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ABSTRACT

The number of Resident Space Objects (RSO) is in the tens of thousands and this problem is being exacerbated by
the rapidly accelerating rate of satellite launches. Coinciding with the launch of new RSO is the increasing maneuver
capability of satellites. These more agile RSO can perform many types of maneuvers including station keeping and
Rendezvous and Proximity Operations (RPO) at small timescales and at close distances to their targets. The increasing
capabilities of RSO further emphasizes the need for efficient, autonomous sensor tasking and maneuver detection.

In order to maintain custody of this growing and maneuverable catalog, Space Domain Awareness (SDA) is trending
away from human-in-the-loop satellite observation tasking and towards human-on-the-loop autonomous sensor task-
ing. These human-on-the-loop systems will need to identify, observe, and re-schedule observations of maneuvered
satellites as quickly as possible to prevent loss of custody. For an autonomous system to react to changes in the SDA
environment, accurate, real-time maneuver detection algorithms must be implemented.

This work focuses on the implementation of various maneuver detection techniques in an autonomous SDA simulation
and evaluation of these algorithms for satellite maneuver detection. The standard practice in satellite maneuver detec-
tion is to evaluate the standard Normalized Innovations Squared (NIS) metric of an incoming observation. However,
this is not the only option. Other potential choices for maneuver detection consist of variations of the standard NIS
metric: sliding NIS and fading memory NIS.

From here, different sensor tasking solutions were implemented to determine a computationally efficient method of
reward function augmentation that emphasized revisit of maneuvered RSO. To generate the data necessary for this
analysis, scenarios with RSO in near Geosynchronous Earth Orbits (GEO) and maneuver events will be generated.
The maneuvers modelled were representative of East/West and North/South station keeping maneuvers. Ground Based
Electro-Optical (EO) and radar sensors, with their necessary constraints, were modeled. For example, the optical
sensors modeled will implement necessary lighting constraints to determine RSO visibility.

An Unscented Kalman Filter (UKF) was used to consolidate observation data and produce RSO estimate ephemerides.
A special perturbations dynamics model was used for RSO propagation. Sensor specifications were approximated with
open-source documentation of the current Space Surveillance Network (SSN).

Comparison between control group scenarios without maneuvers and those with maneuvers were used to show how
the augmented reward functions direct sensor tasking toward RSO w/ detected maneuvers while still maintaining
catalog coverage. Maneuver detection failed at high process noise values and false positive maneuver detections were
identified in low process noise simulations; the UKF was tuned accordingly.

This work was used to evaluate which maneuver detections algorithms perform best for GEO orbits and determined
suitable process noise levels for the UKF to predict measurement residuals for maneuver detections.

For the radar sensing scenarios, both Lambert Initial Orbit Determination (IOD) and Generalized Pseudo-Bayesian
Estimator of Order 1 (GPB1) Multiple Model Adaptive Estimation (MMAE) were implemented to reduced RSO
residuals to within nominal levels without having to severely modify the tasking solution.
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1. INTRODUCTION

Due to the exponential uptick in the commercialization of space, accurate and reliable Space Traffic Management
(STM) has become increasingly critical to ensuring safe space operations. While the majority of attention has been
dedicated to tracking the ever-growing proliferated Low Earth Orbit (pLEO) constellations [9, 7], the RSO population
in Geosynchronous Earth Orbit (GEO) has been steadily increasing as well [27, 23]. The GEO belt consists vital
satellite networks for global communication needs [24, 10]. Additionally, the amount debris in GEO has been growing
at a consistent rate [1].

Coinciding with the increased congestion in GEO, satellite owners are forced to maintain orbits in increasing smaller
longitude slots. The distribution of RSO in various GEO longitude slots can be seen below in Fig. 1.

Fig. 1: GEO RSO Population [10]

This congestion forces the operators of these satellite networks to perform station keeping maneuvers at a more fre-
quent rate.

1.1 GEO Satellite Maneuvers

RSO in GEO drift out of their prescribed slots at different rates due to the zonal gravitational harmonics of the Earth
gravitational field [5]. GEO RSO maintain their orbital slot (longitude) via East-West Station Keeping (EWSK)
maneuvers and required inclination (latitude) via North-South Station Keeping (NSSK). While it depends on the
longitude at which an RSO’s GEO orbital slot is located, EWSK must be performed, on average, every few weeks and
NSSK every few months [5]. For NSSK, the average annual ∆V consumed is 47 m/s and for EWSK it is about a factor
of 20 smaller, or about 2.3 m/s annually [5].

As can be seen in equations 1 and 2, NSSK is driven by the need to keep the RSO inclination within prescribed bounds
(usually ±0.1 ∆i) where θ is a combination of inclination and change in Right Ascension of the Ascending Node
(RAAN) and V is the magnitude of the velocity of the RSO in question.

∆V = 2V sin(
∆θ

2
) (1)
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∆θ = cos−1[sin2icos(Ω2Ω1)+ cos2i] (2)

While NSSK ∆V is driven by the inclination needed to maintain, EWSK ∆V requirements are dominated by the
semi-major axis (SMA) that a GEO RSO is needed to maintain.

∆V =
1
2

n∆a (3)

The further an RSO’s SMA differs from the exact semi-major axis, 42,164 km, needed for Geostationary orbit, the
more ∆V is required to maintain its orbital slot. This relationship can be seen via the dependence on ∆a in equation 3.

1.2 Maneuver Detection
To account for the increasing number of GEO RSO maneuvers, accurate and reliable maneuver detection algorithms
are needed to identify changes in RSO states and assess potential conjunction events. Three maneuver detection
algorithms were investigated in this work: the standard Normalized Innovations Squared (NIS), Sliding NIS, Fading
Memory NIS.

The standard NIS is a one-sided chi-squared (χ2) test with nz degrees of freedom (DoF) involving the measurement
residual ν and innovation covariance Sν against some predefined threshold [2]. The key feature of the standard NIS is
that it is completely Markovian. It is evaluated against a single measurement so that it is the most reactive to change,
but at the cost of not considering past measurements.

εν(k) = ν(k)T Sν(k)−1
ν(k)≈ χ

2
nz (4)

The sliding NIS is a modification of the standard NIS that averages the NIS over the last s timesteps. This gives
the sliding NIS snz additional degrees of freedom, where z is the DoF of the measurement space [2]. Unlike the
standard NIS, it is traditionally more biased towards non-detection in the event of abrupt change, such as an impulsive
maneuver.

ε
s
ν(k) =

k

∑
j=k−s+1

ε
s
ν( j)≈ χ

2
snz (5)

Fading memory NIS averages NIS over a selected number of timesteps, but with more priority given to more recent
timesteps. The modifying term δ where 0 < δ < 1 can be tuned to give more preference to past NIS values or the most
recent term [2].

ε
δ
ν (k) = δε

δ
ν (k−1)+ εν(k)≈

1
1+δ

χ
2
nδ

(6)

As can be seen in equation 6, a δ value of 0 would reduce to the standard NIS equation. This allows the fading memory
NIS to have preference to the recent baseline while also being reactive to changes in the environment.

1.3 Sensing
The measurement residuals used to perform the maneuver detection methods mentioned in the previous section can
be predicted by various different sensing technologies. Traditionally, Electro-Optical (EO) sensors have been used to
track GEO RSO due to their ability to view dim objects in deep space and the difference in sidereal rate of satellites
compared to that of the background stars [3].

The pitfall of traditional metric-based EO sensors is that they only measure two DoF, the angular components of the
2D image. These measurements are usually recorded as Right Ascension and Declination or Azimuth and Elevation.

Table 1: Optical Sensor specification modeled

R Matrix 1 Slew Rate (deg/s) Azimuth Mask (deg) Elevation Mask (deg) FoV (deg) Limiting magnitude[
σ1 0
0 σ1

]
15.0 [0, 360] [0, 90] 1 x 1 25.0

Copyright © 2023 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



Because of this, it is not unheard of to use radar sensors to track GEO RSO as well. This is because radar sensors
contain the capability to measure RSO range and range rate as well as the angular components, albeit usually less
accurately than EO sensors. [21].

Table 2: Radar Sensor specification modeled

Tx Power (W) Tx Frequency (Hz) Slew Rate (deg/s) Azimuth Mask (deg) Elevation Mask (deg) FoV (deg)
2.5e6 1.5e9 3.0 [0, 360] [0, 90] 1 x 1

Since there are benefits to each of these sensing modalities, both have been simulated as a part of this work.

1.4 Estimation

The Kalman Filter (KF) was developed to combine predicted measurements and the effect they will have on reducing
the uncertainty surrounding an state vector [14]. Later, the Unscented Kalman Filter (UKF) was introduced with a
modification to the linear Kalman Filter to supports systems consisting of non-linear dynamics, such as RSO state
vector propagation [12].

The UKF consists of three main phases: prediction, forecast, and update. The prediction phase is used to propagate
estimate state vectors and covariances out to the next time step. In the forecast step, potential observations are predicted
in order to determine what their impact would be in reducing uncertainty. This step is critical in relation to the
maneuver detection methods mentioned in section 1.2, because the innovations covariance S is calculated here. In
equation 7 below, ∆Y represents the predicted measurement residuals, WP is the covariance weight, and R is the
measurement noise.

Sk+1|k = [∆Y ]WP[∆Y ]T +Rk+1|k (7)

Finally, during the update step, the innovations (the I in NIS) are calculated. The innovations are the measurement
residuals from the predicted and performed observations, as can been seen in equation 8.

εk+1 = ỹk+1 − ŷk+1|k (8)

The innovations covariance and innovations in equations 7 and 8 are then passed in the the maneuver detection algo-
rithms directly at the end of the UKF update step. The UKF used in this work was generalized to be able to forecast
observations from arbitrary DoF sensors, allowing it to be used for both optical and radar scenarios.

2. SENSOR TASKING

The art of allocating sensing resources to track the ever-growing catalog of Resident Space Objects in an efficient
and responsible manor is an intractable problem. Efficient tasking requires long horizon planning, centralized control
of all sensors in a network, and extensive computational resources. It is becoming increasing evident that human-
in-the-loop sensor tasking and satellite maneuvering decision making is not fast enough for the timelines needed to
identify maneuvers and implement collision avoidance procedures [4]. Fully autonomous sensor tasking frameworks
have already been demonstrated on hardware systems [8], This work seeks to implement a similar approach where a
fully autonomous systems will task sensors and modify the tasking solution in the event of maneuver detection.

In order to reduce the computational complexity of autonomous sensor tasking, the problem is modeled as a Markov
Decision Process (MDP). The MDP is a process where all the information necessary to make a decision is stored in
the state of the previous time step. Specifically, this simulation implemented Partially Observable Markov Decision
Process (POMDP). The POMDP is an extension of the standard MDP where not all of the possible states are known
to the decision maker, making the optimal solution harder to predict [22]. This was necessary because both optical
and radar sensors cannot observe all the 6 degrees of freedom of satellite state vectors. Since the tasking algorithm is
Markovian, it will be able to adjust in real time to changes in the space environment (maneuver detection) and schedule
rapid follow-up observations if possible [19].

1σ1 = 1.008 arcsec
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2.1 Information Gain

The Shannon Information Gain (SIG) metric, ISk+1 , was chosen to be the measure of uncertainty reduction for the
predicted observations in this study. SIG, shown below in equation 9, is a function of the predicted covariance P̂k+1
and estimated covariance P̄k+1, calculated in the prediction and update step of the UKF, discussed in section 1.4.

ISk+1 =
1
2

log(
det(P̂k+1)

det(P̄k+1)
) (9)

Previous works have demonstrated SIG as a viable metric for tasking sensors [11, 18, 13]. While Fisher Information
Gain (FIG) is the more popular method of POMDP sensor tasking, SIG was chosen because it is computationally
cheaper [15].

2.2 Decision Algorithms

Before modifying decision making algorithms specifically for the space domain, the most popular decision algorithms
for tasking fall into two main categories, greedy and Munkres (Hungarian Algorithm) [13]. The greedy decision
operates on each sensor independently, tasking it to the satellite that provides the highest reward. While this is com-
putationally efficient, it may result in redundant sensor tasking, but more accurately models the real world where most
sensing networks do not communicate with each other [13]. The Munkres decision algorithm solves the NxM (targets
x sensors) decision matrix with a bipartite graph restriction, preventing no two sensors to observe the same RSO at
the same time [16, 6]. This functionality can be solved easily by passing the NxM reward Matrix (R) into scipy’s
‘linear sum assignment‘ function [26].

While this decision algorithm maximizing the distribution of sensors, it requires knowledge of the state and tasking
control of every sensor being utilized. Since that is often not the case, the greedy decision algorithm is the most
practical option because each sensor tasking solution is solved independently.

2.3 Reward Function Normalization

While Shannon Information Gain, discussed in section 2.1, is a viable metric for predicting uncertainty reduction for
performing observations on its own, it is not reactive to changes in the environment.

For example, if revisit rate reduction is desired but there is a particular RSO with a highly unstable orbit, SIG might
skew the tasking towards that RSO at the cost of ignoring more stable orbits. In that case, it may become necessary to
augment the SIG metric with a metric focused on minimizing the time between observations.

The combination different metrics into a single value for the decision algorithms described in section 2.1 is called a
Reward Function. In order to operate on metrics with vastly different units and magnitudes, some type of normalization
must be done. Research has been on done on metric weights for Reward Functions [19].

In this work, each metric (mi) in a reward function was normalized from [0,1] where 1 represented the maximum
predicted value (M) for each metric at each time step.

mi = mi/max(M) (10)

From there, reward functions are calculated by summing all n metrics prescribed.

Rk+1 =
N

∑
i=1

mN (11)

For example, a reward function with two metrics would have a maximum value of 2.

2.4 Event Based Sensing

A focus of this work was to find a computationally cheap, effective metrics to method to modify the reward functions
mentioned in section 2.3 above to skew tasking towards satellites that had observed maneuver detections without over-
allocating sensing resources towards that RSO. A simple Boolean maneuver detection metric was created that would
be value 1 if a maneuver had been detected at the most recent time step for an RSO and 0 if not. This served as a
simple, but effective method to modify tasking rewards in the event maneuver detection. Given this modification, it is
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key to ensure that false positive maneuver detections and additional maneuver detections on the correct RSO are kept
to a minimum to prevent improper tasking.

For the radar sensor cases, if a maneuver was detected for an RSO, hooks were put in the UKF to instantiate and
estimate error reduction method, the two chosen for this work being Initial Orbit Determination (IOD) and Multiple
Model Adaptive Estimation (MMAE).

3. SIMULATION DESIGN

For this research, a Cowell’s method special Perturbations propagation method was used [25]. Based on the perturba-
tions most prominent at GEO a 4th Order, 4th Degree EGM96 gravitational model as well as Solar and Lunar third
body gravitational effects was used for both RSO truth and UKF estimate state vector propagation [17].

An Unscented Kalman Filter with an α of 0.05, β of 2.0 and a κ of 3.0 were used. The estimate state vectors were
created with initial estimate error standard deviation (std) of 0.01 km in position and 0.1 m/sec. The process noise for
the UKF was chosen to be 1e−11. The research supporting that choice can be found in section 4.1 of the Results.

The orbital Elements of the RSO used in this study are shown below in table 3, with the variation in initial posi-
tion created by incrementing true anomaly (ν). These values were chosen so that each RSO would not be purely
Geostationary, giving some challenge to the Kalman Filter.

Table 3: RSO Classical Orbital Element Sets

RSO α (km) e i (deg) Ω (deg) ω (deg) ν (deg)
1 42117.7 0.0619 0.0 0.0 291.2 123.51
2 42117.7 0.0619 0.0 0.0 291.2 124.51
3 42117.7 0.0619 0.0 0.0 291.2 125.51
4 42117.7 0.0619 0.0 0.0 291.2 126.51
5 42117.7 0.0619 0.0 0.0 291.2 127.51

A single sensor was used to generate the measurements in this work. The sensor was placed in a location and scenario
time chosen such that every RSO was visible for the entirety of simulation time.

Table 4: Sensor Location

Sensor Latitude (deg) Longitude (deg) Altitude (km)
1 5.7295 63.0254 1.0

A 5-minute time step was used for the simulations in this work to ensure that slew time was not a limiting factor
in RSO observability and to account for image processing and object detection. Within this scenario, one 5m/s in-
track impulsive maneuver was injected for RSO 3 without informing the Kalman Filter and sequential tasking engine.
The value of 5m/s was chosen based on the standard magnitudes of GEO station keeping maneuvers discussed in
section 1.1 and the direction represents an eastward station keeping maneuver. Previous work has investigated optical
maneuver detection and found that station keeping maneuver magnitudes were sufficient for testing [20].

For each of the maneuver detection methods, a threshold of 99.9% confidence value was set. For the Sliding NIS, a
time step window of 4 was chosen. For the Fading Memory NIS, the δ value was set to 0.8.

4. RESULTS

4.1 Maneuver detection and filter tuning Results
Before focusing on which maneuver detection method performed best for each sensor type, it was import to tune the
Process Noise value (Q) on the UKF so that the maneuver could be detected.
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Table 5: Optical Sensor Maneuver detection compared to Process Noise

Process Noise: 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6
Standard NIS True* True True True True False False False False
Sliding NIS True True True True True False False False False

Fading Memory NIS True True True True True False False False False

The asterisk in Tables 5 and 6 denote that there were false positive maneuver detections for those process noise values.
Notably, for the optical sensor case tuning the process noise to the very sensitive 1e−14 value resulted in False positive
maneuver detections for the Standard NIS only.

Table 6: Radar Sensor Maneuver detection compared to Process Noise

Process Noise: 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 1e-6
Standard NIS True* True* True True True False False False False
Sliding NIS True* True* True True True False False False False

Fading Memory NIS True* True* True True True False False False False

For the radar sensing evaluation, all three maneuver detection methods record false positive detections if the process
noise was 1e−13 or smaller.

4.2 Sensor Tasking Reward Function Modification

For the control cases in this study, RSO were propagated without any maneuvers. The POMDP cycles through the
RSO for routine observations at a repeated cadence, as shown for the optical and radar cases in Fig. 2. The boxes
in Fig. 2 below represent the times at which a particular RSO was observed, the different colors and y axis values
denoting a specific RSO.

(a) Optical tasking without maneuvers (b) Radar tasking without maneuvers

Fig. 2: Sensor Schedule without injected maneuvers

In Fig. 4 below, a 5m/s impulsive maneuver was inject 50 minutes into the scenario for RSO 3.
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Fig. 3: Estimate Error for Maneuvered RSO 3

As can be seen in Fig. 3 above, the estimate position and velocity error falls outside of the 3σ uncertainty bounds and a
maneuver is detected. However, the sensor tasking solution remains the same as the control case above in Fig. 2. This
shows clear proof that the sensor tasking solution that works well without maneuvers needs additional event-based
sensing modifications in order to prioritize observing an RSO it knows to have maneuvered.

(a) Optical tasking with maneuver (b) Radar tasking with maneuver

Fig. 4: Sensor Schedule with an injected maneuver

In contrast to the previous tasking solutions, Fig. 5 below shows a clear break in the default tasking modalities from
the control for the RSO that has maneuvered.
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(a) Optical tasking (b) Radar tasking

Fig. 5: Sensor Schedule with maneuver detection tasking modification

Most promising is the fact that after an adequate number of observations have been made of the maneuvered RSO,
the tasking solution returns back to the nominal state of cycling through each target. This clearly shows that standard
Shannon Information Gain sensor tasking modified with a maneuver detection metric can prioritize observations for a
recently maneuvered RSO without permanently skewing tasking towards that satellite.

4.3 Orbit Determination

For the radar sensing cases, IOD and MMAE orbit determination algorithms were implemented to attempt to reduce
the number of observations after maneuver detection. In Fig. 5 above, both the optical and radar tasking algorithms
made six consecutive observations of the maneuvered RSO after maneuver detection.

(a) Radar IOD tasking solution (b) Radar MMAE tasking solution

Fig. 6: Radar Schedule with orbit determination

While the MMAE results in Fig. 6 also produced six consecutive observations of the post-maneuver RSO, the IOD
scenario utilizing Lambert’s Universal Variables orbit determination was able to return to cycling through targets after
only three consecutive observations.
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5. CONCLUSIONS

In this work, it was show that Kalman Filter tuning was the dominant factor in deciding whether or not accurate
maneuver detection was achieved, regardless of the maneuver detection method used for both optical and radar sensors.
Each of the three methods investigated performed accurately if the process noise was set between 1e−10 and 1e−12.
Improper tuning of the standard normalized innovations squared resulted in false positive maneuver detections for the
optical sensor that were not present in the sliding NIS or the fading memory NIS. For the radar sensor, poor tuning
resulted in false positive maneuver detections for all three algorithms.

Event-based sensing modification to the tasking reward function proved crucial in allocating resources to recently
maneuvered RSO without skewing the tasking solution permanently toward that target. Adding a normalized maneuver
detection metric to the Shannon Information Gain metric produced a reward function adaptive to change in the short
term but flexible enough to return to its nominal state.

Initial Orbit Determination (IOD) and Multiple Model Adaptive Estimation (MMAE) methods in the event of ma-
neuver detection were implemented to attempt to reduce the amount of observations of the maneuvered RSO post-
maneuver. MMAE did not generate any improvement but IOD was able to reduce the number of consecutive observa-
tions from six to three.

In order to continue to test the event based response ability of EO sensors, angles-only IOD methods such as Gooding’s
method will be implemented. Unlike Lambert Orbit Determination, Gooding’s Method generated the 6 DoF necessary
for OD by using 3 angles-only measurements. It does this by iterating to solve for the range of the RSO at the first and
third observation time, allowing Lambert’s method to be solved from that information.
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