 0.006 0.01 1 0.012 0.02
0.5 0.01 0.275 Diagonal 0.007 0.012 1 0.012 0.02
0.5 0.01 0.55 Diagonal 0.011 0.017 1 0.012 0.02
0.5 0.01 0.825 Diagonal 0.022 0.029 0.958 0.012 0.02
0.5 0.01 1.1 Diagonal 0.007 0.034 0.153 0.012 0.02
1 0.01 0 Diagonal 0.003 0.005 1 0.012 0.01
1 0.01 0.275 Diagonal 0.004 0.006 1 0.012 0.01
1 0.01 0.55 Diagonal 0.006 0.008 1 0.012 0.01
1 0.01 0.825 Diagonal 0.012 0.016 0.959 0.012 0.01
1 0.01 1.1 Diagonal 0.003 0.017 0.153 0.012 0.01

0.1 1 0 Diagonal 0.774 1.19 0.981 0.11 2.4
0.1 1 0.502 Diagonal 1.38 1.81 0.87 0.11 2.4
0.1 1 1 Diagonal 1.51 2.64 0.479 0.11 2.4
0.1 1 1.5 Diagonal 0.267 1.32 0.107 0.11 2.4
0.1 1 2.01 Diagonal 0.009 0.203 0.008 0.11 2.4
0.5 1 0 Diagonal 0.961 1.61 0.785 0.405 1.1
0.5 1 0.502 Diagonal 1.24 1.95 0.688 0.405 1.1
0.5 1 1 Diagonal 1.34 2.51 0.47 0.405 1.1
0.5 1 1.5 Diagonal 0.738 2.23 0.228 0.405 1.1
0.5 1 2.01 Diagonal 0.19 1.24 0.074 0.405 1.1
1 1 0 Diagonal 0.719 1.34 0.697 0.608 0.693
1 1 0.502 Diagonal 0.888 1.58 0.621 0.608 0.693
1 1 1 Diagonal 0.969 1.97 0.445 0.608 0.693
1 1 1.5 Diagonal 0.62 1.87 0.244 0.608 0.693
1 1 2.01 Diagonal 0.234 1.29 0.107 0.608 0.693

0.1 10 0 Diagonal 0.881 1.35 0.972 0.12 4.62
0.1 10 1.05 Diagonal 1.49 2.79 0.433 0.12 4.62
0.1 10 2.09 Diagonal 0.01 0.218 0.007 0.12 4.62
0.1 10 3.14 Diagonal 3.14E-9 3.62E-5 5.80E-7 0.12 4.62
0.1 10 4.18 Diagonal 0 0 0 0.12 4.62
0.5 10 0 Diagonal 1.28 2.42 0.633 0.579 3.04
0.5 10 1.05 Diagonal 1.43 3.14 0.41 0.579 3.04
0.5 10 2.09 Diagonal 0.423 2.11 0.108 0.579 3.04
0.5 10 3.14 Diagonal 0.02 0.401 0.01 0.579 3.04
0.5 10 4.18 Diagonal 7.41E-5 0.02 3.23E-4 0.579 3.04
1 10 0 Diagonal 0.944 2.47 0.438 1.1 2.4
1 10 1.05 Diagonal 0.999 2.9 0.329 1.1 2.4
1 10 2.09 Diagonal 0.556 2.52 0.148 1.1 2.4
1 10 3.14 Diagonal 0.115 1.2 0.038 1.1 2.4
1 10 4.18 Diagonal 0.008 0.265 0.005 1.1 2.4
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