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ABSTRACT 
 
The UK Ministry of Defence (MOD) is carrying out research into the design, demonstration and operational use of 
ground-based Inverse Synthetic Aperture Radar (ISAR) for characterising Resident Space Objects (RSOs). In 
support of this, Defence Science and Technology Laboratory (Dstl) has begun the development of ISAR signal 
processing and simulation models for use in assessing system requirements in relation to UK civilian and military 
Space Domain Awareness (SDA) requirements. The modelling capability developed as part of this work, along with 
illustrative examples, is presented in this paper. 
 
While primarily limited by radar hardware, the quality of an ISAR image is inherently dependent on the signal 
processing chain. In particular, the choice of Translational Motion Compensation (TMC) and Rotational Motion 
Compensation (RMC) algorithms can impact the quality of an ISAR image significantly. This paper provides a brief 
overview of TMC and RMC algorithms; it will then follow with a more detailed assessment of the suitability of 
various RMC algorithms for Space Object Imaging (SOI). A simulation of representative orbital scenarios has been 
created to test the signal processing methods, the results of which have then been used to formulate a complete end-
to-end signal processing chain for ISAR SOI. We describe how the proposed signal processing chain can be used to 
characterise space objects, both by using the resolved image and also by using derived object motion parameters 
output by the methods themselves. We also simulate a Rendezvous and Proximity Operation (RPO) scenario and 
evaluate the performance of the proposed signal processing chain for producing resolved images of RSOs 
undergoing close-proximity manoeuvres. 
 

1. INTRODUCTION 
 
Traditional SDA-capable sensors such as the Upgraded Early Warning Radar at RAF Fylingdales are typically 
capable of detecting Resident Space Objects (RSOs) at long range within large regions of sky enabling the sensor to 
gather data on many RSOs simultaneously. The data gathered by such a system is usually numeric (e.g. position, 
velocity and reflectivity) and is primarily used for updating the state estimate of an orbiting RSO. Data of this kind 
can also be used to provide limited characterisation capability. For example, reflectivity time-variations can be used 
to infer RSO attitude, and differences between observations and expectations can be used to infer changes of state. 
However, as the RSO population continues to grow [1] and the number of conjunctions increases, there is an 
increasing demand in both military and civil circles for systems that will provide an improved characterisation 
capability. In particular, systems capable of providing damage assessment and monitoring of close-proximity 
operations such as active debris removal are in especially high demand. Improved characterisation could also 
enhance traditional SDA sensors by informing the prioritisation of RSOs during state estimate update procedures. 
 
One proposed solution to improve characterisation capability is to develop an SDA system capable of producing 
resolved imagery of a small number of high-priority RSOs. With sufficient resolution, such imagery could be used 
to perform RSO identification and/or identify individual features such as solar panels, antennas and payloads. 
Further characterisation performance can be extracted if a number of resolved images are collected over a given 
period of time. In particular, a time-series of images could be used to infer operational status by evaluating changes 
to the RSO’s pattern of life. 
 
Low Earth Orbit (LEO) Space Object Imaging (SOI) is often achieved with optical or radar sensors, however, it can 
be difficult to produce resolved imagery of objects using ground-based optical sensors due to atmospheric and 
weather effects. Furthermore, possible imaging windows are typically limited to night-time hours and to periods 
when the spacecraft is illuminated by the Sun. In contrast, Inverse Synthetic Aperture Radar (ISAR) can be used to 
image objects at all times of the day. High power amplification and large antennas can be used to image RSOs at 
orbital ranges and wideband radar technology can be used to produce centimeter-level resolutions. 
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Paper layout: 
This paper will begin with a brief overview of ISAR image formation theory before discussing the performance and 
selection of motion compensation algorithms in the following section. The chosen algorithms will then be tested 
against representative 3D orbital scenarios as part of an end-to-end ISAR signal processing chain. Finally, the signal 
processing chain will be applied to a simulated RPO scenario. 
 

2. ISAR IMAGE FORMATION THEORY 
 
2.1 Scatterer theory 
When an Electro-Magnetic (EM) wave is incident on a target, the reflected wave is dependent on local reflections, 
diffractions, surface waves and ducting caused by the target’s geometric and material properties. The sum of these 
interactions cause different parts of the target to contribute more/less to the reflected wave. When an image of the 
target is resolved, parts of the target that contribute more to the reflected wave appear brighter. The bright areas on 
the target vary depending on its aspect angle and the incident frequency of the EM wave, but are typically located in 
corner-reflectors and on planar surfaces oriented normal to the radar. 
 

  
Fig. 1 ISAR image processed by DERA staff using data provided to the UK MOD by the US (left). Example point 

scatterer target depicting a cylindrical satellite with solar panel “wings” in the ISAR reference frame (right). 
 
These bright areas on the target can be approximated as perfectly reflecting point scatterers each with a Radar Cross 
Section (RCS) scaled by the brightness of the area [2]. In this paper, we use highly approximated point scatterer 
models to simulate the reflected signal from a target whereby the RCS of the scatterers are equal and unchanging 
with aspect angle. By calculating the received signal from each of the point scatterers and summing them together, 
we can approximate the received signal from a target. The position vector of the 𝑛𝑛th scatterer relative to the radar, 𝑅𝑅�⃑ 𝑛𝑛 
at any given aspect angle, 𝜑𝜑 is given by: 
 

𝑅𝑅�⃑ 𝑛𝑛 = [𝑅𝑅0 + 𝑥𝑥𝑛𝑛 cos(𝜑𝜑) − 𝑦𝑦𝑛𝑛 sin(𝜑𝜑)]�̂�𝑟∥ + [𝑥𝑥𝑛𝑛 sin(𝜑𝜑) + 𝑦𝑦𝑛𝑛 cos(𝜑𝜑)]�̂�𝑟⊥ + 𝑧𝑧𝑛𝑛�̇�𝜑�  
 
Where 𝑅𝑅0 is the distance between the radar and the target’s centre of mass, (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) is the position of the 𝑛𝑛th scatterer 
in the body-fixed frame relative to the target’s centre of mass, and �̇�𝜑� = �̂�𝑟∥ × �̂�𝑟⊥. The target is often far from the radar 
resulting in the �̂�𝑟∥ term being much larger than the �̂�𝑟⊥ and �̇�𝜑�  terms. In this case, we can approximate the range to the 
scatterer as: 

𝑅𝑅𝑛𝑛 ≈ 𝑅𝑅0 + 𝑥𝑥𝑛𝑛 cos(𝜑𝜑) − 𝑦𝑦𝑛𝑛 sin(𝜑𝜑) (1) 
 
It is also common for the change in target aspect angle during the imaging period to be small. In this case, we can 
use the first term of the Taylor series expansion for cos(𝜑𝜑) and sin(𝜑𝜑) to further approximate the range to the 
scatterer using the following equation (this is a standard approximation in ISAR literature and is justified for the 
high carrier frequencies typically used by ISAR systems – this will be demonstrated in the following sections): 
 

𝑅𝑅𝑛𝑛 ≈ 𝑅𝑅0 + 𝑥𝑥𝑛𝑛 − 𝑦𝑦𝑛𝑛𝜑𝜑 (2) 
 
2.2 Range profile formation 
An ISAR system will typically transmit a frequency modulated pulse in order to improve its range-resolution and 
discriminate between closely separated scattering centres. Linear Frequency Modulation (LFM) is commonly used. 
The transmitted LFM signal is given by the following equation: 
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𝑠𝑠𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝐴𝐴𝑒𝑒−𝑗𝑗2𝜋𝜋�𝑓𝑓0𝑡𝑡+
𝐵𝐵
2𝜏𝜏𝑡𝑡

2�          (0 ≤ 𝑡𝑡 ≤ 𝜏𝜏) 
 
Where 𝐴𝐴 is the amplitude of the transmitted waveform, 𝑓𝑓0 is the transmitted frequency at the start of the chirp, 𝐵𝐵 is 
the bandwidth of the transmitted signal, 𝜏𝜏 is the pulse width, and 𝑡𝑡 is time. When this LFM signal is incident on a 
target composed of 𝑁𝑁 perfectly reflecting scatterers, the reflected signal is given by the following equation: 
 

𝑠𝑠𝑅𝑅𝑇𝑇(𝑡𝑡) = �𝐴𝐴𝑛𝑛𝑒𝑒
−𝑗𝑗2𝜋𝜋�𝑓𝑓0𝛽𝛽𝑛𝑛(𝑡𝑡−𝑡𝑡𝑛𝑛)+𝐵𝐵2𝜏𝜏𝛽𝛽𝑛𝑛

2(𝑡𝑡−𝑡𝑡𝑛𝑛)2�
𝑁𝑁

𝑛𝑛=1

          (𝑡𝑡𝑛𝑛 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑛𝑛 + 𝜏𝜏) 

 
Where 𝑡𝑡𝑛𝑛 is the signal’s delay, 𝛽𝛽𝑛𝑛 is the time dilation factor and 𝐴𝐴𝑛𝑛 is the amplitude of the wave reflected from the 
𝑛𝑛th scatterer. Note that delay is related to range by 𝑡𝑡 = 2𝑅𝑅

𝑐𝑐
 and the time dilation factor is related to velocity relative to 

the radar by 𝛽𝛽 = 1 − 2𝑣𝑣
𝑐𝑐

. If the position and velocity of the target is approximately known (e.g. by using an 
accompanying tracking radar system), the received signal can be de-chirped by mixing it with a stretch-processing 
signal defined as follows: 

𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐ℎ(𝑡𝑡) = 𝑒𝑒𝑗𝑗2𝜋𝜋�𝑓𝑓0𝛽𝛽𝑔𝑔�𝑡𝑡−𝑡𝑡𝑔𝑔�+
𝐵𝐵
2𝜏𝜏𝛽𝛽𝑔𝑔

2�𝑡𝑡−𝑡𝑡𝑔𝑔�
2� 

 
Where 𝑡𝑡𝑔𝑔 is the estimated delay and 𝛽𝛽𝑔𝑔 is the estimated time dilation factor of the target’s centre of mass relative to 
the radar; these values are typically estimated using measurements from an accompanying tracking system. The 
stretch signal is generated over a larger time window than the transmitted signal to ensure that the stretch signal 
mixes with the entire duration of the reflected signal. Mixing these signals via multiplication results in a new signal 
given by, 𝑠𝑠(𝑡𝑡) = 𝑠𝑠𝑅𝑅𝑇𝑇(𝑡𝑡) ∙ 𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑐𝑐ℎ(𝑡𝑡). Defining the time axis relative to the estimated delay, Δ = 𝑡𝑡 − 𝑡𝑡𝑔𝑔 gives: 
 

𝑠𝑠(Δ) = �𝑒𝑒𝑗𝑗2𝜋𝜋�𝑓𝑓0𝛽𝛽𝑛𝑛+
𝐵𝐵
2𝜏𝜏𝛽𝛽𝑛𝑛

2�𝑡𝑡𝑛𝑛+𝑡𝑡𝑔𝑔���𝑡𝑡𝑛𝑛−𝑡𝑡𝑔𝑔� ∙ 𝑒𝑒𝑗𝑗2𝜋𝜋�𝑓𝑓0�𝛽𝛽𝑔𝑔−𝛽𝛽𝑛𝑛�+
𝐵𝐵
𝜏𝜏𝛽𝛽𝑛𝑛

2�𝑡𝑡𝑛𝑛−𝑡𝑡𝑔𝑔��Δ ∙ 𝑒𝑒𝑗𝑗2𝜋𝜋
𝐵𝐵
2𝜏𝜏�𝛽𝛽𝑔𝑔

2−𝛽𝛽𝑛𝑛
2�Δ2

𝑁𝑁

𝑛𝑛=1

 

 
The resulting signal exhibits beat frequencies approximately proportional to the difference in true and estimated 
signal delays. A Fourier transform of the above expression can be used to pick out these beat frequencies: 
 

|𝑆𝑆(𝑓𝑓)| ≈ 𝜏𝜏 ∙ �sinc �𝜋𝜋 �
𝐵𝐵
𝜏𝜏
�𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑔𝑔� − 𝑓𝑓� 𝜏𝜏�� 

 
Since there will be some error in the estimated delay to the target’s centre of mass, we can say that 𝑡𝑡𝑔𝑔 = 2(𝑅𝑅0+Δ𝑅𝑅)

𝑐𝑐
 so 

that 𝑡𝑡𝑛𝑛 − 𝑡𝑡𝑔𝑔 = 2(𝑇𝑇𝑛𝑛−Δ𝑅𝑅)
𝑐𝑐

 where Δ𝑅𝑅 is an error term. Substituting this into the above expression and scaling the beat-

frequency axis using 𝑓𝑓 = 2𝐵𝐵
𝑐𝑐𝜏𝜏
𝑥𝑥, we can show that the distribution of beat frequencies describes a range profile of the 

target with a resolution defined by the -3dB width of the sinc function’s mainlobe, Δ𝑥𝑥 = 𝑐𝑐
2𝐵𝐵

: 
 

|𝑆𝑆(𝑥𝑥)| ≈ 𝜏𝜏 ∙ �sinc �𝜋𝜋
2𝐵𝐵
𝑐𝑐

[(𝑥𝑥𝑛𝑛 − Δ𝑅𝑅) − 𝑥𝑥]�� 
 
2.3 Sample storage 
The cross-range resolution of a traditional radar is proportional to the size of its beam-width, and therefore its 
aperture. In order to obtain fine cross-range resolutions, ISAR systems can make use of the target’s relative rotation 
to form large synthetic apertures. A synthetic aperture is formed by transmitting a number of pulses over a period 
called the Coherent Processing Interval (CPI). These pulses reflect off the target and are de-chirped as described in 
the previous section before being sampled by the radar at a fixed rate, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. In particular, the radar measures the de-
chirped signal’s amplitude and phase at each sample time. The amplitude and phase samples are stored as complex 
numbers in a matrix where each row corresponds to the pulse transmission time or “slow-time” (𝜂𝜂) and each column 
corresponds to the sample time or “fast-time” (Δ). This matrix can be plotted as a heatmap to visualise the collection 
of sampled pulses (see Fig. 2, left). 
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Fig. 2 Matrix of de-chirped signal samples (left). Associated range profiles after Fourier transforming each row 

(right). 
 

As described in section 2.2, Fourier transforming along each row (fast-time axis) of this matrix will result in a series 
of range profiles associated with a pulse transmission time. Again, we can plot the result as a heat map. Since the 
estimated position of the target’s centre of mass is never known precisely, the error term Δ𝑅𝑅 is usually non-zero. 
This results in a set of range profiles that are poorly aligned with each other (see Fig. 2, right). 
 
2.4 Translational Motion Compensation 
Translational Motion Compensation (TMC) algorithms can be used to estimate Δ𝑅𝑅 for each range profile – we will 
briefly discuss these algorithms in section 3. These Δ𝑅𝑅 estimates can then be used to further estimate the delay 𝑡𝑡0 
and time dilation factor 𝛽𝛽0 of the target’s centre of mass for each range profile. With this information, we can centre 
each range profile by first multiplying each de-chirped signal with a corrective function, 𝑚𝑚(Δ) [3]: 
 

𝑚𝑚(Δ) = 𝑒𝑒−𝑗𝑗2𝜋𝜋�𝑓𝑓0+
𝐵𝐵
𝜏𝜏Δ��𝑡𝑡0−𝑡𝑡𝑔𝑔� ∙ 𝑒𝑒−𝑗𝑗2𝜋𝜋𝑓𝑓0Δ�𝛽𝛽0−𝛽𝛽𝑔𝑔� 

𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(Δ) = 𝑠𝑠(Δ) ∙ 𝑚𝑚(Δ) ≈�𝑒𝑒𝑗𝑗2𝜋𝜋�𝑓𝑓0+
𝐵𝐵
𝜏𝜏Δ�(𝑡𝑡𝑛𝑛−𝑡𝑡0)

𝑁𝑁

𝑛𝑛=1

  

 

The Fourier transform of the resulting function, 𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(Δ) describes a range profile of the target with its centre of 
mass located at 𝑥𝑥 = 0. If we scale the beat-frequency axis using 𝑓𝑓 = 2𝐵𝐵

𝑐𝑐𝜏𝜏
𝑥𝑥 again, we obtain equation 3: 

 

𝑆𝑆𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥) ≈�𝐵𝐵 ∙ 𝑒𝑒𝑗𝑗4𝜋𝜋
𝑓𝑓𝑐𝑐
𝑐𝑐 [(𝑅𝑅𝑛𝑛−𝑅𝑅0)−𝑇𝑇] ∙ sinc �𝜋𝜋

2𝐵𝐵
𝑐𝑐

[(𝑅𝑅𝑛𝑛 − 𝑅𝑅0) − 𝑥𝑥]�
𝑁𝑁

𝑛𝑛=1

 (3) 

 

The target’s rotation rate is often approximately constant during the imaging period, 𝜑𝜑 ≈ �̇�𝜑𝜂𝜂. Substituting this 
approximation into equations 2 and 3, we obtain equation 4: 
 

𝑆𝑆𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(𝑥𝑥, 𝜂𝜂) ≈�𝐵𝐵 ∙ 𝑒𝑒𝑗𝑗4𝜋𝜋
𝑓𝑓𝑐𝑐
𝑐𝑐 [(𝑇𝑇𝑛𝑛−𝑦𝑦𝑛𝑛�̇�𝜑𝜂𝜂)−𝑇𝑇] ∙ sinc �𝜋𝜋

2𝐵𝐵
𝑐𝑐

(𝑥𝑥𝑛𝑛 − 𝑥𝑥)�
𝑁𝑁

𝑛𝑛=1

 (4) 

  
Fig. 3 Range profiles before (left) and after (right) alignment. 
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2.5 Image formation 
Once aligned, the range profiles now appear to originate from a target rotating about its centre of mass at a fixed 
distance from the radar. If the target is rigid, the scatterers will all be rotating with the same angular velocity. This 
means that the velocity of each scatterer relative to the radar will vary linearly with respect to its cross-range 
position, 𝑣𝑣𝑛𝑛 = 𝑦𝑦𝑛𝑛�̇�𝜑. The velocities result in subtle red/blue Doppler shifts that can be measured by applying an 
inverse Fourier transform along each column (slow-time axis) of the aligned range-profiles. This results in a range-
Doppler image described by: 
 

𝑓𝑓𝐷𝐷𝑛𝑛 =
2𝑦𝑦𝑛𝑛�̇�𝜑
𝑐𝑐

𝑓𝑓𝑐𝑐 
 

|𝐼𝐼𝑠𝑠𝐷𝐷(𝑥𝑥, 𝑓𝑓𝐷𝐷)| ≈�𝐵𝐵 ∙ 𝐶𝐶𝐶𝐶𝐼𝐼 ∙ sinc �𝜋𝜋
2𝐵𝐵
𝑐𝑐

(𝑥𝑥𝑛𝑛 − 𝑥𝑥)� ∙ sinc�𝜋𝜋�𝑓𝑓𝐷𝐷 − 𝑓𝑓𝐷𝐷𝑛𝑛�𝐶𝐶𝐶𝐶𝐼𝐼�
𝑁𝑁

𝑛𝑛=1

 

 
The inverse Fourier transform along the slow-time axis of a set of aligned range-profiles can therefore be used to 
obtain a range-Doppler image of the target with a resolution defined by the -3dB width of the sinc function, Δ𝑓𝑓𝐷𝐷 =
1
𝐶𝐶𝐶𝐶𝐶𝐶

.  
 
2.6 Rotational Motion Compensation 
If the CPI is too large, the small angle assumption may not be satisfied. In this case, the range-Doppler image will be 
rotationally blurred due to scatterers moving across range bins during the CPI (see Fig. 6). Rotational Motion 
Compensation (RMC) algorithms can be used to de-blur the image. They can also be used to estimate the rotational 
velocity of the target. Once the rotational velocity is known, the Doppler axis can be converted to a cross-range axis 
by scaling it according to, 𝑓𝑓𝐷𝐷𝑛𝑛 = 2𝑓𝑓𝑐𝑐�̇�𝜑

𝑐𝑐
𝑦𝑦𝑛𝑛: 

 

|𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝑅𝑅(𝑥𝑥, 𝑓𝑓𝐷𝐷)| ≈�𝐵𝐵 ∙ 𝐶𝐶𝐶𝐶𝐼𝐼 ∙ sinc �𝜋𝜋
2𝐵𝐵
𝑐𝑐

(𝑥𝑥𝑛𝑛 − 𝑥𝑥)� ∙ sinc �𝜋𝜋
2𝑓𝑓𝑐𝑐�̇�𝜑𝐶𝐶𝐶𝐶𝐼𝐼

𝑐𝑐
(𝑦𝑦 − 𝑦𝑦𝑛𝑛)�

𝑁𝑁

𝑛𝑛=1

 

 
The Doppler resolution of the range-Doppler image is also scaled, resulting in a cross-range resolution defined by, 
Δ𝑦𝑦 = 𝑐𝑐

2𝑓𝑓𝑐𝑐�̇�𝜑𝐶𝐶𝐶𝐶𝐶𝐶
. In this paper, we will define an ISAR image as a radar image having a scaled cross-range axis. 

  
Fig. 4 (Left) Range-Doppler image formed from the aligned range profiles. (Right) ISAR image formed by scaling 

the Doppler axis of the range-Doppler image. 
 
2.7 ISAR signal processing chain 
In this section, we have briefly described the process for forming high-resolution ISAR images of a target. The steps 
are performed sequentially and form a complete ISAR signal processing chain once combined. For reference, Fig. 5 
shows a general ISAR signal processing chain along with various places where intermediate data products can be 
collected. The final data product in this diagram is the “High resolution ISAR image”. The next sections will look at 
the various types of motion compensation algorithms. 
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Fig. 5 An example ISAR signal processing chain structure with potential outputs shown at each stage. 

 
3. TRANSLATIONAL MOTION COMPENSATION 

 
TMC involves shifting the range profiles of a target so that the target’s centre of rotation is aligned with 𝑥𝑥 = 0. This 
is achieved by applying a corrective function to the stretch-processed signals as described in the previous section. 
There are several algorithms that can do this with varying degrees of quality. Low-performance algorithms are often 
used to provide initial guesses for high-performance algorithms which can result in a lengthier and more complex 
signal processing chain. 
 
3.1 Low-performance TMC algorithms 
Common low-performance algorithms include: cross-correlation [4], range centroid [5], and range profile entropy 
[6]. All of these algorithms estimate the time-delay error, 𝑡𝑡𝜀𝜀(𝜂𝜂) = 2Δ𝑅𝑅(𝜂𝜂)

𝑐𝑐
 by optimising against a single reference 

range-profile. Since the target rotates between each pulse, the reference range-profile is usually chosen near the 
centre of the CPI to increase the degree of similarity. The accuracy of these algorithms is limited by the spacing 
along the range axis, but they are relatively fast to run. 
 
3.2 Medium-performance TMC algorithms 
The accuracy of the corrective function can be improved by fitting a curve to the results of the low-performance 
TMC algorithms, 𝑓𝑓(𝜂𝜂) = 𝑡𝑡𝑔𝑔(𝜂𝜂) + 𝑡𝑡𝜀𝜀(𝜂𝜂). This smooths the discrete results and reduces the effect of outliers on the 
final image. High-order polynomial fits are commonly used, however if the target motion is well known then a more 
accurate fitting function can be used instead. 
 
3.3 High-performance TMC algorithms 
High-performance algorithms typically use image quality metrics such as image entropy (𝐸𝐸) [6] and image contrast 
(𝐼𝐼𝐶𝐶) [7] to optimise the corrective function. Image entropy provides a measure of how disordered the image is (an 
unfocused image will be more disordered) and should be minimised. Image contrast provides a measure of how 
focused the image is and should be maximised. 

𝐸𝐸(𝐼𝐼) = −� �𝐼𝐼′[𝑚𝑚,𝑛𝑛] ∙ 𝑙𝑙𝑙𝑙𝑙𝑙10(𝐼𝐼′[𝑚𝑚,𝑛𝑛])
𝑁𝑁
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These metrics can be used to optimise the coefficients of a fitting function. If the fitting function has a small number 
of coefficients, this method can be relatively fast due to the small number of parameters to optimise. However, the 
performance of this method is highly dependent on how well the fitting function describes the translational motion 
of the target. 
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Alternatively, image quality metrics can be used to find the corrective function directly by treating each value in 
𝑡𝑡𝜀𝜀(𝜂𝜂) as a unique variable. Since there can be many pulses in a CPI, this can involve optimising over many variables 
and is the slowest of the discussed approaches. The speed of convergence is highly dependent on the quality of the 
initial guess. 
 
3.4 Fine TMC algorithms 
Once the range-profiles have been corrected, there may still be some residual phase noise due to slight range 
misalignment or other effects; however, phase accuracy over the CPI is highly important to produce a clear image. 
This error should therefore be reduced as much as possible. The residual phase noise acts along the slow-time axis 
and can be removed by multiplying the matrix of range-profiles by a phase-correction function, 𝑒𝑒𝑗𝑗𝜃𝜃𝜀𝜀(𝜂𝜂). There are 
several fine TMC algorithms that can be used to estimate this function, such as: Phase Gradient Autofocus (PGA) 
[8], dominant scatterer [9], maximum amplitude [9]. 
 

4. ROTATIONAL MOTION COMPENSATION 
 
RMC involves scaling the Doppler axis and reducing the effect of rotational blurring in order to form a high-
resolution ISAR image. There are two primary causes of rotational blurring: 
 

1. Non-planar rotations. Since the ISAR signal processing chain assumes planar rotations to form a clear 
image, non-planar rotations can result in noticeable overlaying. Non-planar rotations occur when the 
orientation of the target’s rotation vector changes during the CPI relative to the radar. 

2. Large total changes in relative aspect angle. The ISAR signal processing chain assumes that a scatterer is 
contained within a range-bin during the CPI. When the target’s change in relative aspect angle is large 
enough, scatterers will start to move across range-bins during the CPI. If the inverse Fourier transform is 
applied in this scenario, the final image will be blurred across the range-bins. 

 
The RMC portion of the ISAR signal processing chain is structured into three distinct sections to minimise these 
effects without requiring any more information than that present in the range-Doppler image: 
 

1. An optimal time-window algorithm is applied to minimise the effect of both types of rotational blurring. 
2. A rotational velocity estimation algorithm is applied to scale the range-Doppler image. 
3. The rotational velocity is fed into a Polar Format Algorithm (PFA) to further reduce rotational blurring and 

increase cross-range resolution. 
 
4.1 Optimal time-window algorithm 
A subset of the range-profiles in a CPI can be used to form a rotationally de-blurred image of the target. The subset 
can be selected using a rectangular window with a given position and width. An image quality metric such as image 
contrast can be used to find the location and width of the rectangular window that gives the optimum image quality. 
Reference [9] discusses a two-step optimisation process for finding a suitable time-window. While this approach 
rotationally de-blurs the image, it also decreases the Doppler/cross-range resolution. The results are displayed 
below. 

  
Fig. 6 Rotationally-blurred range-Doppler image before (left) and after (right) applying the Optimal Time-Window 

algorithm. 
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4.2 Rotational velocity estimation algorithm 
Two distinct types of rotational velocity estimation algorithms will be discussed in this paper: chirp-rate estimation, 
and rotational correlation. 
 
4.2.1 Chirp-rate estimation 
The chirp-rate algorithms use the signal’s phase information to estimate the rotational velocity. In equation 2, we 
approximated the trigonometric terms in the range equation for a scatterer to a first-order Taylor series expansion 
(up to linear terms). By approximating them using a second-order Taylor series expansion instead (up to quadratic 
terms), we can see that the rotation of the target results in a small chirp-rate, 𝑚𝑚 = 2𝑓𝑓𝑐𝑐

𝑐𝑐
𝑥𝑥�̇�𝜑2 in the phase of the range-

profiles: 
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There are several methods to estimate the chirp-rate of a signal. In this paper we will compare the performances of 
the following algorithms for estimating the rotation rate of a target: Local Polynomial Fourier Transform (LPFT) 
[10], and Cubic Phase Function (CPF) [11]. In order to apply these methods, a range-bin containing a scatterer needs 
to be identified from the range-Doppler image. A Laplacian of Gaussian (LoG) blob detection algorithm can be used 
to do this [12]. The range-bin of the brightest scatterer within each blob is used. 

  
Fig. 7 LoG blob detection (left). Plot of chirp-rate against range for each blob (right). 

 
Once identified, an inverse Fourier transform is applied to the chosen range-bin to convert it to a function of slow-
time. The chirp-rate of this signal can now be evaluated. In order to obtain a good estimate of the rotation-rate, the 
chirp rate is measured for several other range-bins containing scatterers and the results are plotted. Since the chirp-
rate is linearly dependent on the scatterer’s position on the 𝑥𝑥-axis, the gradient of a line of best fit through the results 
(𝜇𝜇) can be used to estimate the rotation rate, |�̇�𝜑| ≈ �𝑐𝑐|𝜇𝜇|/(2𝑓𝑓𝑐𝑐). The accuracy of the rotation rate estimate is 
improved by iteratively removing outliers from the plot before finding the line of best fit: 
 

1. A line of best fit is plotted through the data. 
2. The gradient of the line of best fit is used to estimate the rotation rate. 
3. Outliers are identified using Cook’s distance. 
4. If there are no outliers, stop. Otherwise, remove the outliers from the dataset and return to step 1. 

 
4.2.2 Rotational correlation 
Alternatively, if two range-Doppler images are extracted from the CPI, the differences in their rotational position 
and the time difference between each image can be used to estimate the target’s rotation rate. Reference [13] 
describes a method for estimating rotational velocity using correlation techniques. Joint Time Frequency Transform 
(JTFT) algorithms can be used to extract the two range-Doppler images required for rotational correlation. In this 
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paper we compare the performances of the following JTFT algorithms as inputs for the rotational correlation 
algorithm: Short Time Fourier Transform (STFT) [14], and Smoothed Pseudo Wigner-Ville Distribution (SPWVD) 
[15] [16]. 
 

  

  
Fig. 8 Extracting range-Doppler images at two different time instances (top/bottom) by applying JTFT algorithms: 

STFT (left), SPWVD (right). 
 
4.3 Polar Format Algorithm 
We have previously used small angle approximations to form an image of the target; however we know that if this 
condition is not satisfied, the image will be rotationally-blurred. In the case where the small angle approximation 
doesn’t hold, we may use equation 1 to describe the stretched-processed signals after TMC as: 
 

𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠(Δ, 𝜂𝜂) ≈�𝑒𝑒𝑗𝑗2𝜋𝜋�𝑘𝑘𝑥𝑥𝑇𝑇𝑛𝑛−𝑘𝑘𝑦𝑦𝑦𝑦𝑛𝑛�
𝑁𝑁

𝑛𝑛=1
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𝜏𝜏
Δ� cos[𝜑𝜑(𝜂𝜂)]   and   𝑘𝑘𝑦𝑦 = �𝑓𝑓0 + 𝐵𝐵

𝜏𝜏
Δ� sin[𝜑𝜑(𝜂𝜂)] 

 
If we know the target’s aspect angle at each slow-time sample (e.g. from the estimated rotational velocity, 𝜑𝜑(𝜂𝜂) ≈
�̇�𝜑𝜂𝜂), we can polar format this data by interpolating it over an evenly spaced (𝑘𝑘𝑇𝑇,𝑘𝑘𝑦𝑦) grid. Since the polar formatted 
data now follows the rotation of the target, scatterers do not move across data bins enabling a direct Fourier 
transform without blurring. Since the total change in aspect angle can now be bigger without causing blurring, the 
cross-range resolution of the image will be improved, Δ𝑦𝑦 = 𝑐𝑐

2𝑓𝑓𝑐𝑐�̇�𝜑𝐶𝐶𝐶𝐶𝐶𝐶
. Three interpolation algorithms are discussed in 

this paper: bilinear [17], 1st Order Nearest Neighbour (NN1) [18], 2nd Order Nearest Neighbour (NN2) [18]. 
 
4.3.1 Target centring 
PFA can only be applied successfully when the target’s centre of mass/rotation is located at (0, 0) in the range-
Doppler image. An algorithm has been developed to account for any misalignment that may occur after TMC: 
 

1. Range and Doppler offsets are specified: 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑓𝑓𝐷𝐷. 
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2. An inverse Fourier transform is applied to the range profiles after TMC to get a matrix of corrected de-
chirped signals. 

3. The location of the target in the image is shifted by multiplying the corrected de-chirped signals by the 
following function: 

𝑚𝑚(Δ, 𝜂𝜂) = 𝑒𝑒−𝑗𝑗
4𝜋𝜋
𝑐𝑐 �𝑓𝑓0+

𝐵𝐵
𝜏𝜏Δ�𝛿𝛿𝑇𝑇 ∙ 𝑒𝑒𝑗𝑗2𝜋𝜋𝜂𝜂𝛿𝛿𝑓𝑓𝐷𝐷 

 
4. PFA is then applied using the estimated rotational velocity and the image contrast is evaluated. 

 
Since the image will be blurred when the target is poorly centred, optimum range and Doppler offsets can be found 
by maximising the image contrast using a Nelder-Mead approach. The centre of mass of the range-Doppler image 
can be used as an initial guess for the range and Doppler offsets. 
 
4.3.2 Optimal Time-Window with PFA 
If the target’s rotation is planar and its centre of rotation and rotational velocity are known perfectly, then PFA can 
be applied to the entire CPI. This results in a de-blurred image with maximum cross-range resolution. Unfortunately, 
it’s uncommon that all these conditions are satisfied; however by applying the optimal time-window algorithm in 
combination with images produced using PFA, a larger time-window can be found that improves the cross-range 
resolution of the final image without adding excessive blurring. 
 

5. MOTION COMPENSATION ALGORITHM SELECTION 
 
5.1 TMC algorithm selection 
A combination of TMC algorithms such as those specified in Section 3 have been used to form the TMC portion of 
the ISAR signal processing chain. We will not cover the selection of these algorithms in any more detail in this 
paper. 
 
5.2 RMC algorithm selection 
In order to select suitable RMC algorithms for space object imaging, their performances were evaluated against a 
representative scenario – a point scatterer target rotating with a constant rotational velocity. The 2D point scatterer 
target shown in Fig. 1 was used for the tests. The following radar parameters were used in the tests: 
 

Centre frequency (𝑓𝑓𝑐𝑐) 100 GHz 
Bandwidth (𝐵𝐵) 10 GHz 
Pulse Repetition Frequency (𝐶𝐶𝑅𝑅𝑃𝑃) 200 Hz 
Pulse width (𝜏𝜏) 100 μs 
Coherent Processing Interval (𝐶𝐶𝐶𝐶𝐼𝐼) 100 s 

Table 1 – Parameters used to test the performance of the RMC algorithms 
 
The optimal time-window algorithm was the only method considered in this paper to reduce the effect of non-planar 
rotations. It was therefore decided that it should be included in the ISAR signal processing chain. Since the output of 
the optimal time-window algorithm will impact the performance of the other RMC algorithms, it was included in the 
following tests. 
 
In contrast, since we aren’t considering TMC algorithm selection in this paper, perfect TMC was applied to the 
stretch-processed signals using known translational motion parameters from the simulation. 
 
Rotational velocity estimation algorithm analysis: 
The performance of the two chirp-rate estimation algorithms (LPFT, CPF) and the two rotational correlation 
algorithms (STFT, SPWVD) against a selection of representative rotational velocities is plotted below. Performance 
of the algorithms was determined by adding noise to the range profiles resulting in a constant 15 dB SNR. Each 
data-point in the plots represents the mean of five tests. The results in Fig. 9 show that the chirp-rate algorithms 
(LPFT, CPF) are better suited to estimating rotational velocities after optimal time windowing than the rotational 
correlation algorithms (STFT, SPWVD). This is likely because the rotational correlation algorithms require the 
scatterers to move between pixels in the two images; however, the optimal time-window algorithm restricts the CPI 
to reduce blurring by keeping the scatterers within one pixel. 
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Of the chirp-rate algorithms, the CPF chirp-rate estimation algorithm appears to have lower relative error than the 
LPFT chirp-rate estimation algorithm in almost all occasions apart from four instances when �̇�𝜑 ≈ 1 °/s, where it 
exceeds 100 %. In contrast, the relative error due to the LPFT chirp-rate estimation algorithm is more consistent and 
is contained entirely between 0.1 – 40 %. 
 

 
Fig. 9 Error between true rotational velocity and estimated rotational velocity for 𝑆𝑆𝑁𝑁𝑅𝑅 = 15 𝑑𝑑𝐵𝐵. 

 
Further analysis showed that a line of best fit produced from the chirp-rate measurements with a smaller Root Mean 
Square Error (RMSE) generally resulted in a better estimate of the target’s true rotational velocity. It was therefore 
decided that the signal processing chain should incorporate both chirp-rate measurement techniques. The RMSE of 
the fit resulting from each approach could then be measured and used to decide which rotational velocity estimate to 
use. This gives the advantage of being able to use the more accurate CPF algorithm for most cases while the LPFT 
algorithm is able to catch any outliers. The LPFT algorithm is significantly faster than the CPF algorithm. This 
means that the computational burden of adding this extra step is relatively small. 

 
Fig. 10 A graph showing that a lower RMSE of best fit generally results in a more accurate estimate of the target’s 

true rotational velocity. 
 
PFA interpolation algorithm analysis: 
The performance of the three PFA interpolation algorithms (Bilinear, NN1, NN2) against a selection of 
representative rotational velocities is plotted below. Like in the previous set of tests, performance of the algorithms 
against rotational velocity was determined by adding noise to the range profiles resulting in a constant 15 dB SNR. 
Like before, each data-point in the plots represents the mean of five tests. The percentage increase in image contrast 
resulting from the implementation of the PFA algorithms is measured relative to the optimal time-windowed range-
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Doppler image for the same input parameters. The target’s centre of rotation has been positioned at (0, 0) to avoid 
the impact of the target centring algorithm (Section 4) on the results. We have also applied PFA using the precise 
rotational velocity of the target to avoid the impact of the rotational velocity estimation algorithms (Section 4). 
 

 
Fig. 11 Percentage increase in image contrast relative to the optimal time-windowed range-Doppler plot for SNR = 

15 dB. 
 
The results in Fig. 11 show that the 2nd Order Nearest Neighbour (NN2) interpolation algorithm produces the best 
improvement in image quality for all rotational velocities of interest. Because perfect inputs have been given for 
PFA (exact rotational velocity, perfect centring), we expect the percentage improvement in image contrast to be 
lower in practice. 
 
5.3 Proposed ISAR signal processing chain 
The conclusions of the previous section have resulted in the selection of the RMC algorithms. The proposed end-to-
end ISAR signal processing chain is displayed in the diagram below. 
 

 
Fig. 12 Proposed ISAR signal processing chain with details of chosen algorithms and tap off points. 

 
6. APPLICATION AGAINST REPRESENTATIVE ORBITAL SCENARIOS 

 
The proposed end-to-end ISAR signal processing chain is now ready to be tested against a set of representative 
orbital scenarios. The purpose of these tests is to determine the impact of an orbital target’s relative on the quality of 
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the ISAR image produced by the proposed signal processing chain. For this reason, amplitude variations due to the 
radar range equation have been ignored and all images have been normalised. 
 
6.1 Simulation geometry 
For an orbital scenario, the rotational motion of a target perceived by a radar results from the combination of the 
satellite’s orbital motion, the Earth’s rotation and the target’s attitude mode. We will briefly discuss the assumptions 
and methodology chosen to model each of these factors here: 
 
Orbital propagation: 
It was assumed that the effect of orbital perturbations on the trajectory of a target during a single pass will likely be 
minimal. We therefore chose to use a basic two-body propagator as it allowed us to use inputs that resulted in 
precise and repeatable trajectories. The orbital propagator was used to determine the location of the target’s centre of 
mass relative to an Earth Centred Inertial (ECI) reference frame for each pulse in the radar’s CPI. The target motion 
was modelled as a circular orbit as this is the most common orbit type in LEO. 
 
Radar geometry: 
A simple oblate spheroid model of Earth was used to model the position of the radar. This allowed us to 
approximately define the latitude/longitude/altitude of the radar and determine its location relative to the ECI frame. 
The radar’s position relative to the ECI frame was updated for each pulse in the radar’s CPI as Earth rotated. 
 
Target attitude: 
Two attitude modes were simulated: nadir-pointing, and tumbling. Quaternions were used to rotate the spacecraft to 
model these attitude types. For the nadir-pointing case, the z-axis of the satellite’s body-fixed frame was aligned to 
point towards Earth’s centre of mass while the x-axis of the satellite’s body fixed frame was aligned parallel to the 
spacecraft’s velocity vector. For the tumbling case, the target rotated about its y-axis at a constant rate. In the 
tumbling case, the y-axis was fixed relative to the ECI frame. 
 
6.2 Point scatterer model 
A 3D point scatterer model based on a generic “box with wings” was used and is shown in Fig. 13 (left). A Hidden 
Point Removal (HPR) algorithm was implemented to better portray how a real ISAR image may look. The method is 
outlined in [19]. Note that the goal of this work isn’t to accurately simulate ISAR returns, but to evaluate the 
performance of the signal processing chain. This feature was added to see if occlusion impacted the proposed signal 
processing chain. 

 
 

Fig. 13 (Left) Generic “box with wings” point scatterer model. (Right) Example of HPR – the observer is at (0,0), 
the target scatterers are shown in blue, the inverted scatterers are shown in green, and the scatterers on the convex 

hull are shown in red. Note that the values of r, R are smaller than usual for diagrammatic purposes. 
 
The HPR method involves two steps: inversion (1) and convex hull construction (2). Inversion is carried out by 
mirroring the target scatterer points across the surface of a sphere of radius R. The inverted scatterers can then be 
used to find the observable surface of the target. This is done by generating a convex hull over the inverted 
scatterers. The scatterers that do not define the convex hull of the inverted surface are assumed not to be visible to 
the observer. Fig. 13 (right) shows an example of HPR in 2D. Smaller values of R result in fewer points defining the 
convex hull. Therefore as R increases, more points become visible. For the representative orbital scenarios, a value 
of R was chosen so that roughly half the scatterers could be seen for most orientations. These threshold values are 
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sensitive to target scatterer density so new values of R must be chosen for each target. While this methodology 
doesn’t accurately generate the received signal from a target, it gives a better representation of the final ISAR image. 
 
6.3 Simulation parameters 
The following scenario parameters were used in the tests: 
 

Radar latitude 50 ° 
Radar longitude 0 ° 
Radar altitude 0 m 
Target’s maximum orbital elevation relative to the radar’s horizon 60 ° 
Target’s azimuth at maximum orbital elevation relative to the radar’s horizon 0 ° 
Target altitude  500 km 
Minimum elevation that the radar can observe the target 25 ° 
Time at target’s peak elevation relative to radar’s horizon 12:00:00 20th July 2023 
Target tumble rate about body-fixed y-axis (*valid for tumbling scenarios) 0.15 °/s 

Table 2 – Scenario parameters used to test the performance of the proposed ISAR signal processing chain. 
 
Note that since this paper is only looking at the impact of the choice of signal processing algorithms on the final 
image, hardware and physical constraints (such as eclipsing) have been ignored. The following radar parameters 
were used in the tests: 
 

Centre frequency (𝑓𝑓𝑐𝑐) 100 GHz 
Bandwidth (𝐵𝐵) 10 GHz 
Pulse Repetition Frequency (𝐶𝐶𝑅𝑅𝑃𝑃) 200 Hz 
Pulse width (𝜏𝜏) 100 μs 
Coherent Processing Interval (𝐶𝐶𝐶𝐶𝐼𝐼) 100 s 
Sampling frequency (𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 13.3 MHz (unambiguous range extent of 20 m) 
Average range profile SNR 15 dB 

Table 3 - Parameters used to test the performance of the proposed ISAR signal processing chain. 

 
 

Fig. 14 (Left) Trajectory of the target’s centre of mass relative to the radar. (Right) Distance between the radar and 
the target’s centre of mass as a function of time. 

 
6.4 TMC 
This paper will not evaluate the performance or impact of the choice of TMC algorithms on the quality of the 
resulting image. We have therefore applied perfect TMC to the range profiles (with a small range offset to test the 
target centring algorithm). The range-Doppler images resulting from the aforementioned parameters after perfect 
TMC are shown below – note that the simulations were run so that the centre of the CPI was aligned with when the 
target reached its maximum elevation relative to the radar’s horizon. 
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Fig. 15 Rotationally blurred range-Doppler image of nadir-pointing target (left) and tumbling target (right). 

 
6.5 Optimal time-window 
The optimal time-window algorithm requires an initial estimate of the window width to determine the optimal 
position of the window. It then fixes that location and finds the optimal window width. However since the data 
stored during the CPI is finite, the window width cannot extend beyond 𝜂𝜂 = 0 or 𝜂𝜂 = 𝐶𝐶𝐶𝐶𝐼𝐼. Therefore, although 
using a small initial estimate of the window width gives greater positional freedom, if the optimal location is found 
near 𝜂𝜂 = 0 or 𝜂𝜂 = 𝐶𝐶𝐶𝐶𝐼𝐼, the ability to increase the window width is limited. We found that using an initial estimate 
of 20% of the CPI was an effective tradeoff between these factors. 

  
Fig. 16 Low-resolution, rotationally de-blurred range-Doppler image of nadir-pointing target (left) and tumbling 

target (right) after applying the optimal time-window algorithm to the results shown in Fig. 15. 
 
6.6 Rotation-rate estimation 
The first step in the LoG blob detection algorithm is to normalise the image to be analysed. If the maximum pixel 
value within a blob is less than the specified threshold, the blob is removed. Since the threshold is always compared 
against a normalised scale, its effect is consistent across all images. We found that a threshold of 0.1 worked well in 
the RMC algorithm analysis in section 5. We therefore decided to use the same threshold here. 

  
Fig. 17 Result of applying the LoG blob detection algorithm on the range-Doppler images of the nadir-pointing 

target (left) and tumbling target (right) – blobs shown in red. 
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The detected blobs were then used to estimate the rotational velocity of the target using the LPFT and CPF chirp-
rate estimation techniques. Both fits for the tumbling target had lower RMSE than those for the nadir-pointing 
target. This is likely due to a greater spread in blobs along the 𝑥𝑥-axis for the tumbling target. Only a small 
percentage of the chirp-rate estimates were excluded from the best fit calculations for either scenario. In both cases, 
the CPF algorithm resulted in a lower RMSE. 
 

  

  
Fig. 18 Plot of chip-rate against range using data points from the LoG blob detection algorithm: nadir-pointing target 

using LPFT (top left) and CPF (bottom left), tumbling target using LPFT (top right) and CPF (bottom right). 
 
The rotational velocities estimated from the line of best fit enabled us to scale the range-Doppler axes appropriately. 
Comparing the scaled images against the true dimensions of the 3D point scatterer model, the estimated rotational 
velocities appear to be approximately correct. 

  
Fig. 19 Low resolution ISAR images are formed after estimating the target’s rotational velocity by scaling the 

Doppler axis appropriately: nadir-pointing target (left), tumbling target (right). 
 
6.7 Optimal time-windowed PFA 
Applying the optimal time-windowed PFA algorithm further improves the quality of the final image, particularly in 
the regions furthest from the centre of rotation such as at the tips of the “wings”. This will improve the ability to do 



 
Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 

further image analysis if required. Note that the orientation of the targets are slightly different after applying this 
algorithm. This is because PFA uses angles calculated by multiplying the estimated rotational velocity with times 
from the time window. Since the times in the time window don’t start at zero, the angles used for PFA also don’t 
start at zero. The result is an image matching the orientation expected at the centre of the CPI. 

  
Fig. 20 High resolution ISAR images formed by applying optimal time-windowed PFA using the estimated 

rotational velocity: nadir-pointing target (left), tumbling target (right). 
 
The resulting images display some aliasing due to imperfect rotational velocity estimation and imperfect target 
centring, however the amplitude of the aliasing is relatively low. Image analysis techniques can extract useful 
information from these images while ignoring aliased components. For example, a simple threshold of -30dB has 
been applied in Fig. 21 to pick out the scatterers more clearly. More advanced image analysis techniques can be used 
to suppress sidelobes (e.g. window functions [20]) and to extract scatterer locations (e.g. CLEAN [2]). 

  
Fig. 21 Result of thresholding ISAR images formed using PFA: nadir-pointing target (left), tumbling target (right). 
 

7. APPLICATION AGAINST AN RPO SCENARIO 
 
7.1 Clohessey-Wiltshire equations 
The Clohessey-Wiltshire (CW) equations describe a first-order approximation of the relative motion between a 
target in a circular orbit and a chaser spacecraft in an elliptical orbit. The Local Vertical Local Horizontal (LVLH) 
frame is used to describe the CW equations. If the position and specific angular momentum vectors of the target in 
an Earth Centred Inertial (ECI) frame are given by 𝑟𝑟,ℎ�⃑  then: the 𝑥𝑥-axis of the LVLH frame is parallel to the 𝑟𝑟 vector 
(R-bar); the 𝑧𝑧-axis of the LVLH frame is parallel to the ℎ�⃑  vector; the 𝑦𝑦-axis of the LVLH frame makes up the right-
hand rule (V-bar). This means that the LVLH frame rotates relative to the inertial frame as the target moves along its 
orbit. The CW equations are given by a set of differential equations. These equations have a closed-form solution 
given by: 
 

𝑥𝑥 = [4 − 3 cos(𝑛𝑛𝑡𝑡)]𝑥𝑥0 + �
sin(𝑛𝑛𝑡𝑡)
𝑛𝑛

� �̇�𝑥0 +
2
𝑛𝑛

[1 − cos(𝑛𝑛𝑡𝑡)]�̇�𝑦0 

 

𝑦𝑦 = 6[sin(𝑛𝑛𝑡𝑡) − 𝑛𝑛𝑡𝑡]𝑥𝑥0 + 𝑦𝑦0 +
2
𝑛𝑛

[cos(𝑛𝑛𝑡𝑡) − 1]�̇�𝑥0 +
1
𝑛𝑛

[4 sin(𝑛𝑛𝑡𝑡) − 3𝑛𝑛𝑡𝑡]�̇�𝑦0 
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𝑧𝑧 = cos(𝑛𝑛𝑡𝑡) 𝑧𝑧0 +
1
𝑛𝑛

sin(𝑛𝑛𝑡𝑡) �̇�𝑧0 
 
Where 𝑛𝑛 = �𝜇𝜇/𝑎𝑎3 is the orbital rate of the target body, 𝑎𝑎 is the semi-major axis of the target orbit and 𝜇𝜇 is the 
standard gravitational parameter of Earth. If the initial velocity of the chaser spacecraft relative to the target is given 
by �̇�𝑥0 = −2𝑛𝑛𝑥𝑥0 and �̇�𝑦0 = 𝑛𝑛

2
𝑦𝑦0, then the closed-form solution now describes an ellipse with a semi-minor axis of 

𝐶𝐶 = �𝑥𝑥02 + (𝑦𝑦02/4) and an initial starting angle of 𝜃𝜃∗ = tan−1(2𝑥𝑥0/𝑦𝑦0) in the 𝑥𝑥,𝑦𝑦 plane. Non-zero values of 𝑧𝑧0, �̇�𝑧0 
result in oscillations perpendicular to the 𝑥𝑥,𝑦𝑦 plane, but do not disturb the elliptical motion. Since this relative 
motion results from the natural motion of the two orbits, in this paper we have called it a Natural Circumnavigation 
Ellipse (NCE). 
 
7.2 RPO scenario 
The NCE was used as a scenario to test the proposed ISAR signal processing chain. The NCE exhibited the 
following parameters: 
 

NCE semi-minor axis (𝐶𝐶) 1 km 
Chaser spacecraft angle measured clockwise from V-
bar at the centre of the CPI (𝜃𝜃∗) 

30 ° 

Out of plane oscillation amplitude (𝑧𝑧𝑠𝑠𝑠𝑠𝑇𝑇) 0.2 km 
Location of maximum out of plane oscillation as an 
angle measured clockwise from V-bar (𝜃𝜃∗𝑧𝑧 𝑠𝑠𝑠𝑠𝑇𝑇) 

90 ° 

Table 4 – Scenario parameters used to define the trajectory of the chaser spacecraft. 
 
The target and radar parameters are identical to those used in section 6. The target spacecraft was simulated to be 
nadir-pointing while the chaser spacecraft was simulated to point towards the target spacecraft during the RPO. 
 

 

 

Fig. 22 Trajectory of the chaser spacecraft relative to the target spacecraft in the Clohessey-Wiltshire frame 
projected onto the x,y (left) and y,z (right) planes. 

 
7.3 Scenario analysis 
Imaging this scenario using ISAR can be achieved in a number of ways. For example, if the two spacecraft can be 
detected simultaneously (i.e. similar range and close in angle), then the sample rate, 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 can be adjusted to form 
an unambiguous range extent that encompasses both objects. In order to form a clear image, TMC needs to be 
applied to both sets of range profiles individually. This means that the two range profiles need to be separated. 
Separation is very difficult when the range profiles cross over, but an image could be formed by using a subset of 
range profiles before or after this event. 
 
Fig. 23 shows the range-Doppler image formed by this method. A separation distance of 30 m has been specified so 
that the satellites are not co-centred at 𝑥𝑥 = 0. After TMC the only Doppler information present from both satellites 
is from their independent rotations. The images of both satellites are therefore centred at 𝑓𝑓𝐷𝐷 = 0 and lack any cross-
range displacement information. Furthermore, since the satellites are rotating at different rates, two different scaling 
factors are required to convert the Doppler axis to a cross-range axis. Each image therefore needs to be scaled 
separately. Finally, since the estimated range/velocity of the target spacecraft is used to de-chirp the LFM pulses, the 
image of the chaser spacecraft exhibits some smearing due to poor de-chirping. 
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Fig. 23 (Left) Range profiles resulting from an RPO scenario where both spacecraft are detected at once using 

stretch processing. (Right) Range-Doppler image resulting from applying TMC to the range profiles on the left – 
note that the range extent has been trimmed. 

 
For the reasons specified above, it is usually easier to image the spacecraft separately in almost all situations. The 
signal processing chain proposed in this paper can then be used to de-blur and scale the two images individually. If 
the CPIs are kept short and the images are captured in quick succession, the orientation of the two spacecraft in the 
images will approximately match the orientation expected if the images were captured simultaneously. 

  
Fig. 24 ISAR image of nadir-pointing target satellite (left) and RPO-tracking chaser satellite (right) after applying 

proposed ISAR signal processing chain and manual thresholding. 
 
If desired, the images can be overlaid using positional information derived from the assisting tracker system. The 
range displacement required between the images is already known from the range measurements. The cross-range 
displacement can be inferred from the orbital trajectory. Fig. 25 (left) demonstrates how this may look. 

  
Fig. 25 (Left) Image of an RPO scenario constructed from ISAR images of the two targets and knowledge of their 

relative positions – note that the spacing between the two satellites has been significantly reduced for diagrammatic 
reasons. (Right) The same image of the RPO scenario corrected for the chaser spacecraft’s negative rotational 

velocity. 
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Notice that the chaser satellite in the top right of the image isn’t pointing towards the target satellite when we expect 
it to. This is because the chirp-rate algorithms give the magnitude of the estimated rotational velocity, but cannot 
determine whether it is positive or negative. In contrast, the rotational correlation algorithms do identify the 
direction of the rotational velocity. The positive/negative information from a rotational correlation algorithm can be 
used to augment the final image. Doing this results in Fig. 25 (right) showing the chaser spacecraft pointing towards 
the target spacecraft. 
 

8. CONCLUSIONS 
 
In this paper we have designed and tested a proposed signal processing chain for LEO ISAR SOI against a set of 
representative scenarios. The proposed signal processing chain demonstrated good de-blurring and scaling of the 
ISAR image for both scenarios. We further tested the performance of the signal processing chain for producing 
resolved images of RSOs undergoing close-proximity manoeuvres. We concluded that maximum benefit is attained 
when the ISAR images of an RPO scenario are augmented with additional positional information attained by a 
tracking radar. 
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