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ABSTRACT

Sensor tasking for space domain awareness is a complex problem that involves scheduling observations of objects in 
space from one or multiple sensors, usually telescopes. This paper formulates the problem as a purely combinato-
rial problem and uses a beam version of the A* search algorithm to efficiently search for priority-based observation 
schedules. Several admissible heuristics are proposed for scheduling just LEO, GEO, or both kinds of objects. Sim-
ulations are conducted with real space objects and telescope data to evaluate the effectiveness, time complexity, and 
performance of the search algorithm under different real-world scenarios.

1. INTRODUCTION

Scheduling observations of human-made objects in space for space domain Awareness (SDA) involves coordinating 
multiple ground-based sensors, like telescopes or antennas, to collect data and use them for a number of purposes, 
among which orbit determination, object catalog maintenance, and conjunction analysis. The main objective of sensor 
tasking is to maximize either the quantity of tracked objects within a specific time frame or an accumulated score. 
Indeed, each object can be assigned a priority index or score to indicate its relative significance. For instance, objects 
with a few passes might receive a higher priority on the nights they are visible from the selected sensors.

The process of tasking must consider various factors, including the telescope’s geographical location, the visibility of 
the objects, the telescope’s range of motion and speed, potential geographical limitations, lighting conditions, and the 
time needed for camera preparation, focusing, and executing the required exposures with designated filters.

Achieving the best possible sensor tasking is a challenging optimization problem that, in general, can be classified 
as an NP-hard combinatorial problem. This involves determining the optimal set of objects to be observed from a 
larger pool and establishing the order of observation while satisfying some physical and time constraints. Practical 
implementation of precise integer linear programming (ILP) solution methods, like branch and bound, often becomes 
unfeasible due to their excessively demanding computational requirements. Numerous approaches to sensor tasking 
have been proposed within the existing literature. Among these, a prevalent approach entails employing either heuristic 
algorithms or greedy solution mechanisms,1 which operate based on predefined rules and decision trees to rapidly 
identify a solution that is generally suboptimal. To address long-term sensor planning tasks, some papers have explored 
dynamic programming techniques2 and Monte Carlo-based tree search algorithms,3 although assessing all the potential 
observations still demands substantial computational resources. Furthermore, these methods tend to be confined to a 
single orbital regime, such as objects in geosynchronous Earth orbit (GEO), low Earth orbit (LEO), or medium Earth 
orbit (MEO). More recently, emerging machine learning methods, such as deep reinforcement learning,4, 5 have also 
been adopted and exhibited good levels of accuracy and adaptability when facing changes in object orbits, observation 
windows, observer locations, and sensor characteristics. These approaches are capable of learning from past instances 
of the problem and adapting to novel data. However, they lack the ability to exploit the inherent mathematical structure 
of the underlying problem, frequently resulting in long training periods and an absence of guarantees regarding the 
optimality or robustness of the final solution.

The formulation of the sensor tasking problem used in this paper is a variant of the orienteering problem (OP), an 
NP-hard combinatorial problem that combines the score-maximization objective of the knapsack problem (KP) with 
the path-length minimization elements of the traveling salesman problem (TSP). This problem takes its name from an 
outdoor sport, orienteering, where the objective is to visit, in a limited amount of time, a subset of the checkpoints
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located on a map, starting from the home base, so that to maximize the total score associated with them. In the
telescope tasking scenario, each checkpoint corresponds to a different observation opportunity for a given object, and
the time to move from one checkpoint to the next one corresponds to the time needed to physically slew the telescope
to the new pointing direction, possibly wait till the beginning of the new object pass, or for a fixed preparation time,
and observe the object itself to collect the desired exposures.

In this work, the sensor tasking problem is formulated as a search problem on a graph and tackled with the A* search
algorithm.6 A* search is a widely used algorithm for finding the optimal path in a graph, and it can be applied to
the optimal telescope tasking to efficiently search through the vast number of possible observation schedules. The
A* algorithm is a combination of two approaches: Dijkstra’s algorithm for finding the shortest path in a graph, and
a heuristic function that estimates the “distance” between a node and the goal. The algorithm uses a priority queue
to keep track of nodes that have been visited and those that need to be explored. Each node is assigned a cost based
on its distance from the start node and the estimated distance to the goal. The algorithm selects the node with the
lowest cost and explores its neighbors, updating the costs of neighboring nodes as necessary. The search continues
until the goal node is reached or until no more nodes can be explored. The efficiency of A* search mainly depends on
the accuracy of the heuristic function. The more accurate the heuristic, the fewer nodes are expanded, but, generally,
the more complex the heuristic is to be computed. Hence, a trade-off between the accuracy of the heuristics and
its simplicity is usually required. Three admissible heuristics for A* are proposed in this study, the first valid for
scheduling LEO objects, the second for scheduling GEO objects, and the third one combining the other two when
objects in different orbital regimes are considered (LEO, GEO). Being A* an exact solution algorithm, it can struggle
to find an optimal solution in a reasonable computational time based on the problem’s complexity. To reduce the size
of the graph, pruning techniques will be used to eliminate, from the priority queue, schedules that are unlikely to
yield a high scientific output, by implementing a beam search version of the A* search algorithm.7 This pruning of
unpromising schedules allows for a considerable speed-up of the search, at the cost of losing guarantees on the global
optimality of the solution.

This beam search algorithm, named beam A*-search (BA*), is compared against an exact version of the A* search to
understand its accuracy and time complexity when dealing with increasingly bigger sets of objects or longer observa-
tion times involving just GEO or LEO satellites. Eventually, the results obtained when scheduling objects in mixed
orbital regimes (both LEO and GEO) are presented and discussed in detail by varying the available observation time.
Simulations are carried out using actual object data retrieved from the Norad catalog and the real characteristics of one
of the telescopes (Raptors-2) of the Space4 Center at The University of Arizona (Tucson, AZ).

2. PROBLEM STATEMENT

In this section, the telescope tasking problem (TTP) is introduced and mathematically formulated as a search problem
on a graph.

2.1 Problem Definition

Let us consider a telescope characterized by its geographic coordinates (λ ,φ ,z), which represent its latitude, longitude,
and altitude above sea level. This telescope can be oriented in a specific direction identified by the azimuth ψ and
altitude (or elevation) θ , and it is capable of being adjusted using a motorized altazimuth mount. This mount has a
maximum rate of motion, or slew rate, denoted as ωmax.

During a given day, the telescope becomes operational at a specific time called epoch t0. This timing is chosen to
coincide with nautical twilight, defined as the time when the Sun’s elevation relative to the local horizon drops below
−12deg. The telescope remains active for a duration of ∆tmax, typically extending throughout the entire night until
the subsequent nautical twilight, when the Sun’s elevation rises above −12deg again. Once the telescope is initiated
at epoch t0, it promptly goes to its designated “home” position marked as H. This home position is characterized by a
specific azimuth ψH and altitude θH .

Throughout the night, from time t0 to time t0 +∆tmax, the telescope is assigned the task of conducting a series of
optical observations of artificial objects in Earth’s orbit using a camera affixed to it. To be more specific, a collection
lll = l1, . . . , lL of L objects positioned in LEO and another collection ggg = g1, . . . ,gG of G objects in GEO are intended
to be scheduled for observation during the aforementioned night.

Each object in the LEO category, denoted as li ∈ lll, undergoes Pli passes across the telescope’s field of view within
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the observation time ∆tmax. These passes are designated by the indices p = 1, . . . ,Pli , and each starts at time ts
li,p

while ending at time te
li,p

. These epochs mark the times when the object reaches its minimum elevation angle θmin for
visibility above the local horizon. The positions of the object li at these times are denoted as (θ s

li,p
,ψs

li,p
), (θ e

li,p
,ψe

li,p
),

respectively. Should LEO object li be observed during its p-th pass, the telescope will continuously follow and monitor
the object throughout the entire duration of that pass. As a result, the total duration of observation for object li will be

∆tobs
li,p = te

li,p − ts
li,p, li ∈ lll, p = 1, . . . ,Pli (1)

It is supposed that the duration of passes for LEO objects is sufficiently long to enable the telescope to acquire all the
necessary exposures for the given object, denoted as Eli . The score sli linked to the LEO object li is collected when
the object is observed during any of its Pli passes.

On the other hand, the GEO objects are regarded as observable at all times throughout the night due to their fixed
position in the sky (θgi ,ψgi) relative to the observatory site. Each GEO object gi ∈ ggg is linked to a designated count
of exposures, denoted as Egi , each with the same total duration ∆texp

gi . A GEO object has the potential to be observed
on multiple occasions during the night, with each observation lasting a fraction of the remaining total exposure time.
If a GEO object gi is observed for an integer fraction p of the total exposures Egi , p = 1, . . . ,Egi , the duration of the
observation and the resultant collected score will be as follows

∆tobs
gi,p = p∆texp

gi
(2)

sgi,p = p
sgi

Egi

(3)

The time required for the telescope to move from the concluding position of the object i during its j-th sky pass to the
initial position of the object k during its l-th sky pass amounts to

∆tslew
i, j,k,l =

cos−1
(

rrrs
i, j · rrre

k,l

)
ωmax

(4)

where

rrra
i, j =

{
[cosθ a

i, j cosψa
i, j, cosθ a

i, j sinψa
i, j, sinθ a

i, j]
⊤ i ∈ lll

[cosθi cosψi, cosθi sinψi, sinθi]
⊤ i ∈ ggg

(5)

with a = s,e.

Before starting to actually take exposures of an object, the telescope must stay in place at the initial position of that
object in the sky for a preparation time equal to ∆tprep

leo , for LEO objects, and ∆tprep
geo , for GEO objects.

2.2 Search Problem
The TTP can be formulated as a search problem within a graph. A search problem encompasses a set of potential
states, an initial state, a successor or transition function that maps from any given state to a collection of new states
(referred to as successors), a goal test that determines whether a state qualifies as a goal state, that is, a final state within
the search, and an objective function linked to either the states themselves or the path traversed within the graph. The
goal of a search algorithm is to determine a sequence of transitions that initiates from the initial state of the problem,
culminates in a goal state, and maximizes the value of the objective function.

By effectively defining the state space, initial state, successor function, goal test, and objective function, the TTP can
be formulated as a search problem. Specifically, each state σσσ is a sequence of pairs (di, pi), each giving the label of
the object observed di, and either the pass number pi (for LEO objects) or the number of exposures taken pi (for GEO
objects):

σσσ ={(d1, p1) , . . . ,(dN , pN)} (6)

Each observation (di, pi) in σσσ , i = 1, . . . ,N, can be associated with a starting and ending time ts
σσσ ,i, te

σσσ ,i:

ts
σσσ ,i =

{
ts
di,pi

di ∈ lll
te
σσσ ,i−1 +∆tslew

di−1,pi−1,di,pi
+∆tprep

geo di ∈ ggg
(7)

te
σσσ ,i =

{
te
di,pi

di ∈ lll
ts
σσσ ,i +∆tobs

di,pi
di ∈ ggg

(8)
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and with a corresponding score:

sσσσ ,i =

{
sdi di ∈ lll
sdi,pi di ∈ ggg

(9)

The total score of a state σσσ is

sσσσ =
N

∑
i=1

sσσσ ,i (10)

while the total exposure time ∆tobs,σσσ (i.e., total time actually spent taking exposures) and total observation time ∆ttot,σσσ
(i.e., total duration of the observation session) are

∆tobs,σσσ =
N

∑
i=1

∆tobs
di,pi

(11)

∆ttot,σσσ = te
σσσ ,N − t0 (12)

Let us define with dddσσσ = {di}|i=1,...,N the set of objects in σσσ . For each object di ∈ dddσσσ , the set kkkσσσ ,i is the set of indices
in {1, . . . ,N}\ i that refer to observations of the same object di:

kkkσσσ ,i = {k ∈ {1, . . . ,N}\ i : dk = di ∈ dddσσσ} (13)

State σσσ is an admissible state if the following conditions are satisfied

di ∈ lll ∪ggg, i = 1, . . . ,N (14)

pi ∈ N+, i = 1, . . . ,N (15)
di ̸= di+1, i = 1, . . . ,N −1 (16)

kkkσσσ ,i = Ø, di ∈ lll, i = 1, . . . ,N (17)

pi ≤


Pdi di ∈ lll
Edi − ∑

k∈kkkσσσ ,i
k<i

pk di ∈ ggg , i = 1, . . . ,N (18)

ts
σσσ ,i ≥ te

σσσ ,i−1 +∆tslew
di−1,pi−1,di,pi

+∆tprep
leo di ∈ lll, i = 2, . . . ,N (19)

∆ttot,σσσ ≤ ∆tmax (20)

So, the state space of the search problem is:

S = {σσσ : (6), (7)-(8), (13)-(20)} (21)

The initial state of the search is the state σσσ0 containing just the “fake” observation (H,1), that is, the telescope at its
home position at the initial epoch t0:

σσσ0 = {(H,1)} (22)
ts
σσσ0

= t0 (23)

te
σσσ0

= t0 (24)

sσσσ0 = 0 (25)

Any successor state σσσ
′

of state σσσ is obtained by adding to the sequence a new observation (dN+1, pN+1). The pair
(dN+1, pN+1) has to be selected so that σσσ

′
is still an admissible state, i.e., it belongs to set S . Hence, the set of

successor states of the state σσσ is:

C (σσσ) =
{

σσσ
′
: σσσ

′
= σσσ ∪ (dN+1, pN+1) , σσσ

′ ∈ S
}

(26)

Let us introduce the set of unscheduled observations associated with a state σσσ :

uuuσσσ = {(d̃1, p̃1), . . . ,(d̃U , p̃U )} (27)
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This set contains all the object-pass/exposures pairs (d̃i, p̃i) meeting the following conditions:

d̃i ∈ lll ∪ggg, i = 1, . . . ,U (28)

d̃i /∈ lll ∩dddσσσ , i = 1, . . . ,U (29)

d̃i /∈ {d j ∈ ggg∩dddσσσ : pmax{kkkσσσ , j} = Ed j}, i = 1, . . . ,U (30)

p̃i ∈ N+, i = 1, . . . ,U (31)

p̃i ≤ Pd̃i
, d̃i ∈ lll, i = 1, . . . ,U (32)

p̃i ̸= p̃k, d̃i = d̃k ∈ lll, i ̸= k = 1, . . . ,U (33)

p̃i =

Ed̃i
d̃i ∈ ggg\ (ggg∩dddσσσ )

Ed̃i
− ∑

k∈ kkkσσσ ,i

pk d̃i ∈ ggg∩dddσσσ
, i = 1, . . . ,U (34)

ts
d̃i,p̃i

≥ te
σσσ ,N +∆tslew

dN ,pN ,d̃i,p̃i
+∆tprep

leo , d̃i ∈ lll, i = 1, . . . ,U (35)

The score associated with each unscheduled object d̃i, i = 1, . . . ,U , is

suuuσσσ ,i =

{
sd̃i

d̃i ∈ lll
sd̃i,p̃i

d̃i ∈ ggg
(36)

The total observation time left associated with state σσσ is

∆tleft,σσσ = ∆tmax −∆ttot,σσσ (37)

A state σσσ is considered a goal state if the set of unscheduled object referred to σσσ is empty:

uuuσσσ = Ø (38)

This situation arises when either all the planned objects have already been observed for their total exposure time or
when there is no possibility of observing any additional object without exceeding the maximum observation time.

Hence, the set of goal states of the search problem is

G = {σσσ : σσσ ∈ S , (27)-(35), (38)} (39)

The objective function of the problem is just a function of the last state σσσ reached by the search process and is defined
as

Jσσσ = 103sσσσ −∆ttot,σσσ +10−6N (40)

The three weights 103, 1, and 10−6 have been selected to keep the three contributions, that is, the score, total obser-
vation time, and number of objects observed, as separate as possible. The objective is to first rank the states by score,
then, when the score is the same, by total observation time, and, when both the score and the observation time are
equal, by number of observations. Indeed, the score sσσσ is kept on the order of 100, ∆ttot,σσσ on the order of 10−1 (in
days), and N on the order of 102.

A goal state is optimal if no other goal state in G has a higher value of the objective function.

The goal of a search algorithm is to find a sequence of transitions that, starting from the initial state of the problem,
reaches an optimal goal state. If ΣΣΣ = {σσσ1,σσσ2, . . . ,σσσK} represents the sequence of visited states along the optimal path,
then the search problem can be stated as follows:

max
ΣΣΣ

JσσσK

s.t. σσσ i ∈ S , i = 1, . . . ,K
σσσK ∈ G , (41)
σσσ i ∈ C (σσσ i−1), i = 1, . . . ,K
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3. SOLUTION APPROACH

In this section, the beam A*-search technique used to address the search problem in Eq. (41) is outlined. Diverse
heuristics are also presented to accelerate the search process when confronted with either LEO objects, GEO objects,
or a combination of both types of objects.

3.1 A* Search

A* is a widely employed algorithm in the realm of artificial intelligence (AI), first developed during the Shakey project
at the Stanford Research Institute in 1968.6 Presently, A* finds applications in various AI domains, such as parsing in
natural language processing,8 path planning for robots and UAVs,9 and pathfinding in video games.10

The A* algorithm solves search problems by constructing a search tree. In this tree, each node corresponds to a
problem state, and the connections between nodes represent state-to-state transitions. The search starts by generating
successor nodes for the root node, which correspond to the initial problem state σσσ0. These newly generated states
become leaf nodes and are added to the frontier, a prioritized collection of all leaf nodes at a specific point of the
search process. During each iteration, the algorithm selects the topmost leaf node from the frontier and evaluates it
against the goal test. If the node’s state matches a goal state, the search is concluded, and that state serves as the
problem’s solution. If not, the node is expanded by generating successors based on its state. These new leaf nodes
are appended to the frontier, initiating a new iteration. The search is terminated either when a goal node is reached or
when no further nodes can be generated. In this last case, the last expanded node is returned as the problem solution.

In A*, the frontier is organized as a priority queue using an evaluation function fσσσ . In problems aiming to maximize
a state-dependent objective function, like the one examined in this paper, fσσσ combines the state’s objective function
Jσσσ with a heuristic function hσσσ , estimating the potential enhancement in the objective function by reaching the nearest
goal node from state σσσ . Hence, during each iteration, the algorithm selects the node with the highest evaluation
function for expansion. If the heuristic function is admissible, meaning it never underestimates the actual objective
function improvement towards the closest goal node, A* ensures both optimality and optimal efficiency. Optimality
means the first expanded goal node is the global optimal solution, while optimal efficiency implies that no other search
algorithm is guaranteed to explore fewer nodes than A* for the same problem. The admissibility condition can be
formulated as follows, by supposing that σσσg is the nearest reachable goal node from σσσ :

fσσσ = Jσσσ +hσσσ ≥ Jσσσg (42)

As an optimal algorithm, A* exhibits exponential growth in both time and space complexity when confronted with
NP-hard problems. This characteristic can render A* impractical for managing large-scale problems. However, this
limitation can be alleviated through the application of well-crafted heuristics, which serve to reduce the number of
nodes that need to be expanded. The precision of the heuristic is a critical factor in A*; a heuristic that closely
approximates the actual objective function improvement to the nearest goal node leads to a reduction in the number
of expanded nodes. If the heuristic were perfect, no search iterations would be necessary, as A* would consistently
choose the subsequent state in the solution of the problem ΣΣΣ for expansion. Indeed, knowing a perfect heuristic
implies knowing the problem solution itself. Hence, a trade-off emerges between the accuracy of the heuristic and
its computational demands, which encompass considerations both on memory utilization and speed. In this paper, we
introduce three admissible heuristics. These heuristics are exact solutions derived from relaxed versions of the TTP
when focusing exclusively on either LEO or GEO objects or both kinds of objects. The forthcoming sections delve
into the presentation of these heuristics.

3.2 LEO Heuristic

In situations where only observations of LEO objects remain (d̃i ∈ lll, i = 1, . . . ,U), the TTP transforms into a pure
orienteering problem (OP).11 The OP is built around a weighted graph consisting of n nodes, labeled from 1 to n, each
associated with a score si, linked by arcs with weights wi j (i, j = 1, . . . ,n). A designated root node r ∈ {1, . . . ,n} is also
part of the graph. The primary objective of the OP is determining the optimal path, initiating from r, that maximizes the
cumulative score of the visited nodes, while maintaining a total weight that does not exceed a predefined maximum
value wmax. In the specific variant of TTP focused solely on LEO objects, each node within the graph symbolizes
a distinct object-pass combination among the unscheduled objects (i = (d̃i, p̃i), i = 1, . . . ,U), along with the last
observation in the state σσσ , which corresponds to the root node (r = (dN , pN)). Consequently, if observation j can
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indeed follow observation i, an arc is established in the graph, connecting node i to node j. This condition is met if:

ts
d̃ j ,p̃ j

≥ te
d̃i,p̃i

+∆tslew
d̃i,p̃i,d̃ j ,p̃ j

+∆tprep
leo (43)

The corresponding arc weight will be
wi j = te

d̃ j ,p̃ j
− te

d̃i,p̃i
(44)

The maximum path weight is instead
wmax = ∆tleft,σσσ (45)

When exclusively addressing observations of LEO objects, the resulting graph forms a directed acyclic graph (DAG).
An example of DAG is shown in Figure 1a. In a DAG, each arc is directed from one node to the subsequent one in
such a way that following these directions will never create a closed loop. This arrangement of the graph stems from
the temporal order of LEO object passes, as it is not possible to backtrack to a prior object pass and thus create a loop.

If all the objects possess equal scores, the OP problem on a DAG simplifies into the longest shorter path (LSP) problem.
This combinatorial problem has previously been introduced by Federici et al. for the planning of active debris removal
missions.12 In the LSP problem, the objective is to find the highest integer q for which the shortest path (i.e., the
one with the minimum cumulative weight) originating from the root r and traversing q nodes has a combined weight
wlsp that remains within a predetermined upper limit wmax. The name given to this problem stems from its focus on
identifying the longest path (i.e., which passes through the maximum number of nodes) in a graph that is shorter than
a given distance (or weight).

The LSP problem can be efficiently tackled using dynamic programming. Its time complexity is O
(
n2q2

)
, thus

belonging to the P-hard class of problems. The approach involves iterating over the count of nodes k within the path,
spanning from 1 to n. During each iteration, the shortest path originating from r to any other node, while traversing
exactly k nodes, is calculated. If the cumulative weight of this path surpasses wmax, the solution becomes k−1. Thus,
solving the LSP problem reduces to addressing q(q+ 1)/2 shortest path problems, which are known to be P-hard.
Upon resolving the LSP problem, the heuristic can be obtained by multiplying the count of observed objects q by the
average score s̄ of the q unscheduled LEO objects with the highest scores. Subsequently, the total observation time
corresponding to these objects is subtracted and the number of observed objects q is summed, yielding to

hlsp
σσσ = 103qs̄−wlsp +10−6q (46)

This heuristic is also admissible. Supposing that the actual optimal solution comprises M ≤U observations, as defined
by the set of indices mmm ⊂ {1, . . . ,U}, the following inequalities hold:

q ≥ M (47)

qs̄ ≥ ∑
m∈mmm

suuuσσσ ,m (48)

Indeed, q denotes an upper limit on the maximum number of observations feasible within the remaining observation
time, and s̄ is the average score of the q highest-scoring objects.

3.3 GEO Heuristic

In scenarios where only observations of GEO objects remain (d̃i ∈ ggg, i = 1, . . . ,U), the TTP again reduces into an OP,
as the optimal solution still involves observing each object just once for the whole exposure time, as this requires a
lower total preparation time (just one per object, instead of one per exposure). However, in this case, the OP takes
place on a complete directed graph (CDG), a graph where every distinct pair of nodes is interconnected by two arcs.
This kind of graph is shown in Figure 1b. This structure derives from the telescope’s capability of slewing from any
GEO object to any other GEO object at any given time during the observation session (thus, loops are indeed possible).
Due to this graph structure, the LSP problem heuristic becomes less precise, although it remains admissible. This is
because the LSP problem solution could potentially involve multiple traversals through the same graph arcs if their
weights are particularly low.

To derive a more accurate and admissible heuristic for GEO object scheduling, the simplifying assumption that all
of the unscheduled objects are observable in the remaining observation time is employed. This assumption holds
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(b) CDG, with the MSA in red, with r = 1.

Fig. 1: Directed acyclic graph (DAG) (a) and complete directed graph (CDG)(b).

more reliably when just GEO objects are considered, as there are no mandatory waiting times between consecutive
object observations. Therefore, it is much more likely that all the scheduled objects are actually observable in the
remaining time. To achieve a more precise estimation of the total required observation time, the problem is posed as a
minimum-weight Hamiltonian path problem.

This problem is a variant of the TSP that does not require closing the cycle. In this context, given a weighted graph
comprising n nodes, labeled from 1 to n, connected by arcs with weights wi j (i, j = 1, . . . ,n), and a designated root
node r ∈ {1, . . . ,n}, the objective is identifying the minimum-weight path commencing from r and passing through
each graph node exactly once. In the GEO-only TTP, each node within the graph corresponds to a distinct GEO object
in the unscheduled objects (i = (d̃i, p̃i), i = 1, . . . ,n), in addition to the last observation in the state σσσ , which serves as
the root (r = (dN , pN)). As for the weight of the arc going from observation i to j, it will be:

wi j = ∆tslew
d̃i,p̃i,d̃ j ,p̃ j

+∆tprep
geo +∆tobs

d̃i,p̃i
(49)

Although the minimum-weight Hamiltonian path problem remains NP-hard, a recognized admissible heuristic called
minimum spanning arborescence (MSA) can be utilized to establish a lower bound on the path weight. An arbores-
cence is a directed graph where, if r is the root, there exists exactly one directed path from r to v for every node v.
An MSA is an arborescence encompassing all graph nodes and with the minimum overall weight. This MSA’s total
weight serves as a lower bound for the total weight of the minimum-weight Hamiltonian path. Indeed, the MSA’s
solution arises from a relaxed problem formulation, which assumes that more than two edges can insist on each node
in the solution. Distinct from the minimum-weight Hamiltonian path problem, the MSA problem can be solved in
polynomial time O(mn), with m = n2 representing the number of arcs in the graph. Edmonds’ algorithm13 is used for
this purpose in this paper. By indicating with wmsa the total weight of the MSA, the value of the heuristic in state σσσ

will be

hmsa
σσσ = 103

U

∑
i=1

suuuσσσ ,i −min{wmsa,∆tleft,σσσ}+10−6U (50)

3.4 Mixed LEO-GEO Heuristic
In the general scenario encompassing both LEO and GEO satellites, the LSP and MSA heuristics can be integrated
to formulate a novel admissible heuristic. The underlying assumption of this composite heuristic is that the GEO
satellites can be observed during the time intervals between LEO object passes. If the total observation time attributed
to GEO objects, represented by the weight wmsa of the MSA, is either less than or equal to the cumulative waiting time
between the different LEO object observations, denoted as

∆twait
lsp = wlsp −∑

i∈qqq
∆tobs

d̃i,p̃i
(51)

where qqq ⊂ {1, . . . ,U} is the set of indices identifying the objects in the LSP problem solution, then it is assumed that
all GEO objects can be observed within that time window. Otherwise, only a subset of GEO objects can be actually
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observed between the LEO object passes, and the remaining ones must be scheduled afterward, within the maximum
available observation time ∆tleft,σσσ .

Given Guuu as the number of GEO satellites within the unscheduled objects uuuσσσ , the combined heuristic in state σσσ is

hcomb
σσσ = 103

qs̄+ ∑
d̃i∈ggg

suuuσσσ ,i

+min
{

∆tmax,σσσ ,wlsp +
[
wmsa −∆twait

lsp

]+}
+10−6(q+Guuu) (52)

3.5 Search Space Pruning
Several pruning techniques have been incorporated to reduce the size of the search space throughout the search pro-
cedure, thereby enhancing the overall efficiency of the algorithm. These pruning techniques can be categorized into
optimality-preserving ones, i.e., which do not hinder the global optimality of the solution, and beam search techniques,
to quickly eliminate large portions of the search space at the cost of losing global optimality guarantees.

3.5.1 Optimality-Preserving Pruning

Two optimality-preserving pruning techniques have been implemented. The first one, occurring before the search
procedure is initiated, involves removing from the list of unscheduled observations referred to the initial state of the
problem, uuuσσσ0 , all the passes of the LEO objects that are not completely observable within the considered observation
window, that is, the object-pass pairs (d̃i, p̃i) for which the following condition is verified(

ts
d̃i,p̃i

< t0
)
∨
(

te
d̃i,p̃i

> t0 +∆tmax

)
, d̃i ∈ lll, i = 1, . . . ,U (53)

The second pruning technique involves using a graph version of the A* algorithm to avoid visiting the same nodes
again. In this context, in addition to maintaining the frontier, the set of nodes that have been explored up to the current
iteration is also retained in memory during the search. If a node is already present in the explored set, it is disregarded,
and its potential successors are not generated. Nodes are considered equal if the corresponding states share the same
score, total observation time, and list of objects observed. Furthermore, each object within these states must possess
the same cumulative count of exposures. It is important to remark that two nodes are considered equal even if their
associated states are distinct. For instance, this could occur if the same set of LEO objects, but for the final one, is
observed in a different order or if the exposures of one or more GEO objects, occurring between the same LEO object
passes, are taken over different numbers of successive observations.

3.5.2 Beam Search

Despite the effectiveness of the A* search algorithm, it may never converge to the optimal solution when dealing with
problem instances with extensive object lists or a combination of different orbital regimes (LEO and GEO) because
of its high time and space complexity. To address these challenges, a sub-optimal variant of A*, named beam A*-
search (BA*), has been devised. BA* is obtained by combining standard beam search7 and A*, and it can be seen
as a heuristic-powered version of the beam best-first algorithm proposed by Zavoli et al.14 for handling the multi-
rendezvous problem released in the 10th global trajectory optimization competition (GTOC X).

In BA*, only a fixed number bw of nodes, named the beam width, is retained in memory inside the frontier at each
iteration. If the frontier width is lower than the beam width, BA* works exactly like A*. When the frontier width
reaches the beam width, any additional leaf node, associated with an arbitrary state σσσ , is chosen to be included in the
frontier according to the following rules:

(i) With a probability pb, named inclusion probability, the node is added in place of the last (i.e., worst) node σσσw
in the frontier if fσσσ > fσσσw ;

(i) With a probability 1− pb, the node is added in place of the last node σσσw in the frontier with a probability equal
to

ps =
1

1+ fσσσw
fσσσ

(54)
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Fig. 2: Search trees generated by A* (a) and BA* (b) on a sample problem.

So, the higher the value of the evaluation function of state σσσ compared to the one of the worst state σσσw, the
higher the probability of being included in the frontier.

This biased replacement based on the evaluation function is used to avoid filling the frontier with just the newly gen-
erated nodes. In BA*, a maximum CPU time is also enforced by terminating the search when a predefined maximum
number of nodes Dmax has been expanded. The best solution found so far, i.e., the one with the highest J, is returned
as the problem solution.

Differently from the standard breadth-first or uniform-cost version of the beam search,15 the BA* version here adopted
relies on the evaluation function f , which includes the heuristic contribute h. So, the biased replacement within the
frontier is also based on how promising the states are and not just on their current value of the objective function, thus
reducing the likelihood of discarding potentially good solutions and increasing the chances of approaching a goal state
close to the global optimum of the problem.

Figure 2 shows a comparison between the search tree generated by A* and BA* on the same example problem. Here,
states are numbered based on their generation sequence, and evaluation function values are numbered in descending
order (lower subscripts indicate higher function values and, thus, better solutions).

4. NUMERICAL RESULTS

This section delves into the numerical results of the manuscript. The pool of LEO and GEO objects of interest is
introduced, as well as the characteristics of the telescope and the relevant information about the night of observation.
First, the main hyperparameters of the BA* search algorithm are tuned by looking at the average error with respect to
the optimal solution and number of visited nodes obtained in both the LEO-only and GEO-only scenarios. Afterward,
the performance of the BA* search algorithm, in terms of total computing time and quality of the obtained solutions, is
compared against a standard A* search by varying the number of objects and the total observation time. Eventually, we
present the results of the BA* search algorithm when considering both LEO and GEO objects together by analyzing
the number of observed satellites, the cumulative score, and the actual observations realized for different values of the
available observation time.
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4.1 Study Cases

The telescope under investigation in this study is Raptors-2, a member of the telescope array within the Space4 Center
at the University of Arizona. Raptors-2 is classified as a Newtonian telescope and features an aperture measuring
608.9 mm and a focal length of 2831 mm. This telescope is situated at Biosphere 2, a facility affiliated with the
University of Arizona, located 25 miles north of Tucson, Arizona, USA.

For precise details regarding the telescope’s specifics and its geographical coordinates, please refer to Table 1.

Table 1: Telescope characteristics.

Parameter Value Unit

λ 32.581 deg
φ -110.847 deg
z 1172 m
ψh 170.934 deg
θh 69.144 deg
ωmax 2 deg/s
θmin 10 deg

Table 2: Observation and object data.

Parameter Value Unit

t0 60150.1377 MJD

L 90 –
∑

L
i=1 Pli 107 –

∆tprep
leo 90 s

G 33 –
Egi 5 –
∆texp

gi 45 s
∆tprep

geo 15 s

The observation session starts on July 24th, 2023, at 8:30 pm, according to Arizona time, and is extended for a total
duration of 8.5 hours. During this nighttime session, the focus is on observing satellites from the Globalstar and
Iridium constellations in LEO, as well as satellites from the Intelsat and Galaxy constellations in GEO.

Relevant parameters such as the epoch, azimuth, and altitude of the objects at the beginning and conclusion of their
passes over the telescope’s location have been precomputed. This data has been generated by forward-propagating
their two-Line elements (TLEs), sourced from the Norad catalog via SpaceTrack.com, employing the SGP4 model.

At the beginning of the observation session, the telescope is assumed to be positioned at its home location and prepared
to initiate exposures 2 minutes prior to the first scheduled pass of one of the LEO objects.

Detailed specifics about the initiation of the observation session, the total count of visible LEO and GEO satellites
from Raptors-2, the required exposures and exposure duration for GEO satellites, as well as the preparatory time prior
to capturing exposures of LEO and GEO satellites, are outlined in Table 2.

The implementation of the BA* search algorithm has been realized in C++, and the execution was conducted on a
workstation housing an AMD Ryzen 9 7950X 16-core processor operating at 5.8 GHz and equipped with 128 GB of
RAM. The execution was parallelized across the 32 logical cores of the processor using OpenMP directives.

4.2 Hyperparameter Tuning

First, the effect of the two hyperparameters of BA*, namely the beam width bw and the inclusion probability pb, on
the algorithm performance has been analyzed by considering two instances of the TTP involving either all the GEO
satellites or the LEO satellites, a maximum observation time ∆tmax = 8.5h, and random object scores sampled in the
interval [1,3].

Figures 3 and 4 show the trends of the algorithm performance measure (Fig. 3a and 4a) and average number of
explored nodes (Fig. 3b and 4b) obtained by both varying the beam width and the inclusion probability when only
GEO or LEO objects are considered, respectively. For each pair of values (bw, ps), 50 independent runs have been
realized to mitigate the stochastic nature of the algorithm and collect statistics. The maximum number of explored
nodes has been fixed to Dmax = 25000. Two different performance measures have been used when scheduling GEO or
LEO objects, respectively. Let us name with s⋆ and ∆t⋆tot the score and total observation time of the optimal solution,
retrieved via standard A*. With GEO objects, the performance measure corresponds to the average relative error in
total observation time with respect to the optimal solution:

e∆t =
|∆t⋆tot −∆ttot,σσσ |

∆t⋆tot
(55)

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



being the score (almost) always the same between the A* and BA* solutions. Conversely, with LEO objects, the
performance measure is the average relative error in the cumulative score with respect to the optimal solution:

es =
|s⋆− sσσσ |

s⋆
(56)
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Fig. 3: Performance analysis of BA* for GEO satellites scheduling for different beam widths bw and inclusion proba-
bilities pb.
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Fig. 4: Performance analysis of BA* for LEO satellites scheduling for different beam widths bw and inclusion proba-
bilities pb.

Figures 3b and 4b confirm that, in either case (GEO and LEO object scheduling), the number of explored nodes grows
exponentially with the beam width bw, as a direct consequence of the NP-hardness of the combinatorial problem. The
count of nodes reaches its maximum value, denoted as Dmax = 25000, when the beam width surpasses 50 times the
count of scheduled objects. By looking at Figs. 3a and 4a, one can notice that, with such values of bw, the errors
increase rapidly in both the GEO-only and LEO-only scenarios. In these cases, the BA* algorithm fails to reach a
goal node within the available computational time, yielding an incomplete solution with a consistently lower score
compared to the optimal one. For lower values of the beam width (bw ≤ 50G and bw ≤ 50L respectively), the behavior
of BA* diverges between the GEO and LEO scenarios. In the former, as expected, errors exhibit a monotonous
decline as both the beam width and inclusion probability increase. This decline leads to an error value below 0.1%,
which corresponds to approximately 10 seconds of observation time. This level of accuracy is achieved when utilizing
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pb = 0.8 with either bw = 5G or bw = 10G. However, for the LEO case, the error features a minimum point that
is dependent on the value of pb. With lower inclusion probabilities (pb = 0 and pb = 0.2), a higher beam width
(bw = 50L) is required to converge to a good quality solution, as the broader pool of nodes that are kept in memory at
each iteration mitigates the effect of the higher probability of discarding promising solutions. Conversely, with higher
inclusion probabilities (pb = 0.6 and pb = 0.8), a relatively low value of the beam width (bw = 5L) is sufficient to find
solutions closer to the optimal one. In any case, also with LEO target objects, the minimum error value (es < 3%) is
achieved with pb = 0.8 and bw = 5L. For this reason, the analyses in the following sections have been conducted using
this specific configuration of the algorithm.

4.3 Algorithm Performance Analysis

The performance of the best BA* configuration found so far has been then systematically compared against standard
A* on increasingly harder instances of the telescope tasking problem with only GEO or LEO satellites with random
scores in the interval [1,3]. For each problem instance, the best solution over 50 runs of BA* has been used for
comparison with A* to reduce performance fluctuations due to the stochastic nature of the algorithm.
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Fig. 5: Performance comparison between BA* and A* for GEO satellites scheduling.
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Fig. 6: Performance comparison between BA* and A* for LEO satellites scheduling.

Figure 5 shows the trends of the CPU time (Fig. 5a) and of the error on the total observation time (Fig. 5b) obtained
with BA* and A* for GEO object scheduling by varying the pool of GEO satellites G from 2 to 32 and keeping the
total observation time fixed to ∆tmax = 8.5h. Figure 6, instead, shows the trends of the CPU time (Fig. 6a) and of the

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



error on the cumulative score (Fig. 6b) that are obtained with BA* and A* for LEO object scheduling by varying the
total observation time ∆tmax from 1 hour to 8.5 hours, and always considering all the L = 90 satellites.

In both scenarios, it’s evident that BA* consistently reduces the overall time needed to reach a goal state (Figs. 5a
and 6a). Specifically, the CPU time needed to schedule all of the GEO objects within the maximum observation time
diminishes by almost two orders of magnitude, going from 16 minutes with A* to 23 seconds with BA*. For LEO
satellites, the time drops from 5 minutes with A* to less than 30 seconds with BA*, which corresponds to a reduction
of almost one order of magnitude.

While this significant improvement in computational speed does come at the expense of sacrificing the guarantee of
a globally optimal solution, the trade-off is justified. This justification is particularly clear when looking at Figs. 5b
and 6b, which illustrate that the solutions produced by BA* deviate by less than 0.08% in the case of scheduling GEO
objects, and by less than 3.5% when it comes to scheduling LEO objects. This level of difference in the merit index
values supports the use of BA* instead of standard A* or similar exact solution algorithms, especially when dealing
with extensive lists of target objects. It’s worth highlighting that the errors introduced by the BA* algorithm do not
increase alongside the problem’s complexity. Instead, the errors are almost zero when sufficiently small sets of objects
are considered, then rise quickly and converge towards a fixed value with larger object pools.

4.4 Optimal Observation Schedules

Eventually, this section presents and discusses the optimal observation schedules obtained with the BA* search algo-
rithm when considering both GEO and LEO satellites together.
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Fig. 7: Optimal solutions by varying the observation time for LEO-only and LEO+GEO object sets.
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Figure 7 shows the trends of the number of observed satellites (Fig. 7a) and the total score (Fig. 7b) obtained with BA*
by varying the observation time ∆tmax from 1 hour to 8.5 hours and either considering just the LEO objects or both the
LEO and GEO objects together. In both cases, the object scores are sampled randomly in the interval [1,3].

As expected, the overall score increases monotonically with the observation time. However, this is not true for the
count of observed satellites, as, for some observation times, the algorithm was able to find a solution where some
low-scoring satellites are replaced by a lower number of higher-scoring objects, thus anyway leading to an improved
cumulative score. When objects in both orbital regimes are considered, the telescope is able to observe a higher
number of satellites and collect a higher cumulative score in the same observation time by efficiently scheduling
GEO objects between successive passes of LEO objects. Thus, the contemporary scheduling of both LEO and GEO
objects optimizes the utilization of the available observation time. Specifically, in 8.5 hours, the telescope is able to
observe a total of 53 objects, which include all 33 GEO satellites plus 20 LEO satellites. Figure 8 shows the number
of observations and number of observed satellites for the mixed LEO-GEO scenario for different observation times
∆tmax. It is interesting to note that the number of observations realized differs from the number of distinct satellites
tracked, especially for longer observation times (in 8.5 hours, 61 observations of 53 distinct satellites), as opposed
to the LEO-only scenario. This phenomenon occurs since some of the GEO objects are observed multiple times for
fractions of the total number of exposures to better exploit the waiting time between LEO observations and further
optimize the cumulative score collected.

5. CONCLUSION

This paper addressed the problem of optimal telescope tasking for space domain awareness purposes. The main
focus was the prioritized scheduling of observations for known Earth-orbiting satellites using a single telescope. The
problem was posed as a purely combinatorial problem and solved with the application of a beam variant of the A*
search algorithm, termed beam A*-search (BA*).

Three novel heuristics were introduced to expedite the scheduling process via A*, each tailored to specifically deal
with a distinct orbital regime (LEO, GEO) or with all of them. These heuristics were devised as exact solutions of
relaxed versions of the underlying combinatorial problem, ensuring their admissibility and, thus, the global optimality
of the search procedure. Different pruning techniques were also proposed to reduce the dimension of the solution
space and further speed up the search process. Among them, the beam search framework was applied to standard
A* search to create a sub-optimal variant of the algorithm, wherein only a fixed number of promising solutions is
retained in memory at each iteration. The solutions to be included within the frontier are chosen according to a biased
random sampling based on the value of the node’s evaluation function, which contains information coming both from
the problem objective function and A*’s heuristic.

First, the main hyperparameters of the BA* search method, namely the beam width and the inclusion probability, have
been properly tuned in order to identify the pair of values that corresponds to the best compromise between the quality
of the obtained solution and the cumulative run time of the search. The results obtained show that a value of inclusion
probability of 0.8 and a beam width equal to 5 times the number of scheduled objects yield the best results both when
considering only GEO objects or LEO objects.

BA* has been then compared against standard A* in terms of computing time and solution accuracy on object sets of
different sizes involving just LEO or GEO satellites and by also varying the total observation time. Results showcase
that, at the cost of converging to a sub-optimal solution with a value of the merit index that is less than 0.08% lower
than the optimal one in the GEO-only case, and less than 3.5% lower in the LEO-only case, BA* is able to cut down
the overall run time up to a factor 100 in the hardest problem scenarios considered.

A test set including all the target LEO and GEO objects has been eventually considered to understand how it affects
the number of objects observed, the number of observations realized, and the total score collected. The obtained
solutions show that when LEO and GEO objects are considered together, the latter kind of satellites are scheduled
within successive passes of LEO objects, thus yielding a more efficient use of the available observation time.

As possible future research directions, it would be worthwhile to investigate the scalability of the current approach in
managing tasking scenarios involving multiple telescopes and a broader spectrum of celestial objects. This extension
could encompass objects situated in either medium Earth orbit (MEO), geostationary transfer orbit (GTO), or beyond
the geostationary belt, such as those within the cislunar space region. Furthermore, an exploration of alternative
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optimization algorithms, such as genetic algorithms or ant colony optimization, and their comparison against the BA*
algorithm could serve as a means to establish benchmarks and gain valuable insights for upcoming investigations
within this domain
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