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ABSTRACT

We present our framework for formally characterizing the quality of sensor scheduling algorithms for Space Domain
Awareness (SDA) and analyze the optimality gaps achieved by the planning algorithms underpinning our SDA sensor
scheduling software, Heimdall. Since characterizing scheduling algorithm quality in full generality is intractable due
to the size and complexity of the SDA planning problem, we identify relevant and representative subproblems over
which we can formally characterize algorithm quality. This framework uses complex, expensive, and slow methods —
which would be impractical in an operational system — to generate high-quality sensor schedule benchmarks against
which we compare the quality of sensor schedules planned by lightweight, fast, ‘anytime’ scheduling algorithms that
do satisfy operational constraints such as those on runtime. We demonstrate that our Heimdall algorithms identify
optimal or near-optimal solutions in several specific SDA scheduling problem instances and improve solution quality
relative to baseline approaches while satisfying operational requirements. We identify complicated SDA scheduling
problem instances that bely formal analysis and draw connections from them to tractable subproblems which are
‘near’ to them in the problem space. Finally, we discuss how the analyses enabled by this framework drives algorithm
refinement and development. This framework enables the continued development and refinement of the Heimdall SDA
sensor scheduling algorithms. Heimdall has been deployed in support of SDA sensor scheduling for several customers
and Orbit Logic will provide the scheduling component for the forthcoming Deep Space Advanced Radar Concept
(DARC) system.

1. INTRODUCTION

Sensor Scheduling for Space Domain Awareness (SDA) is a large, complicated, time-varying, and NP hard problem
even under restrictive assumptions. In addition to complicating the design of algorithms that can plan feasible sensor
schedules, it makes it difficult to formally characterize the quality of those schedules, even when such characterization
is crucial to ensure the efficacy of deployed algorithms supporting operational systems. Here, algorithm performance
or solution quality is quantified by an objective function or Figure of Merit (FOM) (e.g., total slew time) associated with
a given sensor schedule as long as it meets sensing requirements (e.g., plan observations of all space objects of interest);
sensor schedules with a lower objective function or FOM score are better. To facilitate analysis and development of
deployed SDA scheduling algorithms, we have developed a framework wherein we formally characterize algorithm
performance on relevant but tractable subproblems. In other words, we infer overall algorithm performance based on
performance in representative special cases.

We have applied this framework to analyze and improve the quality of solutions generated by our Heimdall SDA sensor
scheduling software [1, 2]. We demonstrate that our Heimdall algorithms identify optimal or near-optimal solutions in
several specific SDA scheduling problem instances and improve solution quality relative to baseline approaches while
satisfying operational requirements.

First, we identify several tractable subproblems of the full SDA scheduling problem which are, due to their size and/or
complexity, amenable to analysis via integer linear programming techniques, convex relaxation, exhaustive search,
and/or other formal methods. These formal methods provide lower bounds on the optimal FOM value or, for small
enough problems, the optimal FOM value itself. We characterize solution quality over these subproblems and from
that infer solution quality in more complicated problem instances. An analogy is evaluating a student — it is infeasible
to characterize their performance in every possible situation, but it is possible to give them tests or coding exercises to
evaluate them in a representative sample of scenarios and use that to infer an assessment of their mastery across the
entire subject.
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To analyze these specific subproblems, we employ complex, expensive, and slow methods which would be impractical
in an operational system. We then compare the objective values of sensor schedules planned by Heimdall algorithms
with the optimality bounds and sensor schedule objective value scores generated by the more comprehensive methods.
Both sets of algorithms are designed around characteristics of the problem itself — revisit rate requirements, moving
objects, time-varying slew times between targets, sensor keepout constraints, track accuracy requirements, etc. — but
the algorithms used for analysis may be more computationally intensive. The Heimdall algorithms are designed for
deployment so must obey operational considerations on runtime, memory, ‘anytime’ algorithm requirements, limited
information sharing across different sites, etc.

We present the results of this analysis which indicates the Heimdall often achieves global optimal or near optimal
solutions. When we identify cases in which Heimdall schedules are suboptimal, this analysis drives development to
improve those algorithms. In particular, since Heimdall runs several algorithms in parallel and then selects the plan
output with the best FOM, novel algorithms can be developed to target especially challenging classes of problems and
they can run alongside the existing algorithms. Algorithm development may involve adjusting algorithmic parameters,
developing new algorithm approaches, or leveraging specific pieces of the larger more expensive solvers within the
deployed Heimdall algorithms.

This framework enables analysis of the value of Heimdall and other sensor scheduling problems for the SDA mission
and facilitates the continued improvement of the Heimdall SDA sensor scheduling algorithms. Heimdall has been
deployed in support of SDA sensor scheduling for several customers and Orbit Logic will provide the scheduling
component for the forthcoming Deep Space Advanced Radar Concept (DARC) system.

Literature Review

Scheduling for SSA/SDA has been a very active area of research. Many scheduling approaches center estimation
error covariance and determine the best sensors and timing of observations to achieve track accuracy objectives or to
optimize information gain from measurements [3, 4, 5, 6, 7, 8]. Of particular interest has been the tradeoff between
sensor accuracy and the cost of sensing [6, 2]. Some work has leveraged Commercial Off-the-Shelf Products combined
with customized SSA/SDA-specific components (e.g., the approach of Heimdall) to create integrated solvers [4, 9, 10].
Others employ generalized nearest neighbor-based approaches [8, 11] or other meta-heuristics such as those based on
pricing [12]. Often, slew time is neglected.

In [13], the authors pose SSA/SDA sensor tasking as an optimization problem and design an approach to solve it
optimally. They apply Machine Learning methods to target this underlying problem in [14]. They tailored their
approach for new object search missions in [15] and for multi-sensor coordination (i.e., stereo collects in the two
sensor case) in [16]. Recently, we have begun formal analyses of SSA/SDA scheduling by considering how different
CONOPS or algorithms affect the quality of sensor schedule achievable, the sensitivity of solution quality to particular
algorithms [1], and the impact of track covariance-based tasking on sensor burden [2].

Such formal analysis is important because scheduling is a notoriously tricky problem and intuitive heuristics may not
lead to good solutions. For example, in a traveling salesperson problem (TSP), a greedy nearest neighbor approach
can yield the worst possible solution [17]. The TSP and vehicle routing problem (VRP) have been very active areas of
study in the Operations Research field. Many of these problems are directly applicable to SSA/SDA sensor scheduling.
VRPs [18] can be used to design slew paths for multiple sensors and VRPs with time windows (VRPTWs) [19] can
be used to enforce viewability constraints. The Time Dependent Team Orienteering Problem with Time Windows
(TDTOPTW), also known as the Tourist Trip Design Problem (TTDP) concerns multiple sensors, multiple targets of
which not all are observed, time windows, and time dependence [20, 21], but do not typically deal with recurring tasks.
Periodic VRPs (PVRPs) can be used to enforce revisit constraints [22, 23, 24, 25, 26] when revisit rates are strictly
specified. Recently, Flexible PVRPs (FPVRPs) have been formulated to allow the planner the leeway to add extra
visits if that will help find a better solution [27, 28]; the authors have shown that the benefit of this leeway cannot be
bounded in general. The central aim of this paper is to leverage tools in the TSP/VRP operations research literature to
inform analysis of domain-specific SSA/SDA scheduling algorithms.

Outline

In Section 2, we formulate the SSA/SDA planning and scheduling problem. We then discuss the formulation of lower
and upper bounds for that problem as well as subproblems on which relaxations for better lower bounds are tractable
in Section 3. Next, we discuss the algorithmic architecture of our SSA/SDA sensor scheduling software Heimdall in
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Section 4. In Section 5, we present results. Section 6 provides concluding remarks. Finally, Appendix A discusses our
Heimdall software in more detail from a software and UI/UX perspective.

2. PROBLEM FORMULATION

2.1 Background

Effective SDA requires data collection that balances the monitoring of multiple heterogeneous objects by multiple
heterogeneous sensors to satisfy multiple related objectives. Broadly speaking, the successful surveillance of any
given object requires that tasking result in observations that are 1) of sufficient quality and 2) of sufficient quantity
and density/regularity. High-quality data on objects are required so that they can be filtered for high-accuracy orbit
determination and/or track accuracy that may be used to generate downstream data products, such as those related
to object characterization and conjunction assessment. In addition, data must be collected at a sufficient cadence to
prevent one from losing track of the object. For example, one would often like the time between observations of
an object to be small enough such that even if the object maneuvers with some maximum AV immediately after the
former observation, it would not have left the sensor’s field of view as it performs the latter observation.

Requirements on data quality and quantity are coupled with one another, with the object, and with the sensors col-
lecting data. Observations with better sensors will result in better data products and better tracks and, for objects less
prone to maneuvers, may mean that less frequent observations are required to maintain a high-quality track. Tasking
requirements can change with time; higher quality tracks may be required near potential conjunctions. Moreover, the
value of information provided by a particular sensor is also dependent on factors such as the timing of data collection
and existing knowledge about the object because the orientation and size of the sensor noise covariance ellipse in re-
lation to the estimated covariance of the state estimate changes with the sensor mode, observation geometry, and other
factors. Finally, effective tracking of space objects should be balanced with the search for new, previously unobserved
space objects.

2.2 Mathematical Problem Specification

The scheduler must allocate, order, and time observation tasks for each sensor. We note that this is more complicated
than most periodic routing problems because the scheduler has the freedom to allocate extra observations if that would
allow it to lower the overall cost of the problem. This may seem unnecessary, and indeed the scheduler is incentivized
to not overallocate observations if they are not needed. Nevertheless, such overallocation can be used to move slack
time from a time when the sensors are undertasked to a time when they are overtasked; see [28, Thereoms 1, 2] for
results in an analogous scenario that show that there is no general bound on the improvement such flexibility can buy.

In addition to meeting tasking requirements, the scheduler attempts to minimize some objective function or figure of
merit. This can vary depending on the application and the operator CONOPS. Some operators prefer that the sensor
fill its downtime with more tasks, i.e., the schedule will exceed the requirements on tasking (e.g., to collect more
frequently than is required) if possible. This is typically the case for cheaper or less exquisite systems. Other operators
prefer to minimize the energy expended by the system given that the requirements are met. This is often the case
for expensive systems where the additional wear-and-tear on the sensors imposed by excess tasking is costly from a
mission perspective. In this paper, we focus on the latter objective. However, the same framework and approach can
be used to understand the case where excess tasking is desired.

2.2.1 Problem Data

We consider a catalog of n objects in the set O := {0g,01,...,0,_1} to be observed by a set of m sensors in the set
S:={s%,...,s™ 1}, Observations are to be planned by sensors s/ on objects o; during the planning period [0, 7.

Object 0; may be observed at a time T € Pij during which it is visible; P,.j may consist of several potentially disjoint
viewability periods P/ := U [p/,, 5],] C [0,T]. Observations on object o; by sensor s/ at time 7 take d/(7) seconds.
Slewing sensor s/ from being positioned to perform an observation on object o; at time 7 to being positioned to perform
an observation on object oy takes tifk (1) seconds. The catalog has certain requirements on tasking. Each object o; must
be viewed every r; seconds by any sensor.
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We note that the problem data for @,S,d{ ,t{,;, and r; are determined by rigorous astrodynamics calculations. The
estimation error in Heimdall is calculated by the SSA Enhancement module [1, 2] using an EKF or an Epoch State
Filter.

2.2.2 Decision Variables

For each sensor s/, the scheduler assigns the tour A/ := aé, al,... with timing T/ := 1'({ ,T/,... where each assignment
a] € O is an object to be observed by sensor s/ starting at time 7.

We consider optimization variables related to the start of each task € R” and the acceleration incurred by the motors
between each pair of tasks @ € R"~!. For convenience, we denote the kth task on object o; as a;, to be observed at
time 7/ .. Note that a, and ta}, merely reindex the assignments and start times per object for convenience.

2.2.3 Problem Statement

The full problem considered in this paper is

minimize Zdl’ +t‘{ia’li+l (1a)
i,j

subject to Ti];Fl > +di-i(1) +t‘{i»ai+l (1) Vi, j (1b)
1/ e P/ Vi, j )
Tt S Tt Vi, k. (1d)

Colloquially, the problem is to minimize the effort of system (measured by slew time) while meeting requirements on
object revisit rates. The objective function (1a) measures the total time the system uses to slew and dwell. Of course,
this objective can be generalized with different weighting on slewing, dwelling, particular objects, etc. or it could be
changed to encourage overcollection rather than efficient minimal collection.

Constraint (1b) enforces that between each successive set of tasks for each sensor, there is enough time for the sensor
to perform the collection and slew. Constraint (1c) ensures that collections are performed on objects when they are
feasible, due to viewability, weather, etc. Finally, constraint (1d) enforces the recurrence interval between successive
collections on each object.

Often the constraints are not trivial to satisfy. So we may relax them and replace the objective function (1) to form a
satisfiability problem; for example,

minimize Zmax(O, Ti/,k - Ti/.,k —ri) (2a)
ik

subject to 7/, > 7;+dJ (1) + 10, (T) Vi, j (2b)
v e P Vi, . (20)

Constraints (2b) and (2¢) remain the same as (1b) and (1c). The objective (1a) is replaced by (2a) which is 0 when
constraint (1d) is satisfied. Each component of (2a) is 0 if a recurrence constraint is satisfied and equal to the time over
the target recurrence interval if the constraint is violated. While slew and dwell time is not explicitly penalized in (2),
this problem is often used when the system is overtasked so minimizing slew and dwell time is implicit since it allows
for better attempting to satisfy all revisit constraints.
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3. RELAXATIONS IN TRACTABLE SUBPROBLEMS

3.1 Exact Solutions — Global Optima

Exhaustive search methods can identify optimal solutions in very small problem instances, but clearly, problems (1)
and (2) are large, combinatorial problems. Since the decision variables must encode the allocation of tasks to sensors,
the ordering of tasks, and the timing of tasks, the solution space grows combinatorially with the problem dimension.
Exhaustively exploring the solution space is not a viable strategy.

Algorithms for Mixed Integer Linear Programming (MILP) offer clever methods for solving combinatorial problems
similar to (1) and (2). However, MILP heuristics do not scale gracefully with the problem dimension and the com-
plexity of these problems increase the size of their MILP representations. We note that TDTOPTW problems, which
are a simplification of (1), are only approached using MILP methods for very small problems.

Global optimal solutions for these problems can only be expected for ‘small enough’ scenarios. The threshold for
‘small’ will depend on the complexity of the constraints that must be considered; a TSP scenario that is ‘small enough’
to solve optimally in a reasonable amount of time will contain many more cities than a TDTOPTW that is ‘small
enough’ to solve optimally in a similar amount of time.

3.2 Upper Bounds on Solution Quality — Worse than Global Optima

The operator’s priority is not to identify the global optimal or best solution, but to identify a valid schedule that is good
enough. To this end, many intuitive metaheurstics may be employed, such as greedy algorithms, nearest neighbor or
generalized nearest neighbor methods, local search heuristics, and more. More sophisticated methods, such as MILP
algorithms, can be used here by imposing problem structure using conservative assumptions. For example, imagine a
TSP where the slew/travel times are time dependent. This problem could be simplified by always assuming worst-case
slew times in order to plan a valid schedule. There may be more slack in the schedule than necessary, but the schedule
itself would be valid.

Any of these heuristics target the creation of a plan that is valid (i.e., it obeys physical constraints such as limits on
slew time) and that does its best to accomplish operational requirements (e.g., those on revisit rates). A valid schedule
will satisfy the constraints of (1) or (2), but may not optimize the objective function. As such, they represent an upper
bound on the global optimal value.

Due to the difficulty of the problem, most work on sensor scheduling focuses on heuristics to identify upper bounds.
Progress in this area is measured by how much better schedules can be, i.e., how low the upper bound can be made.
However, from just valid solutions that represent upper bounds on optimality, it is hard to know how much room for
improvement (if any) there is.

3.3 Lower Bounds on Solution Quality — Limits on Global Optima

Complex constraints in the original problem may be relaxed to form a problem that is more easily solved and whose
optimal value provides a lower bound on the optimal value. Lower bounds on solution quality are often not as well
studied because they are not as operationally relevant. The plans associated with them may not be valid and so cannot
be used. However, although their utility is limited for operators, these lower bounds are useful for those designing
planning and scheduling algorithms because they help identify where operationally relevant heuristic algorithms are
doing well and where there may be room for improvement. For example, if an upper bound meets a lower bound, the
upper bound schedule is optimal! If the bounds are close, there is little room for improvement and if the bounds are
very different, there may be room for improvement.

Consider the time-varying slew time TSP example from the prequel. If one instead assumed the best possible slew
time, the resulting solution would likely be invalid. However, the objective value associated with that solution would
be lower than the optimal value for the original problem. It might represent an objective function value that is un-
achievable, but it would put a bound on what the achievable values for the objective function are. Concretely, if all the
desired tasks would not fit in a schedule with the best slew times always assumed, the desired tasks will not fit in any
schedule that use real slew times.

Relaxed problems can take several forms. Often, the study of MILPs is concerned with convex relaxations that relax
binary or integer valued variables (a source of nonconvexity) into bounded, real-valued variables. Relaxations to other
combinatorial problems that are simpler may also be employed.
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3.4 Tractable Subproblems

By focusing on particular components of the full SSA planning problem (1), we can relax it to problems that are
well-studied or approachable with MILP algorithm solvers.

3.4.1 Vehicle Routing Problem with Time Windows

By focusing on problem (1) without constraints (1d), we obtain a VRPTW. This entails scheduling a network of sensors
to observe a set of objects at some point during an observability window. This problem is well-studied and there is a
wide set of literature concerning algorithms for efficiently solving it [19, 18].

3.4.2 Periodic Vehicle Routing Problem

By focusing on problem (1) without constraint (1c), we obtain something similar to a PVRP. This problem is also
well-studied [22, 18], but the notion of periodicity in that literature — concerning service on disjoint days — do not map
exactly to constraints (1d) and the need to consider slewing between ‘days’.

To relax this problem, we design a MILP that, to the best of our knowledge, is unique. To simplify exposition, we
consider a single sensor, but the framework can easily be extended to a setup with multiple, heterogeneous sensors.
We partition the planning period into 7}, distinct subperiods p; of length p > max;r; and consider a discretized and
relaxed version of constraint (1d): in each set of rlp :=floor(r;/p) consecutive subperiods, there must be at least one
observation on object o;. This is a similar, but less stringent, constraint than the original.

We define the binary decision variables z; ; which denotes if object 0, is observed in subperiod py, x;; r which denotes
whether the sensor slews from object o; to o; during subperiod py, x l . which denotes if the sensor slews from object
0; to 0 between subperiods py and py 1, where x.; 1 which denotes Whether object o; is the first object observed and

xf’_ T, which denotes if object o; is the last object observed.

minimize Zd,'z,-k + Z Laraior Xijk (3a)
ik ijk
subject to Zdlzlk+2ta,a+1x1/k+0 Slejk , +0. Sle]k<p Vk (3b)
iJ iJ iJ
Y >l Vi, K (3¢)
kelK, K+rP)
le] k= Vk (3d)
2k < Y Xij+ Y X, Vi, k (3e)
J J
in/zk = iji,k Vi, k. (3f)
J J

The objective (3a) is the same as (1). Constraint (3b) ensures that no subperiod is overallocated. Constraint (3c)
enforces the relaxation of the original revisit constraint (1d). Constraints (3d), (3e),and (3f) are all TSP constraints on
the flow. Finally, subtour elimination constraints are included and solved for with row generation.

Clearly, constraint (3c) is a necessary condition to enforce constraint (1d). However, because actually satisfying the
constraint depends on the timing of the tasks within the subperiods, it is not a sufficient condition. Moreover, since
with this relaxation, the formulation offers no incentive to add multiple tasks on an object to the same subperiod, so
we can consider only whether the sensors view an object during a subperiod and not how many times they would view
the object during the subperiod. This makes (3) a relaxation of (1).
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4. HEIMDALL

The framework described in this paper has guided the testing and refinement of Orbit Logic’s Heimdall software. As
a software tool, Heimdall provides a user-friendly interface in which operators can interact with orders/plan require-
ments, configure sensors/target objects, automatically leverage Orbit Logic’s planning and scheduling algorithms to
generate sensor schedules, visualize and validate these schedules in multiple ways. Heimdall generates coordinated,
optimized observation schedules for the full set of available ground and space-based sensors for SDA observations.
It leverages Orbit Logic’s STK Scheduler scheduling algorithms, Orbit Logic’s Collection Planning and Analysis
Workstation (CPAW) scheduling algorithms and tools, and domain-specific Orbit Logic algorithms tailored for SDA.
Moreover, several users can access the software at once and with heterogeneous permissions on what information they
can view and what functions they can perform. More details on the software architecture and features of Heimdall
may be found in Section A. The central Heimdall dashboard is shown in Fig. 1.
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Fig. 1: Heimdall Dashboard Page with the light color theme

Heimdall competes multiple planning algorithms against each other in parallel and chooses the plan with the best
resulting FOM or objective value. These algorithms may run in different threads. Algorithm execution times of longer
algorithms will not block those of quicker algorithms. Some of these algorithms are anytime algorithms, so you can
always stop computation early and have a valid plan.

The flow of each particular Heimdall algorithm consists of an initial solver followed by local search, as shown in Fig. 2.
Some initial solvers employ greedy methods to ensure the rapid generation of a valid plan. For more computationally
intensive approaches, the initial solver is often a coarse, holistic planner that may be sophisticated but approximate.
This step is an avenue to leverage advanced but specialized approaches so that Heimdall can leverage combinatorial
optimization techniques, convex relaxations, etc. even though they rely on problem structure.

This is possible because the local search step enforces constraints to high fidelity. Local search iterates between two
steps: polishing, which adjusts task timing to obtain an optimized, deconflicted, and validated plan given a particular
task ordering, and schedule adjustment, which considers different changes to task ordering in order to improve the
result of the ensuing polishing step. The outcome of each polishing step is suitable for transmission to mission systems
for execution.
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Fig. 2: Heimdall Algorithm Architecture

We present the results of some numerical experiments.

5.1 Comparison with Lower Bounds

5. RESULTS

In scenarios similar to the VRPTW when the problem size is small enough to solve a VRPTW to completion, it may
be used as the initial solver in the architecture outlined in Section 4.
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Fig. 3: Performance relative to the lower bound.

We also compared the results of the MILP relaxation in Section 3.4.2. We considered a 24 hour scenario with 10
objects each needing regular revisits at different intervals with different dwell times. The Heimdall scheduler created
a valid schedule with the same number of collects as the solution to (3).
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We compare Heimdall to the lower bound MILP solution in Fig. 3. The tailored Heimdall algorithm was within 17.6%
(33.8%) of the lower bound after (before) polishing. However, Heimdall took 3 — —4 orders of magnitude less time to
complete than it took to solve the lower bound problem using Google OR-Tools [29]. The difference in computation
time is larger for scenarios with larger numbers of objects. We note that for moderate numbers of objects, the MILP
solver does not converge after several minutes or hours. Using a commercial MILP solver would certainly improve
execution time, but those products are very expensive, and they will also fall victim to the curse of dimensionality
eventually since these problems are NP Hard.

From the lower bound analysis, we have a certificate on schedule optimality and from timing, we validate operational
relevance. Moreover, we note that on even smaller problems where the lower bound schedules were feasible — thereby
certifying that the global optimal solution had been obtained, the Heimdall algorithm also matched it and identified
the optimal solution.

Finally, we emphasize that the tailored Heimdall algorithm’s performance did not start so close to the lower bound. De-
riving the lower bound and comparing the schedules that resulted from the lower bound MILP drove the development
that drove the improvement of the algorithm and the schedules it produces.

5.2 Larger Scenario

Although the formal lower bound analysis is expensive enough that it can only be applied to small problems, the
development it drove yields results for much larger problems as well.

We consider a 4 hour scenario with 90 objects each needing regular revisits at different intervals with different dwell
times. The lower bound algorithms could not solve this problem. However, we display Heimdall’s performance
relative to several other benchmark algorithms.

We consider a greedy generalized nearest neighbor algorithm, which chooses its path based on minimizing a weighted
sum of slew time and time until the revisit interval constraint would be violated. We also use a lookahead algorithm
that computes a TSP path between the next few objects that may be observed before the revisit interval for any object’s
revisit rate constraint would be violated. Finally, we include an Earliest Deadline First (EDF) algorithm from literature
on a similar problem of recurring tasks that do not consider slew time [30].

These algorithms do not target the minimum active time FOM that we consider in this paper. Rather, they aim to fill the
schedule with as many tasks as possible. To make the comparison fair, we study the performance of these algorithms
in the range where the entire schedule must be filled to satisfy the revisit requirements (1d). We do this by increasing
the dwell time required by each task so that more of the schedule must be active.
. 15500
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bB500
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Fig. 4: Performance relative to the lower bound.

Fig. 4 compares the FOM for the schedules generated by the baseline algorithms and that generated by Heimdall.
Clearly, Heimdall performs much better. However, this is unsurprising as the baseline algorithms use as much active
time as possible.

Fig. 5 compares how often the algorithms’ schedules violate the revisit requirement (1d). Since all the algorithms are
designed to target this requirement, this is a fair comparison. Again, Heimdall performs much better, incurring many
fewer violations as the problem gets larger.
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Fig. 6 shows the time between successive tasks on an object relative to the requirement. Clearly, the Heimdall algo-
rithms perform the best. While some of the other approaches can find a valid schedule in the baseline scenario, they
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no longer find valid solutions once the problem is made more difficult by inflating the dwell times required.

The increasing number of constraint viola-
tions for Heimdall as the dwell time mul-
tiplier grows above 3.5 begs the question:
are the baseline algorithms better in those
problem instances? However, this problem
is not simple to answer. While the number
of violations is a good metric when sched-
ules nearly satisfy all constraints, it provides
insufficient insight when there are many vi-
olations. However, consider EDF and the
greedy GNN schedules in Fig. 6b; EDF
has more violations, but they are all small.
Would the operator prefer more small vio-
lations (e.g., fifty one-second violations) or
fewer large violations (e.g., one fifty-second
violation)? This is a question for the operator
and the algorithm developers should design
a FOM to target their expressed priorities;
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Fig. 7: Algorithms compared in terms of revisit constraint violations
and execution time.
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however, while this is an important problem
that we do address, it is beyond the scope of this paper.

Finally, we can consider all the algorithms in terms of the two meta-objectives of revisit requirement violations and
execution time. All algorithms (besides Heimdall with polishing) took less than half a second to run. Fig. 7 shows
this comparison. All the algorithms are Pareto optimal, so it is for the operator to decide which approach to employ.
However, we note that Heimdall without polishing — which incurs no violations and requires less than a half-second
to run, appears to be a promising option.

Of course, polishing also had a positive effect on the schedule produced by Heimdall. After the initial solver, which
took 0.38 seconds to run, all requirements were met with 1274 tasks. After polishing, which took 21.81 seconds total,
a compliant schedule was returned with only 1200 tasks; a 5.9% reduction in tasking. Whether this reduction in active
time is worth the longer run time is up to the operator.

6. CONCLUDING REMARKS

We established a framework for formal analysis of the complicated SSA/SDA sensor scheduling problem. We iden-
tified and formulated key problems that facilitate relaxations of the original problem in order to form lower bounds
for the original problem. We showed how this analysis informs the development of our planning and scheduling
algorithms and illustrated their efficacy on a representative problem instance.

Future work will focus on the identification of additional tractable subproblems to facilitate further analysis. Of
particular interest is the formulation of an orienteering problem whose rewards correspond to a track accuracy objective
over time, and the formal analysis of schedule robustness to collect failure or other uncertain events.
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A. HEIMDALL SOFTWARE ARCHITECTURE

The Heimdall solution is intended to support an operation staff as part of a
wider workflow enabling Battle Management Command and Control (BMC2).
It specifically occupies the functional role of optimizing sensor tasking across
a large number of ground and space sensors to achieve overall SDA-related ob-
jectives. Heimdall interacts with other components of a wider architecture using
machine-to-machine interfaces utilizing plug-ins that allow the specifics of those
interfaces to be easily updated, or even to become compliant with completely
different interoperability standards in different systems. This has already been
demonstrated via installation of the capabilities in multiple customer systems.
The primary interface to Heimdall is a web interface, accessible via standard
browsers, through which all of the core administrative and operational features
can be accessed.

. .. . Fig. 8: Heimdall Logo
One of the core features of the Heimdall solution is the ability to generate co-

ordinated, optimized observation schedules for the full set of available ground

and space-based sensors for SDA observations. Heimdall leverages Orbit Logic’s STK Scheduler scheduling algo-
rithms, Orbit Logic’s Collection Planning and Analysis Workstation (CPAW) scheduling algorithms and tools, and
domain-specific Orbit Logic algorithms tailored for SDA.

SSA Enhancement
Module

Operators
Order Logic Web Server

o= Ephemeris
STK Scheduler Provider

Order Logic is the web server with CPAW and STK Scheduler are the SSA Enhancement module
which users interact planning engines calculates information gain and
other SSA/SDA-specific quantities

Fig. 9: Heimdall System Architecture Diagram: Heimdall builds on and enhances mature Orbit Logic products to
create optimized SSA/SDA sensor schedules Scheduling/Tasking Algorithms

STK Scheduler provides multiple scheduling algorithms as well as an algorithm builder tool, to define refined al-
gorithms for specific needs. In the SDA configuration, algorithms are fed the list of SDA FOM-scored observation
opportunities and use that list as the basis for generating a high value, valid, deconflicted, coordinated observation
schedule. Heimdall calls the STK Scheduler algorithms using an available STK Scheduler STK Connect command
via its TCP/IP API with string keyword-value pairs. The specific algorithm may be configured within Heimdall, but
an option also exists to call an algorithm-builder-defined custom combination algorithm that computes solutions using
multiple algorithms and returns the highest FOM-scoring solution. Earlier versions of the STK Scheduler algorithms
were successfully demonstrated to CSpOC personnel as part of the SDA Software Suite from Analytical Graphics for
a large scale SSN sensor tasking problem (10,000 objects, 24 hour schedule, 30 sensors), with optimized observation
schedule solution time under 2 minutes.

CPAW has a similar set of algorithms for tasking schedule generation. Multiple algorithms are fed the SDA FOM-
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scored observation opportunities and iterated with high fidelity space sensor models to generate a high value, valid,
deconflicted, coordinated observation schedule for all available space-based sensors. The nine available CPAW al-
gorithms may be configured on or off via the Heimdall API, with the algorithm solution from the highest SDA
FOM-scoring plan returned. CPAW scheduling algorithms are called via the available CPAW API using command
strings delivered via TCP/IP interface. Scheduling results are saved directly to the Heimdall Object Catalog database,
associated with applicable objects.

A.1 SDA-specific Figure-Of-Merit

Heimdall makes use of an SDA-specific Figure-of-Merit (FOM). The SDA FOM scores each observation opportunity
based on inputs (such as predicted information gain) from the Task Prioritization component and other factors (such
as computed object visual magnitude), time since last observation, orbit covariance, anomalous behavior rating, and
more.

Each factor has an associated configurable weighting attribute to specify the importance of the FOM factor relative to
other FOM factors. Weighting attributes may be set to any value, including O (ignored) and negative (penalty) values,
allowing for virtually unlimited tuning of the scoring FOM.

Additionally, the FOM is split into object factors and search area factors (as well as common factors that apply to both),
and the scores for objects and searches are normalized against each other. Lastly, configurable weighting factors allow
for the importance of object observations vs. searches for new objects to be defined.

The SDA FOM is tightly coupled within the SDA versions of STK Scheduler and CPAW. All observation opportunities
are automatically scored using the configured SDA FOM as part of the standard processing flow in both software tools.

In a future version of the architecture the SDA-specific FOM will also be made available via web interface for optional
use by Tasked and Contributing sensors for their own local schedule optimization.

A.2 Value of Information-Based Tasking

Incorporating measures of information gain into space-object sensor tasking procedures provides a way to quantify the
quality of candidate observation opportunities. Heimdall was updated to enable tasking is informed by metrics related
to the expected state error covariance of a space-object at a desired epoch time. This feature generates the expected
state covariance matrix at that time provided an initial state covariance matrix and a set of candidate measurements. In
addition to intelligent tasking, this feature provides elevated operator awareness of the expected catalog state and the
tasking algorithm’s rationale.

Minimizing the size of the covariance matrix corresponds to maximizing the information gained with a measurement
sequence. The user, in Heimdall, will add a “Final Orbit Accuracy” to the order and the planning software will plan to
achieve it. This parameter is by default the volume of the covariance matrix, but other metrics can easily be configured.
Heimdall provides the initial state and state covariance matrix of a space-object, the observing asset type and location
(both ground-based and space-based observing assets are acceptable). A candidate measurement schedule is provided
by the user which lists both a sequence of observation times, and the observing asset used per time.

Two renditions of the software were developed. The Extended Kalman filter (EKF) version sequentially updates the
space-object’s state covariance per measurement in the observation sequence. That is, for each candidate measurement
in the sequence, the EKF algorithm evaluates a covariance matrix decrement, which is related to the expected infor-
mation gained from said measurement. This decrement is then subtracted from the predicted covariance at the time of
the measurement. The process is repeated for each measurement in the set. The TurboProp library is used to propagate
the space-object state and state covariance between times in the measurement set. After all the measurements are pro-
cessed, the state and state covariance matrix are propagated to a final epoch of interest, and this final covariance matrix
is used to ensure the desired orbit accuracy is met [31]. The second version of the software uses an epoch-state filter
formulation to calculate the final state covariance matrix. This formulation calculates a covariance matrix decrement
in a batch-like formulation, forgoing the recursive procedure of the standard EKF.

A necessary component of the project was accurately including process noise in space-object dynamics modeling. Pro-
cess noise is important in quantifying how much information is lost in propagating from measurement-to-measurement
— or in other words, how much the covariance matrix grows between measurements. To do this, a new tool was devel-
oped in the TurboProp library for propagating a process noise transition matrix between candidate measurement times.
This transition matrix was then incorporated into the standard EKF formulation and the epoch-state formulation of the
software. The software was tested and validated on both ground-based and space-based sensor tasking scenarios.
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A.3 External Plan Ingest

Heimdall was deployed and made available to external users via an Order Logic hosted machine configured for inter-
facing with leading commercial SSA operators (LeoLabs and Numerica, now Slingshot). Commercial SSA operator
observation plans were retrieved and ingested by Heimdall, converted to ISSP format, and then utilized to show how
commercial plans can inform Department of Defense (DoD) SSA sensor observation planning to meet DoD opera-
tional objectives, including meeting specific orbit accuracy goals.

A.4 Heimdall User Interfaces

Order Logic was developed as a user-facing interface for Orbit Logic’s planning software application. The web
application has previously been configured as the program-specific front end for both STK Scheduler and CPAW
planning applications. In Heimdall, Order Logic is configured to interface with both the STK Scheduler, CPAW, and
customized SDA planning engines, and has additionally been enhanced to provide overall workflow and automation
control.

Providing an SDA-beneficial software automation framework for a distributed sensor network with worldwide non-
traditional sites necessitated a web-enabled solution — one with the ability to monitor the state of space environment
from many coordinated consoles and manage data flows in a highly configurable manner. As such, the web-based
Graphical User Interfaces (GUIs) comprising the Heimdall solution are key to the overall operations concept.

One of the primary user features exposed through the web interface is visualization of the sensor tasking plans. Heim-
dall provides multiple ways for an operator to view, explore, and understand planned SDA tasking for ground and
space sensors.

A configurable dashboard table view dynamically presents observations in time order, highlighting observations in
progress (either in real-time and/or simulated time) and moving through the list of observations as time progresses.
The presented list of observations can be filtered based on user preferences. The same Dashboard page provides a
more global perspective in a 3D visualization pane. Driven by Cesium, this view is normally configured to run in
real-time as a companion to the table view on the Dashboard, showing observations in an accurate graphical view as
they occur throughout the collection of available sensors. The user may also select specific observations in the table
view, and the Dashboard page Cesium 3D view automatically zooms in on the associated sensor resource and forwards
to the time of the selected observation to display a static view of the specific observation geometry.

The Heimdall table and 3D views are driven by the latest object catalog database and associated planned observations
saved within the object data there. The screenshot in Figure 1 shows the table view and associated configurable filter,
along with the embedded 3D Cesium view and associated metrics.

A.5 Configuration Manager

The Configuration Manager component of Heimdall provides the ability for authorized users (administrators) to define
and configure permissions for users, add and configure new SDA sensors, specify sensor downtime, specify optimiza-
tion goals, review performance metrics, and perform other related setup and configuration functions. Changes made
within Heimdall configuration pages are stored to the associated Heimdall database for use internally and/or used to
send Application Programming Interface (API) configuration commands to some of Heimdall solution component
applications.

A.6 Visibility Computations

At the start of the planning process, constrained access computations are performed for each valid sensor/object
combination. Computations consider line-of-site visibility, lighting constraints (when applicable), sensor capabilities,
sensor field-of-regard, object attributes, and any applicable object/sensor assignments and preferences and constraints.
Because access computations for each object are independent of the access computations for other objects, these
computations can be performed in parallel on many cores in order to speed computation time for large object catalogs.
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