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1 Abstract

The United States Air Force Academy (USAFA) operates the Falcon Telescope Network 

(FTN) to support its research program in the Space Situational Awareness (SSA) utility of 

satellite optical signatures and its mission to train USAFA cadets. The FTN sensors are test 

beds for developing measurement techniques and collecting photometric, multispectral and 

polarimetric data. Operated in campaign mode, the system collects data to support the 

development of techniques to characterize space objects using multi-modal signatures. 

Specifically, the sensors are equipped with diffraction grating elements to operate as slit- less 

spectrographs and collect the signatures analyzed in this paper. In this project, we applied 

dimension reduction and classification techniques on spectroscopic data of geosynchronous
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orbit satellites (GEOS) collected using slitless spectroscopy from the USAFA 16-inch and a 

20-inch Ritchey-Chretien Falcon telescope. We applied both unsupervised and supervised 

techniques (limiting spectral resolution, principal component analysis, nearest neighbor clas-

sification and support vector machine) to analyze the spectroscopic data. We showed that 

using only spectroscopic data collected from five nights, we were able to discriminate between 

20 different satellites with an approximately 49% accuracy. We showed using a learning curve 

that the classification accuracy can increase significantly once we collect more spectroscopic 

data from different nights.

2 Introduction

The expanding number of satellites and space debris contribute to space congestion and 

elevate the need for SSA. Tracking and identifying techniques are needed to provide SSA 

for both the United States Space Force and Air Force in this new war fighting domain. 

Low-earth orbit (LEO) and geosynchronous orbits (GEO) are of specific interest due to 

the number of satellites that are within these regions of space. A form of surveillance in 

this domain is through the use of optical telescopes. Spatially resolved images of satellites 

provide a great assessment of capability and function; however, telescopes with this ability 

are not always readily available. Satellites in GEO vary in size and present a challenge for 

resolved imagery when a satellite’s size is small compared to the distance. In this paper, 

we applied dimension reduction and classification techniques on spectroscopic data of GEOS 

collected using slitless spectroscopy from the USAFA 16-inch and 20-inch Ritchey-Chrétien 

(RC) Falcon telescope [1]. We applied both unsupervised and supervised techniques (lim-

iting spectral resolution, principal component analysis, nearest neighbor classification and 

support vector machine, ensemble learning) to analyze the spectroscopic data. This paper 

presents results of applying machine learning techniques to satellite spectra obtained using 

transmission gratings.
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3 Experimental and Sensor Details

Two USAFA telescopes were used in this study, a 16-inch, f/8.2 RC telescope on the USAFA

campus (USAFA-16) and a 20-inch, f/8 RC Falcon telescope on the campus of Northeastern

Junior College located in Sterling, Colorado (NJC-Falcon). Both telescopes were outfit with

the same 100-lines-per-millimeter transmission grating and nearly identical CCD cameras.

The fields-of-view were similar, 13 arcmin for USAFA-16 and 11 arcmin for NJC-Falcon. Fig-

ure 1 shows pictures of the two telescopes and a Colorado state map depicting the baseline

distance of 289 kilometers between them. The latitude and longitude of the two telescopes

are 390 N, -1050 W for USAFA-16 and 410 N and -1030 W for NJC-Falcon. Their nearly

equal latitudes, at least to the nearest integer, will allow us to compare features in a satellite’s

optical signature driven primarily from longitudinal differences. Table 1 presents informa-

tion on the two telescopes, their respective cameras, and filters used for our observations.

Additional information on the systems used and their calibration can be found in [2] and [3].

Figure 1: Pictures and location of the two telescopes used in this study: NJC-Falcon located
at Northeastern Junior College near Sterling Colorado (top right picture) and the USAFA-
16 located at the USAFA campus in Colorado Springs (bottom right picture). The baseline
distance between the two telescopes is 289 kilometers and primarily in longitude. Four other
Falcon telescopes in Colorado are indicated by red stars.

The majority of light that comes from satellites is attributed to sunlight reflecting off the
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Telescope Camera Plate Scale (asec
px)

Filters

DFM Engineering
f/8.2, 0.4-meter
(USAFA-16)

Apogee Alta U47 0.80 100 lines/mm
Diffraction Grating

Officina Stellare
ProRC-500, f/8, 0.5-
meter (NJC-Falcon)

Apogee Alta F47 0.65 100 lines/mm
Diffraction Grating

Table 1: Characteristics of the telescopes, cameras, and filters used in this study.

various surfaces as shown in Figure 2. As the reflected light passes through the diffraction

grating prior to the camera’s focal plane, it results in an interference pattern as shown in

Figure 2. The zeroth order is the central bright spot that passes straight through to the

focal plane and remains a point source, whereas the first order corresponds to that portion

that diffracts equally to both sides of the zero-order. However, a diffraction grating can

be manufactured such that the majority of the incident light is preferentially diffracted to

one side of the zero-order compared to the opposite side. Figure 3 shows an example of a

transmission grating image taken the USAFA-16 telescope.

Figure 2: Image shows the imaging scenario between the sun, the satellite, and the ob-
server. Light reflects off the satellite, goes through the telescope where it passes through the 
diffraction grating. The light is then spread out onto the focal plane based on the grating 
equation.

Observations are made of the satellites around the equinox, during which time, glints are

more likely to occur resulting in very bright reflections. These glints occur when the angle

of incidence equals the angle of reflection towards the observer resulting in the brightest
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Figure 3: Resulting image taken by the USAFA-16 telescope.

reflections observed. Given the size of the extended light source, the sun, the size of the 

peak glint produced on the ground is approximately 17 km wide. This assumes a simple 

model of the satellite as a 2m by 40m plane mirror at GEO orbit. Outside of the peak glint, 

the intensity of the glint falls off similar to a triangular function. These approximations flow 

from basic geometric ray tracing. The spot size of the solar reflection on the ground explains 

some of the varying magnitude of the measured glints throughout the year as a function of 

the location of the ground observatory. Variations due to ground location will be studied in 

later projects.

3.1 Data information

The raw spectral data consists of spectral measurements of reflectance intensities measured in 

counts per second over the visible spectrum ranging from 380 nm - 880nm. The total number 

of wavelengths measured is 501. The raw data set consists of 594 spectra measurements 

from 20 satellites for five nights during the Glint season. For each night and each satellite, 

a number from four to ten spectral measurements are taken with varying time intervals. 

There is an exception, the satellite MexSat was not observed on the night of August 11, 

2022. Table 3.1.1 shows the number spectral measurements collected for each satellites on 

each night. Figure 4 shows examples of the five spectral measurements for AMC15 and

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



AnikF1R satellite for the night of August 11th, 2022.

Figure 4: An example of the spectral data for the AMC15 and AnikF1R satellites on August
11th, 2022.

3.1.1 Data preprocessing

To ensure that we have a representative spectral measurement for each satellite, we average

over all spectra measurements collected for each satellite per night; this results in a single

averaged spectra for each satellite per night. After the averaging, we are left with 99 data

points for classification training and testing (i.e. 20 satellites for five nights, with the ex-

ception of one missing data point for the MexSat satellite for one night). In addition, we

normalized the area under the spectra intensities over the wavelengths to 1 to remove the

effects of the different telescopes. Figure 5 shows examples of the averaged and normalized

spectra for AMC15 and AnikF1R satellite for the night of August 11th, 2022.

Figure 5: An example of the spectral data for the AMC15 and AnikF1R satellites on August
11th, 2022.
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``````````````̀Sat. Names
Dates

8-11-2022 8-13-2022 8-24-2022 8-25-2022 8-28-2022

AMC15 5 5 5 10 5
AnikF1R 5 5 5 10 5
AnikF2 4 5 5 10 5
AnikG1 5 5 5 10 5
DTV10 5 5 5 10 5
DTV12 5 5 5 10 5
DTV14 5 5 5 10 5
DTV15 5 5 5 10 5

Echostar10 5 5 5 10 5
Echostar11 5 5 5 10 5
Echostar17 5 5 5 10 5
Galaxy16 5 5 5 10 5

Inmarsat4F3 5 5 5 10 5
MexSat 0 5 5 10 5
Nimiq2 5 5 5 10 5
SES3 5 5 5 10 5
SES11 5 5 5 10 5

Skyterra1 5 5 5 10 5
Spaceway3 5 5 5 10 5
WildBlue 5 5 5 10 5

Table 2: Number of spectral measurements collected for each satellite for each night of
observation.
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4 Computational Methods

4.1 Dimension reduction and classification

Below, we briefly summarize the dimension reduction and classification methods used in this

work to analyze spectral data from the USAFA 16-in telescope.

Principal component analysis (PCA) is an unsupervised dimension reduction method

first introduced in 1901 by Karl Pearson [4]. It finds principal components that maximize

the variance of the input data to build a hierarchical coordinate system. Given an input

data matrix X, PCA projects the data over a set of orthogonal directions sorted by their

contribution to the variance of the input data. The variance matrix of the data is defined by

XTX. The eigenvalues and eigenvectors of the variance matrix can be found. The r leading

principal components are r eigenvectors with the largest eigenvalues.

For classifying between the different satellites, we used two different classification meth-

ods: K-nearest neighbor classification [5] and support vector machine (SVM) [6]. K-nearest

neighbor classifies the unknown data by counting the classes of its K nearest neighbors. The

class that corresponds to the most number of neighbors is the class for the unknown data.

SVM seeks to find a hyperplane that best linearly separates the different classes of data.

In the event that the data is not linearly separable, SVM uses two techniques to balance

between misclassification of the data and linear separability.

1. Soft margin: this technique broadens the width of hyperplane to allow for misclassi-

fication of some points but still keeping most of the points separated. The wider the

hyperplane, the more misclassification SVM will allow.

2. Nonlinear transformation of the data: not all the data points are linearly separable.

However, by lifting the data to high dimensions through a kernel trick can cause the

data to be linearly separable. The common kernels used in SVM are radial basis

functions, polynomial kernels and Sigmoid kernel.
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4.2 Dimensionality reduction by limiting spectral resolution

This approach starts with calculating the normalized spectral reflectance curve for each spec-

troscopic signature. We started with the exoatmospheric count which has been scaled to the

solar analog and normalized over all wavelengths. The normalization effectively removes

the dependence on brightness (object’s size, material albedo, and distance). The second

preprocessing step is to smooth out the spectrum to a fixed spectral resolution dl/l of 40, a

conservative lower bound of the achievable resolutions. The choice of a fixed spectral resolu-

tion ensures that any processed spectroscopic signatures have a fixed spectral resolution. In

a slit-less spectrum, the spectral resolution depends on the blur spot or the seeing condition

at the time of observation. Reducing all measured spectra to a common resolution would

remove the variance caused by atmospheric seeing conditions. The processed spectrum is

then sampled at 50 equally spaced wavelengths. Figure 6 shows the reduction of spectral sig-

nature to produce the 50D signatures used for classification. Machine classification is based

on the comparison of signatures. The use of resolution-limited spectral signatures which is

a processed copy of the spectroscopic signature itself gives the analysts the opportunity to

inspect the signatures in their native form and evaluate the decision of the classifier.

Figure 6: Solar analog scaled and normalized flux and spectral signature with limited
resolution (solid line).
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5 Results

5.1 Classification of 20 satellites using PCA

To assess the classification accuracy of our machine learning model, we split the spectral

data of the 20 satellites from 5 nights into 75% training data and 25% testing data. The

testing data is completely unseen by the machine learning model; the training data is used

to train the machine learning model using either K-nearest neighbor classification or support

vector machine classification. The trained machine learning classification model is used to

predict the satellite label of the test data. The accuracy of the prediction is computed using

the measure:

accuracy =
#True positive + #True negative

Total # test data

To ensure that the splitting of testing and training data represents a generalized perfor-

mance of the classification model, we randomly repeat the training and test split of the data 

10 times. For each training-testing split of the data, we train the machine learning model 

using the training data (75%) and evaluate the accuracy of the machine learning model 

using the test data (25%). The final accuracy is given as an average over all 10 rounds of 

train-test split. We compute the average accuracy of the classification model using 1 − 10 

PCA dimension to see the affect of increasing PCA dimensions on classification accuracy.

Figure 7 and 8 show the average accuracy on the test data as a function of the number 

of PCA components using K-nearest neighbor classification and support vector machine 

classification.

The K-nearest neighbor classification uses 1 nearest-neighbors to classify the test data. 

The support vector classification uses a linear kernel with C = 1.0.

We can see that average test accuracy maxes out at 15 PCA components with approxi-

mately 48.6% test accuracy. The support vector classification shows a slightly worse accuracy 

at 48.2% at 14 PCA components. The plateauing of the test acurracy as the PCA dimen-

sion increases indicates that we have included sufficient PCA components that capture most
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Figure 7: Average accuracy vs PCA dimensions using K-nearest neighbor classification

Figure 8: Average accuracy vs PCA dimensions using Support Vector Machine classification

of the information in the spectral data. Although 48.6% accuracy does not seem high at 

a glance, but using uniformly distributed random number between 1-20 gives an expected 

accuracy of 5%. Since we only used observations from 5 nights, we are able to improve the 

expected accuracy of the test data from 5% from a uniformly distributed answer to 48.6%.

We looked at the confusion matrix for the K-nearest neighbor classification to see which 

satellites get confused with one another. The confusion matrix is shown in Figure 9.
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Figure 9: Confusing matrix for 20 satellites using 15 PCA components and 1 nearest neigh-
bors

We see that there is a lot of confusion between DTV10, DTV12 and DTV14. It turns 

out that DTV10 and DTV12 have the same bus, so the confusion is reasonable. However, 

DTV14 has a different bus from DTV10 and DTV12. The classification model performed 

well for DTV15 and Skyterra1.

5.2 Classification of 20 satellites using limiting spectral resolution

The limited-resolution spectral signatures are also used to build a classification model. For 

this test we use the Optimizable Ensemble classifier. We allowed the classifier’s hyperparam-
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eters of ’NumLearningCycles’, ’MaxNumSplits’, ’LearnRate’ and ‘Method’ to be Bayesian-

optimized in MATLAB. To evaluate the classification accuracies, we use the cross-validation

technique. Data is partitioned randomly into 60% training data and 40% test data, and an

accuracy is calculated for the partition. The partitioning is repeated 10 times and the average

accuracy is calculated and reported for the classifier. Figure 10 shows the confusion matrix

of the classification model. The accuracy of 42.4% is comparable to the PCA-kNN results

shown above. As mentioned, there are groups of satellites for which confusion is notable:

the group of DTV10, DTV12 and DTV14 and the group of Echostar11 and Echostar17.

Figure 10: Confusion matrix for 20 satellites using the limited-resolution spectral signatures
and the optimized Ensemble classifier.
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5.3 Learning curve for classification of satellites

A learning curve is a great diagnostic tool for machine learning models. A learning curve

is a plot where you plot the training accuracy and test accuracy as a function of training

data size. Given a machine learning model, as you increase the training data size, you

should expect the training accuracy to decrease and your test accuracy to increase. You can

detect if your machine learning model is overfitting or underfitting using a learning curve.

In addition, you can also see if you can improve your machine learning model accuracy by

increasing the number of training data by looking at the slope of the learning curves. The

learning curve for the K-nearest neighbor classification using 1 nearest-neighbor and 15 PCA

dimensions is shown in Figure 11.

Figure 11: Learning curve for K-nearest neighbor classification using 1 nearest neighbors 
and 15 PCA components

We see that we have 100% accuracy on the training data, but the maximum validation ac-

curacy is approximately 52%. The large gap between the training and validation curve shows 

that the training data is not a good representation of the validation data. Furthermore, the 

high training accuracy suggests that using 1-nearest neighbor for KNN might be overfitting 

the training data. To reduce the complex of the KNN model, we increase the number of
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nearest neighbors to 2-nearest neighbors. The learning curve using 2-nearest neighbors at

15 PCA components is shown in Figure 12.

Figure 12: Learning curve for K-nearest neighbor classification using 2-nearest-neighbors 
and 15 PCA components

We see in Figure 12 that the training accuracy reduced significantly. However, the vali-

dation accuracy also reduced to approximately 47%.

Lastly, we can see from the slopes of the validation learning curves that our machine 

learning model can benefit drastically from more data.

6 Conclusion

In conclusion, we showed that using both PCA or limiting spectral resolution to reduce the 

dimension of the spectral data showed comparable accuracies. In addition, using different

classification methods such as KNN, SVM or ensemble learning, the accuracies are also 

comparable. This shows that the limitation is not in the classification method, but in the

data. This observable is also confirmed in the learning curve. Given the limited data (only 

5 nights of collection), we were able to improve the classification accuracy from 5% (i.e.

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



uniformly distributed guess) to greater than 45%. We are confident that once we collect

more data from future Glint seasons, we can improve our classification accuracy.
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