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ABSTRACT

The convergence of autonomous robotic hardware and distributed sensor ecosystems is revolutionizing surveillance 
technology and observational science. Next generation systems for Space Domain Awareness will deploy networks 
of intelligent agents acting in the environment, requiring a mix of collaborative and individual behavior to accomplish 
their mission. While numerous approaches are being explored, this long-term vision presents often unique challenges. 
Autonomous Tip & Cue systems are often the only way to ”catch” and characterize emerging events of interest before 
it is too late to respond or there are too many events. The key missing piece is efficient coordination that can quantify 
the utility of information and optimize the overall outcome. Despite rapid progress on multiple fronts, this problem 
remains one of the main barriers to a wider adoption of such systems.

Here we present a solution based on the idea of using a market-place model to represent interactions within distributed 
multi-agent sensor networks designed to coordinate sensor ecosystems with diverse sensing capabilities, but limited 
resources, and no strict centralized control. We then apply this approach to the problem of Space Traffic Management 
with globally distributed sensors tracking a large population of space objects and minimizing the overall uncertainty 
and collision risk, while simultaneously optimizing individual objectives of all agents. We also demonstrate the gain 
in total utility from coordinated data collections compared to uncoordinated behavior. Typically, agents have limited 
information toward satisfying their objectives, which creates a strong incentive to trade with other agents. However, at 
any given time there is no obligation to participate in the market, allowing agents to retain autonomy and pursue their 
own goals.

The system consists of agents that own private sensors and a coordination authority (CA), that operates the exchange 
market for trading observations, but does not own any sensors. Sensor trade creates possibilities for the agents to 
observe some objects of interest and engage additional capabilities, which are not accessible from their own sensors. 
The CA, however, does not have any research agenda and is acting as a market regulator by setting the exchange prices 
to reduce the total uncertainty associated with the population of space objects. The presence of CA allows agents to 
avoid sharing private information (observation utilities) with each other. While the market approach is introduced to 
enable effective collaboration between autonomous agents, it can also be used in systems with centralized control as a 
way of managing complexity.

The proposed market system features a two-level hierarchy, which can be viewed as a bilevel game where the CA acts 
as a leader by setting the price for exchanged observations and the agents (followers) react to that pricing decision 
by committing to certain exchanges based purely on their interests. In this kind of game, each player solves their 
own optimization problem, the leader tries to generate the best outcome while accounting for the followers’ response, 
and the followers act in the space parameterized by the leader maximizing their individual benefit. The knowledge 
of agents’ utilities allows the CA to reconstruct their individual optimization problems and solve a bilevel problem 
predicting the response to the pricing policy.

A key aspect of bilevel optimization is that given a leader’s decision, the followers always react optimally, making 
these models a powerful tool to capture the relationship between agents in a market. Certain caveats are also 
discussed. The model features a mechanism to ensure fair observation pricing and agents are guaranteed that the 
resulting sensor assignment benefits their research programs. The proposed approach requires solving a mixed-
integer optimization problem, which provides a globally optimal solution and is known to be NP-hard. While the 
optimal solution can in principle be found, in practice it is often preferred to obtain a near-optimal solution in a 
reasonable time.
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1. INTRODUCTION

The convergence of autonomous robotic hardware enabled by Artificial Intelligence (AI) and distributed sensor ecosys-
tems fostered by the Internet of Things (IoT) is revolutionizing surveillance technology and observational science
[4,19]. Next generation systems for Space Domain Awareness will deploy networks of intelligent agents acting in the
environment, requiring a mix of collaborative and individual behavior to accomplish their mission. While numerous
approaches are being explored, this long-term vision presents often unique challenges. Autonomous Tip & Cue sys-
tems are often the only way to ”catch” and characterize emerging events of interest before it is too late to respond or
there are too many events. Many elements of this approach are ready for experimental work or deployment: event
recognition, required edge computing, communication protocols, and executing simple responses. The key missing
piece is efficient coordination that can quantify the utility of information and optimize the overall outcome. Despite
rapid progress on multiple fronts, effective coordination between agents remains one of the main barriers to wider
adoption. This is especially difficult in heterogeneous networks of sensors with diverse capabilities and operational
modes that must be matched and dynamically allocated as conditions evolve.

In this paper we present a solution based on the idea of using a market-place model to represent interactions within
distributed multi-agent sensor networks [1] designed to coordinate activity of sensor ecosystems with diverse sensing
capabilities, but limited resources, and no strict centralized control. We then apply this approach to the problem of
Space Traffic Management with globally distributed sensor networks tracking a large population of space objects and
minimizing the overall level of uncertainty and collision risk, while simultaneously optimizing individual objectives
of all agents. In our collaborative sensor network architecture, the overarching assumption is that most of the time,
none of the agents can obtain enough information on their own to satisfy its objectives. This assumption is strongly
supported by the experience with actual sensors deployed in the real world. Therefore, there is a strong incentive to
participate in the market by trading some information with other agents, but there is no obligation. There is an inherent
uncertainty in how the system operates and negotiates the next actions to be undertaken.

Our approach builds on the seminal work in Contract Nets [2, 22, 23], which mimic the interaction between a general
contractor using subcontractors to execute tasks in exchange for a reward. However, the proposed solution goes
beyond the limits of strict command and control, allowing agents to retain the autonomy to make their own decisions
and pursue their own goals. The resulting resource allocation shares similarities with auctions [18] that promote
collaborative agent behavior by a carefully chosen negotiation mechanism [3].

2. RELATED WORK AND EXISTING CHALLENGES

Sensor tasking is a process of deciding which observation target a sensor needs to observe at a particular slot of
time. It has been one of the key problems in SDA since the beginning of space object catalogues. Usually, there is
a trade-off between the number of objects observed, observation quality and the probability of detecting new objects.
A variety of models with different degrees of complexity have been developed to perform sensor tasking, starting
with heuristics rules and branching into a fusion of information theory, optimization and deep learning approaches.
Sensors can generally be used for two types of activity: surveys and follow-up observations. Survey observations are
aimed at discovering new objects, while follow-up observations are made to reduce the uncertainty associated with
already-known objects.

An early work on recovering trajectories with follow-up observations scheduled with simulation was presented by
Musci et al. [16]. Hill et al. [8] used covariance as a metric for scheduling observations in time when tasking and
scheduling are performed separately. Williams et al. [26] proposed coupling sensor assignment with the observation
process in a closed-loop algorithm using Fischer information gain as a tasking metric and Lyapunov exponents to
prevent divergence in uncertainty for some objects. Jaunzemis et al. [11] applied the Dempster-Schafer theory to
develop a hypothesis-testing framework based on the evidence from the data which was later used as a basis for
sensor tasking optimization. Heuristic rules were formalised in an optimization problem by Frueh et al. [5] and a
computationally fast near-optimal solution was also presented. Nastasi and Black [17] modelled dynamic sensor
tasking as a partially observed Markov decision process using Fischer information gain and largest Lyapunov exponent
as tasking metrics.
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Meta-heuristic approaches were presented in [9] and [14]. In [14] a comparison between several methods was pre-
sented and the ant colony algorithm showed the best results. Wu et al. [27] present an ensemble method utilizing both
meta-heuristic and exact approaches to solve a tasking problem of observing objects on Earth from satellites located on
different orbits in space. A series of deep learning approaches were developed in [10, 12, 13, 20, 21]. Linares and Fur-
faro [12] model the sensor management problem as a discrete Markov process and developed a reinforcement learning
approach to generate a tasking sequence with two neural networks: one for generating action responses and one as-
sessing the value of an action; a simulation setup is used for training. In [13] they extend that work with asynchronous
actor-critic learning. Jang et al. [10] presented a comparison between several reinforcement learning agents trained
for sensor tasking showing that a combination of models trained in different environments is resilient to unexpected
scenarios. Siew et al. focused on training a single ground-based sensor to perform follow-up observations.

The majority of work in the field of sensor tasking is focused on the setups with either one sensor or a set of sensors
belonging to one entity. As the orbit is getting more crowded and the research missions more ambitious, it becomes
harder and harder to maintain the uncertainties associated with object positions and trajectories reasonably low without
a collaborative effort. For the sake of concise presentation, this work will focus on follow-up monitoring observations
only, although it is possible to extend it to include survey observations as well.

3. PROBLEM STATEMENT

Here we provide a detailed explanation of our problem setting. In this study, we consider a network that consists of
agents that own and operate private sensors, a set of registered space objects and a Coordination Authority (CA) who
operates the observations exchange market. The goal of this work is to create a tool that allows the agents and the CA
to use all sensors in the system in a collaborative way while still respecting each agent’s privacy and rights to utilize
the sensors they own in a way that is most beneficial for them. We assume that the private agents are ”selfish” and
prioritize their own research agenda over the global goal of keeping the uncertainty of object trajectories as low as
possible. The research agenda of the CA is comprised of objects that have a significant level of uncertainty associated
with their trajectory due to a lack of recent observations or other reasons. It is important to note that for any agent the
participation in this market exchange system is voluntary and is primarily motivated by the potential benefits for their
own mission. The main attraction from an agent perspective is the opportunity to use other sensors controlled by other
agents to make observations not available with their own set of sensors.

Our procedure is defined with discrete time steps. At each step, we solve an optimization problem to determine the
most beneficial observations, i.e. the assignment of sensors to objects, which is followed by an information update
after the observations have been made. This process is illustrated in Figure 1a. The network configuration at each step
is given by a bipartite visibility graph, where the two sets of nodes represent sensors and objects, and the arcs show the
potentially feasible observations (Figure 1b). In this paper we use the term observation to describe an arc connecting a
sensor to an object. When a potential observation is carried out, the corresponding data collection results in improved
object localization, which is assimilated into the calculation of sensor utility and reduction in collision risk.

The described system features K agents, a total of N sensors (distributed in some way between the agents), and M space
objects to be tracked. At every time step, each agent has to decide for each of their sensors, whether they want to use
it to make an observation for themselves or sell it to another agent (make an observation useful to another agent). We
assume that the agents have numeric values for interest weights associated with each observation and that these values
are expressed in a monetary equivalent. These weights express how much an agent values the data from a particular
observation. In the market model, the weights represent how much an agent is willing to pay for an observation if they
are buying or the minimum price an agent needs to be paid if they are selling.

We assume that trades between agents are carried out in the following way. The CA collects the interest information
(weights) from the agents, performs market optimization, and then announces the prices to agents. Prices are set for
every sensor, and by paying the price an agent obtains the right to choose which object a given sensor should observe.
The owners then make observations and provide the buyers and CA with the data. As the goal of the CA is to reduce
the uncertainty associated with objects, we assume that the agents agree to share all their observations with the CA
(but not with each other) to contribute to this global effort in SDA. Thus, the CA only need to buy observations when
no agent has committed to those beneficial data collects. We will use the term buy a sensor or sell a sensor to indicate
that the buyer gets the choose which object the sensor is used for in the current optimization period (time step).
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(a) Iterative process (b) Visibility graph

Fig. 1: Rolling horizon optimization. The assignment of sensors to objects is optimized at every time step, given all
information available at that time (left). The visibility graph specifies all possible assignments (potential observations)
and is also computed for every time step (right).

3.1 An illustrative example
An example of a feasible assignment is presented in Figure 2. In this example, we have the CA, three agents (K = 3),
six sensors (N = 6), and seven objects (M = 7). The first agent (blue) has two sensors, the second agent (orange)
has one sensor and the third agent (green) has three sensors. The CA does not have any sensors but can still buy
observations from other agents. In the presented assignment scheme, Agent 1 sells an observation from their first
sensor to Agent 2, which is represented by the orange arrow connecting that sensor to Object 1 which Agent 2 decided
to observe. They use their second sensor to perform their own observation of Object 3. Agent 2 sells an observation
from their only sensor to Agent 1 which is represented by the blue assignment arrow. Agent 3 uses one of their sensors
for their own observations and sells the other two to perform an observation for the CA and Agent 2 respectively. The
arrows between the agents represent the flow of money (utility) as observations are purchased and paid for.

Fig. 2: An example of a feasible sensor assignment in the market model
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3.2 Market modelling

In our market model, the agents retain the autonomy to manage their own sensors and the CA acts as a facilitator
and intermediary between them. This way, the agents do not have to share their information with others as it is only
accessible to the CA. The market interaction can be modelled as a two-level decision process, where the CA sets the
prices for possible observations available for exchange, after which the agents make assignments for their sensors
based on market conditions, visibility, and their own agenda. We use bilevel optimization to model this hierarchical
decision process.

Bilevel optimization problems are sometimes referred to as bilevel games or Stackelberg games, as the concept origi-
nated in the work of Stackelberg [24] on leader-follower games in a market economy. Bilevel problems consist of two
individual optimization problems: upper level - the leader’s problem and lower level - the follower’s problem. In that
kind of hierarchical decision process, the leader acts first, setting parameters for the follower’s problem. The follower,
in their turn, solves the lower-level problem partially defined by the leader’s strategy. Bilevel problems are typically
solved from the leader’s perspective. The leader tries to predict the follower’s reaction and choose a strategy that gives
them the best outcome with respect to this reaction.

A schematic representation of a bilevel game is given in Figure 3. Each combination of upper and lower-level strategies
corresponds to an outcome of the game which for our application is a pricing + assignment decision as was presented
in Figure 2. In our models, the leader aims to maximize the total utility received by all players in the system and
also has a part of the objective associated with the objects no one else is interested in. In the context of Space Traffic
Management, for example, the latter objective serves to lower the overall collision risk for a population of space
objects. The followers act selfishly, maximizing their own utilities based on prices and other information available to
them.

Fig. 3: A bilevel game scheme

The scheme presented in Figure 3 corresponds to a one leader - one follower scenario. In our market model, the lower
level consists of individual optimization problems for each agent, which technically falls under the one-leader-multi-
follower case. However, we show that these problems are disjoint and thus can be viewed as a single optimization
problem at the lower level. Since the optimization models solved over time differ only in parameters, we present a
model developed for a single time step and omit the time indexing.

Table 1 provides a summary of the notation for the mathematical formulation that follows.
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Symbol Description

Sets
S Set of sensors
M Set of objects
K Set of agents
A Set of arcs in visibility graph
K ′ = K ∪{0} Extended set of agents (includes CA)
S (k)⊆ S Set of sensors belonging to agent k ∈ K
M (s)⊆ S Set of objects visible to sensor s ∈ S
Parameters
wk

i j Interest weight of agent k ∈ K for observation (i, j) ∈ S ×M
k(i) Owner of sensor i ∈ S
bk Budget for Agent k

Table 1: Notation Reference

4. MATHEMATICAL FORMULATION

In this section, we present our market-based model for a Multi-Agent Sensor Network (MASN), which provides a
coordinated sensor assignment (tasking) and maximizes the utility received by all agents in the system. We formulate
a bilevel program and show that for the problem at hand relaxing the followers’ optimality can benefit the entire system
while simplifying the problem.

Optimization variables

• pi > 0 - price of selling sensor i ∈ S to another agent

• si j ∈ {0,1} - assigning sensor i ∈ S to object j ∈ M (using own sensors); siN+1 denotes selling

• zk
i j ∈ {0,1} - agent k ∈ K assigning sensor i ∈ S they buy to object j ∈ M

The model

max
p,s,z ∑

(i, j)∈A

wk(i)
i j si, j +∑

i
pisiN+1 + ∑

k∈K ,i∈S̄(k), j∼i

(wk
i j − pi)zk

i j (1a)

+ ∑
(i, j)∈A

w0
i j(si j + ∑

k∈K \{k(i)}
zk

i j)+ ∑
(i, j)∈A

(w0
i j − pi)z0

i j

s.t.

∑
k∈K ′\{k(i)}, j∼i

zk
i j = siN+1 ∀i ∈ S (1b)

∑
i∼ j

z0
i j ≤ 1 ∀ j ∈ M (1c)

piz0
i j ≤ w0

i j ∀(i, j) ∈ A (1d)

∑
(i, j)∈A

piz0
i j ≤ b0 (1e)
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si j,zk
i j ∈ arg maxsi j ,zk

i j
{ ∑

i∈S (k), j∼i
wk

i jsi, j + ∑
i∈S (k)

pisiN+1 + ∑
i∈S̄ (k), j∼i

(wk
i j − pi)zk

i j :

∑
j∼i

si j + siN+1 ≤ 1 ∀i ∈ S (k)

∑
i∈S(k)

si j + ∑
i∈S̄(k)

zk
i j ≤ 1 ∀ j ∈ M

pizk
i j ≤ wk

i j ∀i ∈ S̄ (k), j ∈ M

∑
i∈S̄ (k), j∼i

pizk
i j ≤ bk}

(1f)

p > 0,s,z ∈ {0,1}

Upper level decisions

The leader’s objective (1a) maximizes the total utility received by all participants (sum of K individual utilities of
agents: observing + selling + buying) plus CA’s own utility associated with their objects of interest (observed either
through CA buying observations, or by another agent). Constraints (1b) ensure that when a sensor is sold, it is sold
to exactly one agent and no agent other than the owner uses it if it is not sold. Constraints (1c) make sure that the
leader does not observe any object more than once. Constraints (1d) provide an upper bound on a leader’s observation
purchase, saying that they won’t pay more than the utility of that observation. We need them, because in this model,
what is paid by one agent is received by another, which creates sets of alternative solutions in terms of price. Constraint
(1e) enforces the budget restriction for the leader.

Lower level decisions

The problem for follower k is defined as follows (1f). The objective maximizes their utility, calculated as the utility
from using their own sensors, selling observations from their sensors to others and buying observations from others.
The first set of constraints ensures that agents use their sensors in exactly one way (including selling). The second
constraint set ensures the same for buying sensors. The third constraint set states that agents observe each object no
more than once (using either their own sensors or purchased ones). The last constraint restricts the budget for buying
sensors from others.

4.1 Pricing considerations

As was mentioned earlier, when a trade occurs, the above model has a continuous range of alternative solutions
associated with the price of that trade. It follows from the design of the simplex method used as part of the solution
process, that the solution would have each price set to one of the extreme points (ends of the alternative solution range).
While mathematically these alternative solutions are equally good, in reality, setting the price of a trade to either 0 or
the maximum value a buyer can pay is a questionable pricing policy. Moreover, some considerations of the willingness
to sell a sensor can be introduced.

An agent might be willing to sell their sensor for no less than x units, where x is the marginal utility they could get by
using it themselves. If one agent is willing to sell their sensor at a price no less than x and there is a buyer k who can
pay no more than wk

i j and x < wk
i j, the price realizations in range [x,wk

i j] form a set of alternative solutions. One way
to look at wk

i j is as the pure utility of an observation for the buyer (what their utility would be if they were given this
observation for free). At the same time, it can be treated as the upper bound on how much the buyer is willing to pay
for this observation. If they pay that amount, they will get a utility of zero from doing this observation, which makes
them indifferent. These are the two extreme cases. For both extremes and everything in between, the total utility of the
system will be constant. In that case, it becomes a matter of how the buyer and seller split this utility. One logical way

of doing it would be fixing the price to be
x+wk

i j
2 , in which case the utility is split equally. This can be accomplished by

introducing constraints of the following form to the upper-level problem.

pi =
maxk{wk

i jz
k
i j}+ yi

2
∀i ∈ S , k ∈ K , j ∈ M (2)

where yi denotes the lowest price the seller would agree to and is determined as follows.
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yi ≥ wk(i)
i j (1− ∑

t∈S (k(i))
st j − ∑

r∈S̄ (k(i))

zk(i)
r j ) ∀i ∈ S , j ∈ M (3a)

yi ≥ (wk(i)
i j −wk(i)

t j )sti ∀i ∈ S , j ∈ M , t ∈ S (k(i)) (3b)

yi ≥ (wk(i)
i j − (wk(i)

r j − pr))z
k(i)
r j ∀i ∈ S , j ∈ M , r ∈ S̄ (k(i)) (3c)

Constraint set (3a) states that the price should be no less than the utility the owner gets from making an observation
with this sensor provided that they do not observe that object with any other sensor. Constraints (3b) ensure that the
price is no less than the owner’s utility of using this sensor to observe an object currently observed by another sensor
they own (replacing own observation). In a similar manner, constraints (3c) ensure that the price is no less than the
utility of replacing a purchased observation with an observation using that sensor.

Constraint (2) contains a max operator and cannot be introduced in a mixed integer program (MIP) as is. However,
the lower bound can be obtained as:

pi ≥
wk

i jz
k
i j + yi

2
∀i ∈ S , k ∈ K , j ∈ M , l ∈ M (4)

The upper bound can then be enforced by adding a regularization term −ε ∑i, j,k pisiN+1 to the objective given a small
ε .

This approach helps us to break the symmetry and ensures a realistic price setting. However, introducing this in a
bilevel problem may create feasibility issues. Let us illustrate one such issue with a small example. Consider an
instance with three agents and a sensor owned by Agent 1. For simplicity, let us assume that all the other sensors are
unavailable due to visibility constraints. The weights for observing an object with that sensor are: Agent 1 - 3, Agent
2 - 5, and Agent 3 - 6. In this case, selling that observation to Agent 3 will maximize the total utility. According to the
”fair price” requirement described above, the price of this transaction should be 4.5. Given a fixed price of 4.5, both
Agent 2 and Agent 3 would be willing to buy that observation, while in reality it can only be sold to one agent. In the
bilevel model adopted here, the followers do not see the upper level constraint (2) and the solution in this case does
not exist because the optimality of both Agent 1 and Agent 2 cannot be respected simultaneously so the model will
be forced to choose the alternative solution where the price is equal to 5. In this case, in a real system, we would be
willing to sacrifice the optimality of one of the agents in order to get a fair solution.

The above example can justify going away from a bilevel approach and using a single-level optimization model, where
the CA matches the buyers and the sellers and fixes the price at the midpoint.

4.2 Relaxed single-level model

Here we present a market-based MASN model with single-level optimization, where we removed the optimality re-
quirement for each agent and introduced additional constraints to make sure that an agent will never be forced to
commit to an observation that does not add to their utility function. The resulting model consists of the upper-level
problem described earlier and all the constraints from individual lower-level problems.

max
p,s,z ∑

(i, j)∈A

wk(i)
i j si, j +∑

i
pisiN+1 + ∑

k∈K ,i∈S̄(k), j∼i

(wk
i j − pi)zk

i j (5a)

+ ∑
(i, j)∈A

w0
i j(si j + ∑

k∈K \{k(i)}
zk

i j)+ ∑
(i, j)∈A

(w0
i j − pi)z0

i j − ε ∑
i, j,k

pisiN+1

s.t.

∑
k∈K ′\{k(i)}, j∼i

zk
i j = siN+1 ∀i ∈ S (5b)

∑
i∼ j

z0
i j ≤ 1 ∀ j ∈ M (5c)

piz0
i j ≤ w0

i j ∀(i, j) ∈ A (5d)
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∑
(i, j)∈A

piz0
i j ≤ b0 (5e)

∑
j∼i

si j + siN+1 ≤ 1 ∀i ∈ S (5f)

∑
j∼i

zk
i j ≤ 1 ∀i ∈ S̄ (k),k ∈ K (5g)

∑
i∈S(k)

si j + ∑
i∈S̄(k)

zk
i j ≤ 1 ∀ j ∈ M (5h)

pizk
i j ≤ wk

i j ∀i ∈ S̄ (k), j ∈ M ,k ∈ K (5i)

∑
i∈S̄ (k), j∼i

pizk
i j ≤ bk ∀k ∈ K (5j)

pi ≥
wk

i jz
k
i j + yi

2
∀i ∈ S , k ∈ K , j ∈ M , l ∈ M (5k)

yi ≥ wk(i)
i j (1− ∑

t∈S (k(i))
st j − ∑

r∈S̄ (k(i))

zk(i)
r j ) ∀i ∈ S , j ∈ M (5l)

yi ≥ (wk(i)
i j −wk(i)

t j )sti ∀i ∈ S , j ∈ M , t ∈ S (k(i)) (5m)

yi ≥ (wk(i)
i j − (wk(i)

r j − pr))z
k(i)
r j ∀i ∈ S , j ∈ M , r ∈ S̄ (k(i)) (5n)

p > 0,s,z ∈ {0,1}

This model allows for conflicts arising when multiple agents are interested in buying the same sensor for a given price
to be resolved in favour of the agent with the highest utility. We use this model and a heuristic solution derived for it
to demonstrate the proposed collaboration mechanism in Section 6.

5. HEURISTIC SOLUTION

After applying some classical linearizations (see [6, 7, 15, 25]), formulation (5) presents a MIP and is NP-hard, and
therefore, can be impractical for large instances under realistic time requirements. In this section, we present a greedy
algorithm that provides a suboptimal solution but is computationally efficient and might be helpful in practice.

The basic idea of our greedy algorithm is to iteratively make assignments with the largest marginal utility and block
all the conflicting assignments. Figure 4 features a block diagram explaining the algorithm.

Fig. 4: Block diagram for the greedy heuristic
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The greedy heuristic runs in O(MNK(log(MNK)+dmax)) where K is the number of agents, N is the number of sensors,
M is the number of objects to be observed and dmax is the maximum degree in the bipartite sensor-object visibility
graph. A detailed pseudocode is presented below.

Data: wk
i j - observations utilities, owner - sensor ownership

bk - agents budget
while ∑i, j,k wk

i j > 0 do
sensor,ob ject,agent = arg maxi, j,k{wk

i j}
if agent = owner[sensor] then

assignOwn(sensor,ob ject)
else

if bagent ≥ wagent
sensor,ob ject then

assignBought(sensor,owner,agent)

bagent−=
wagent

sensor,ob ject+wowner[sensor]
sensor,ob ject

2
for k = 0..K do

if k ̸= agent then
wk

sensor,ob ject = 0
end

end
else

wagent
sensor,ob ject = 0

end
end

end
Algorithm 1: Sensor assignment based on greedy heuristic

This approach provides a substantial reduction in computation time compared to the MIP formulation presented earlier.
It allows us to solve a realistic instance with 290 sensors, 22,028 objects, 23 agents and 134,286 visibility connections
in 22 seconds instead of more than 8 hours to compute the exact solution (the calculations were performed on a 2018
MacBook Pro with 2.7 GHz Quad-Core Intel Core i7 and 16 GB RAM). The results on the scalability of both the
heuristic approach and the exact formulation are summarized in Table 2.

Instance Exact Greedy
N M A Time, s Objective Gap, % Time, s Objective Gap, %
87 100 100 < 1 24.98 0 < 1 24.98 0.00

279 943 1,000 3 129.47 0 < 1 129.46 0.01
290 1,761 2,000 7 171.41 0 < 1 171.40 0.01
290 2,524 3,000 17 183.21 0 < 1 183.20 0.01
290 3,819 5,000 76 201.75 0 < 1 201.73 0.01
290 6,208 10,000 419 220.15 0 < 1 220.12 0.01
290 14,017 50,000 1,246 251.88 0 4 251.82 0.02
290 18,041 100,000 43,347 13 262.14
290 20,831 200,000 47 268.54
290 22,028 521,337 211 275.02

Table 2: Routing costs reduction, 1 hour
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6. PRELIMINARY SIMULATION RESULTS

In this section we present preliminary simulations of distributed sensor networks tracking a large population of space
objects and use this modeling environment to analyze the utility of the market approach for coordinating observations.

The simulation starts with the orbital parameters for more than 22,000 space objects in the public catalog from Space-
Track.org given as two-line element sets (TLEs). Space dynamics calculations and related tasks such as orbit propa-
gation, orbit determination, or illumination and viewing geometry are implemented using the Orekit library (Python
API). TLEs from the catalog are propagated forward in time and are taken to represent the “true” motion of each
object.

The model also includes networks of ground-based sensors distributed around the world and controlled by a set of
autonomous agents. Each sensor is given a fixed geographic location and can be configured to collect electro-optical
(EO) or radio-frequency radar (RF) observations with user-selected accuracy. The main difference is that the RF sen-
sors in the simulation can measure distance, while the EO sensors deliver angles-only data. Each agent is responsible
for managing a subset of all sensors, primarily for deciding which sensor will observe which target object in a given
time step. Agents also interact with the coordination authority to establish sensor pricing, as well as, buy and sell
resources based on those prices. Another functionality provided by agents is to receive all simulated observations
from sensors and update orbit estimates for relevant objects. Orbit estimation is performed using a Kalman filter for
each space object with an underlying estimated TLE that changes from one time step to the next relative the assumed
“true” trajectory given by the catalog TLE.

Fig. 5: Five examples of hypothetical regional sensor subnetworks in the simulation (out of 23 total).

Configuring a sizeable globally distributed sensor network takes a significant amount of user input. For our analysis
we configured a set of 23 agents managing 290 sensors, between one and two dozen sensors per agent. The distribution
of geographic locations of sensors corresponds roughly to a set of regional networks with each regional subnetwork
managed by a single agent and locations of specific sensors chosen randomly (Figure 5). Together, those 23 sub-
networks span the full range of geographic longitudes and latitudes that sample a large diversity of illumination and
viewing conditions around the world at any given time. Each agent managing a single subnetwork is given priority
weights for all space objects in the simulation.

For this analysis we used diversified agent preferences across different orbital regimes with some agents that prioritize
LEO objects, some that focus on GEO, and some on MEO. We also included agents that strongly prioritize just a few
dozen objects, as well as, agents with a broad distribution of weights and no strong preferences. All sensors in this
preliminary simulation were EO sensors capable of localizing an object in a single time step down to 0.2 arcseconds.

A single time step in the rolling horizon optimization corresponds roughly to the amount of time necessary for execut-
ing a single observation by a single sensor, which may typically take about 1 minute (Figure 6). In each optimization
interval the positions and velocities of all space objects in the simulation are propagated to a new time step. This infor-
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mation is then used to compute the apparent positions of all objects in the local sky coordinates for each sensor. Based
on this information, the simulation determines the visibility graph with arcs pointing from each potential observer to
any potential target. For optical sensors this requires that the target object is illuminated by the Sun and above the
local horizon for an observer on the night time side of the Earth. Simulated observations are carried out at the end of
each optimization period according to the optimized sensor assignment from Algorithm 1.

Fig. 6: Visualization of sensor assignment for a single time step of the rolling horizon optimization running in our
simulated Multi-Agent Sensor Network.

The simulation tracks aggregate utilities (weights) for agents and individual sensor-object pairs. Each weight is a
product of the object priority for a given agent and the intrinsic value associated with the object. In the context of Space
Traffic Management, the intrinsic value of an object can be linked to collision risk, which generally increases with
increasing localization uncertainties and proximity to other objects. The localization uncertainty (position covariance)
tends to grow with time since the last observation, providing a strong incentive to minimize gaps between observations
of high priority objects.

Figure 7 shows a comparison between coordinated and uncoordinated observing scenarios. In a coordinated multi-
agent sensor network, the CA is running the observation exchange allowing agents to trade sensor time. In an uncoor-
dinated network there is no trading and each agent assigns its own sensors to maximizes its own utility. Under these
assumptions, trading observations allows the agents to almost double their utility.

Fig. 7: Total utility of all agents in a coordinated multi-agent network with trading of observations (left) compared to
an uncoordinated network with no trade (right).
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7. FUTURE WORK

While our preliminary results indicate that a market-based model proposed here may provide an effective coordination
of multi-agent sensor networks for SDA, the full potential of this approach is still to be understood. A straightforward
continuation of this work is to add more realism to the simulation, explore performance gains for different types of
sensors, geographic distributions, and object importance gains, and study the impact of different object importance
weights and different ways to calculated risk. Another interesting problem is the long-term evolution of risk in the
context of Space Traffic Management and collision avoidance. We are also planning to investigate the influence of
budget constraints on the optimal sensor tasking and the possibility of reducing computation time.
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