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ABSTRACT

The protection of high value government and commercial satellites is predicated on the detection, recognition, and localization
of active and defunct satellites, rocket bodies, and debris across all orbital regimes above Earth. In the bulk of those orbital
regimes, recognition has lagged the needs of space domain awareness stakeholders, as target distances preclude resolved imagery
from ground-based observatories. Recent research has demonstrated that the rich, distance-invariant information encoded into the
spectrum of an object’s reflected sunlight can fill this need. This concept, named SpectraNet, introduced deep learned spectroscopy
as a solution bypassing the dearth of exquisite knowledge of the physics governing reflection against complex materials. By
training deep neural networks against a baseline of observations, SpectraNet learns the information content linking spectra to
object identity. In this work we introduce and demonstrate a significant advancement in the SpectraNet pedigree which solves a
number of limitations with the original proof of concept. By utilizing multi-spectral imaging sensors instead of a traditional longslit
spectrograph, this work eliminates the need for a priori knowledge of target location. Further, targets are simultaneously detected
and identified, and the stellar background allows for the extraction of astrometric information required for target localization.
Finally, this technology enables proliferation by utilizing inexpensive, off the shelf components and small telescopes. In this
work we describe the learned backbones for detection and recognition, end to end performance in simulation, and initial on sky
observations.

1. INTRODUCTION

Effective space domain awareness (SDA) enables the safe and equitable use of orbital regimes surrounding Earth.
Without exquisite catalogs of the growing population of satellites in space, all decisions−from policy to launch to
intervention−assume significant risk. While significant advancements in sky coverage and rapid updating of catalogs
have been realized in the last few years, the ability to enrich SDA catalogs with identifying information has lagged
behind.

To detect objects and maintain catalogs, global networks of ground based optical sensors collect continuously, gen-
erating many thousands of images per night. Detection of targets withing those images via deep neural networks has
proven to be highly effective in extracting object positions within these images [14, 9, 33]. Tracking objects requires
the localization of detections in the greater universe; that is, the extraction of a detection’s celestial latitude and longi-
tude (Right Ascension and Declination, respectively). This location is accomplished by detecting stars ubiquitous to
all space imagery [13, 15] and matching unique patterns of those stars to previously measured catalog locations [25].
The result provides a mapping from pixel to celestial coordinates.

Finally, as orbital regimes grow increasingly congested and spacecraft increasingly mobile, the ability to identify
a spacecraft from information contained in an observation becomes critically important. Relying on correlation of
observed object locations to existing catalog entities breaks down in crowded regimes, during and after rendezvous
and proximity operations, and following significant maneuvers. The ability to recognize observed satellites has been
demonstrated [18] and shown to be effective throughout orbit seasonality [20]. However, the technologies employed
in those works required a priori knowledge of a target’s location. In this work we introduce the concept of imaging
spectroscopy to enable simultaneous detection, localization, and recognition of satellites in spatially unresolved space
imagery.

The main contributions of this work include:

• Two large datasets of simulated spectrally enriched space imagery of 110 satellite classes observed over six
months, one for multispectral cameras, and the second for multi aperture telescopes.
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Fig. 1: Simultaneous detection, localization, and recognition. Frame A: A single channel raw frame from a Raven
class telescope. Frame B: Star and object detections in pixel space. Frame C: Localization information extracted from
star positions. Frame D: Object identifying information extracted from spectral channel of image. Frame E: Cutout
spectral channels for detected object used in the recognition step.

• Astronomical observations through multispectral cameras on Raven class telescopes.

• An analysis on the relative effectiveness of multispectral vs multi aperture systems for simultaneous detection,
localization, and recognition of satellites from affordable, easy to deploy ground based equipment.
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Fig. 2: The large left image is a full frame, 2048 pixel square image of the moon captured through a 0.35 m aperture
Raven class telescope with a Silios Toucan multispectral camera. To the right, the extracted ten channels from 400 to
900 nanometers, organized from left to right, top to bottom. Spectral differences in the reflected sunlight are apparent
to the naked eye and demonstrate the multi-filter capability of large format Bayer filters.

2. PREVIOUS WORK

The development of a compact and affordable telescope system allowing for detection, localization, and recognition of
spatially unresolved objects in space imagery requires a number of exquisite technologies. First, in the detection step,
raw frames from a telescope are processed to extract satellites. This step yields the pixel coordinates of satellites in
the frame. Second, in the localization step, field stars are detected and those detections are run through an astrometry
solver. This step enables the conversion of pixel-space detections into right ascension and declination coordinates,
such that the object is localized in space. Finally, spatial information is extracted from the raw observations and used
to classify the observation as a particular satellite, satellite family, or flag as an unknown or immeasurable entity. This
step enriches SDA catalogs with identifying information and enables stakeholders to make informed decisions about
on orbit scenarios.

The performance of algorithms in each step is critically important; in the detection step, under-performing algorithms
can miss objects or create a flood of false positives–queuing costly searches or followup observations. For localization,
detecting too few stars can make astrometric fitting impossible, in which case the data is useless to the SDA community.
Finally, not conducting object classification relies heavily on orbit correlation–a challenge in increasingly congested
orbital regimes–while false classification can raise unnecessary alarms.

An explosion in learned solutions, those which leverage trained deep neural networks instead of hand designed fea-
tures, has advanced the state of the art in each detection, localization, and recognition steps. We discuss these advances
below.

2.1 Detection
The cornerstone work of Fletcher et. al. 2019 [14] demonstrated the effectiveness of computer vision to the detection of
spatially unresolved objects in high contrast space imagery. We utilize SatSim [9], a fully differentiable high fidelity
space scene generator for studying unusual scenarios such as breakups and collisions, and for enabling advanced
training scenarios using pre-training, transfer learning, etc. Previous research explored the application of compact
detection algorithms to the detection problem [22], and demonstrated the use of segmentation as a technique to extract
detections instead of object detection models [33].

Models are developed and trained with PyTorch [27] and experiments are controlled and monitored with MLFlow
[34].

2.2 Localization
StarNet [13] and StarCSP [15] offer learned solutions to detecting streaked stars without using error prone information
in the header to dictate streak length and orientation. These pixel star detections are fed into a plate solving code, such
as Astrometry.net [25]. In this plate solver, hash indexed quad patterns of stars allow efficient solving of the necessary
transforms from pixel coordinates to sky coordinates. This critical step allows the pixel coordinates of detected space
objects to be mapped into real world coordinates useful in orbit determination and propagation.
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Fig. 3: A zoomed region from the top left of Figure 2. The large left image represents raw camera output, with the
visible Bayer pattern. The smaller images to the right are extracted channels. Each extracted channel suffers a loss in
spatial resolution over the raw camera footage, but the addition of spectral information provides a salient additional
source of information.

2.3 Recognition

With a well understood radiative transfer model, spectroscopic observations can be reproduced with high fidelity [11].
Such models provide detailed physical underpinnings of the observed system [24]. In the study of stellar emission
spectra, physics based models can extract the parameters of a star from a single observations [16]. In SDA, asteroid,
and planetary astronomy, where incident sunlight is reflected, absorbed, and re-emitted by solid materials [8, 12],
the underlying physics is governed by statistical thermodynamics and quantitative model-based spectroscopy is less
applicable.

In the field of SDA, anthropogenic materials impart unique spectral signatures onto reflected light and often produce
highly specular bidirectional reflection distribution functions (BRDFs) on which material orientation is a significant
component. With new materials launched continuously and weathered in earth orbit, models of spectral reflectance
are difficult to measure [10]. An important body of work is continuously narrowing the gap between observations and
models, but the work is difficult and progress is slow [6].

In the meantime, the effectiveness of computer vision for the recognition satellites in regimes where spatial information
is lost has been demonstrated on sky [18], in simulation for long baselines [20], and for large ranges of spectral
information density [19]. This, paired with a growing number of spectroscopy ready SDA telescopes [23, 26, 28],
makes learned recognition for SDA enrichment a pressing need.

3. THIS WORK

In this work we concentrate on the recognition step in SDA pipelines. The novel aspect of this work is the utilization
of sensing concepts which enable detection and localization. Unlike previous SpectraNet work [18, 31, 19, 20] which
focuses on longslit spectrographs as the enabling technology, here we explore the use of imaging focal plane arrays
designed to provide simultaneous spectral information. This distinction moves SpectraNet powered telescopes from a
dedicated followup instrument, capable of recognition once an object is detected and an orbit is determined by other
means, to a self contained unit of SDA in which the discovery and recognition steps are tightly coupled.

We test five model backbones, ResNet-18, -34, and -50 [21], HybridSN [30], and PhotConv [19]. Residual networks
are celebrated for high performance and rapid training due to the application of residual skip connections and batch
normalization. For each of the ResNet backbones we utilize pre-trained weights and modify the initial ResNet layer
to accept our data cube shape, that is 10 x 10 spatial pixels and 10 spectral channels. HybridSN is a model built
to enhance feature extraction from hyperspectral data cubes by combining 3D convolutions for spectral information
and 2D convolutions for spatial features [30]. The model is especially effective on hyperspectral imagery of earth’s
surface; we apply the same technology to space imagery. Finally, we adopt the PhotConv model developed for few
channel photometric measurements to train on spectral data cubes; this is done by compressing the spatial information
in our detections to 1D arrays of 10 spectral channels.
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One Month Challenging Dataset
Network Dragonfly Toucan Toucan Defocused

ResNet50 0.673 ± 0.006 0.218 ± 0.012 0.457 ± 0.020
ResNet34 0.696 ± 0.002 0.247 ± 0.003 0.468 ± 0.010
ResNet18 0.687 ± 0.004 0.238 ± 0.005 0.522 ± 0.009
HybridSN 0.664 ± 0.010 0.206 ± 0.010 0.571 ± 0.005

PhotConv1d 0.620 ± 0.001 0.100 ± 0.002 0.368 ± 0.015
One Month Simple Dataset

Network Dragonfly Toucan Toucan Defocused
ResNet50 0.776 ± 0.008 0.197 ± 0.032 0.615 ± 0.014
ResNet34 0.793 ± 0.007 0.307 ± 0.022 0.639 ± 0.026
ResNet18 0.796 ± 0.005 0.238 ± 0.036 0.635 ± 0.018
HybridSN 0.827 ± 0.002 0.334 ± 0.002 0.743 ± 0.004

PhotConv1d 0.747 ± 0.003 0.164 ± 0.005 0.506 ± 0.001

Table 1: Classifier accuracies across five networks, three instrument designs, and two difficulty scenarios. Maximum
per-instrument performances appear in bold.

4. DATASETS

Models are trained on a dataset of 100,000 simulated examples, 10,000 validation and 10,000 test examples. Two
class sets are used, one in which 110 classes include multiple populated satellite families. This challenging dataset
contains six DirecTV designs, six AMC designs, five THEMIS, four NOAA, four DMSP, and so on. Within these
families of satellites, differences are minimal as overall designs stay consistent, but models are trained to recognize
each individual design. The second set of 70 classes contains a single entry from each satellite family. In both sets,
roughly half of the satellites modeled articulate solar panels to maximize solar flux, and the dataset contains 11 rocket
bodies (Figures 5 and 6).

In this work we simulate two hardware setups for collecting simultaneous many filter imagery; a multispectral camera
and a multi aperture telescope. The multispectral camera allows for a simpler optical setup, in which a single telescope
is equipped with a single instrument. However, the camera hardware introduces complexities at the image plane and
camera efficiency in currently available commercial offerings is limited. In contrast, the drawback of multi aperture
telescope lies in the hardware and software complexity, with accurate temporal triggering required across multiple
co-mounted separate apertures on a single mount. At the image plane, each aperture sits behind a different filter and
receives higher efficiency and non-adulterated point spread functions.

4.1 Toucan Multispectral Camera

In commercial color CCDs, simultaneous color information is collected using a Bayer filter [7] in which the focal
plane is divided into two by two blocks containing one red, one blue, and two green filtered pixels. The specific design
and matrix size of Bayer filters can be extended for industrial and scientific purposes, and current commercial offerings
from Ximea [2, 3, 4] and Silios [1] include nine, sixteen, and twenty-five filter setups ranging from roughly 400 to 900
nanometers in bandwidth.

Previous work has demonstrated that five filters are adequate to learn spectral positive identification, and that increasing
spectral coverage is more important than increasing number of filters [19]. For this reason we choose to simulate the
Silios Toucan, which holds 10 filters between 400 and 900 nanometers in a 16 pixel Bayer pattern. In Figures 2 and 3
the properties of this multispectral camera are visualized. The example frames were captured using a Toucan camera
on a 0.35 meter aperture Raven class telescope [32] deployed in Antofagasta, Chile.

While multispectral cameras are ideal for resolved imagery in well lit environments, the pixel layout can provide
uneven spectral sampling and introduce artifacts in measured spectra for the narrow point spread functions (PSFs) of
astronomical imagery. The natural distribution of a PSF dictates that central pixels receive higher counts than those
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Fig. 4: Multiaperture Dragonfly performance across three families of satellites. In this subset confusion matrix, we
isolate rocket bodies from the full dataset. For this reason, rows need not sum to unity. Here we demonstrate the
performance of the Dragonfly performance on challenging satellite families, including Themis, Thor, and DMSP. In
comparison to single and simpler objects (see for example Figure 5), satellite families suffer significant confusion as
the spectral differences between classes are limited.

radially more distant. When each pixel is collecting unique spectral information, the received filter flux is dictated not
only by the radiative transfer of the sun-satellite system, but also by the relative position of the pixel with respect to
the imaged PSF.

For clarity, we refer to the multispectral experiments as Toucan−the sensor simulated in this work−for the remainder
of this paper.

4.2 Dragonfly Multi Aperture Telescope

Multi aperture telescopes such as the Dragonfly system [5] allow for numerous co-aligned apertures on a single robotic
telescope mount. Originally designed to observe extended, low surface brightness sources like galaxies, multi aperture
systems also pave the way for multiple simultaneous photometric measurements. To that end, a number of systems
have been developed in the SDA community to monitor multi color light curves of satellites [29, 28, 23]. These
systems have up to four apertures, fewer than necessary for spectral recognition [19].

To enable a direct comparison between multi aperture and Toucan systems, we simulate a robotic telescope with the
same filters as a Toucan camera of §4.1; 10 apertures with unique filters on each aperture. Due to the dedicated aperture
per filter, multi aperture systems require smaller apertures per filter. We hypothesize that multi aperture systems will
not suffer the same PSF-related issues as Toucan sensors. The drawback of multi aperture systems is the complexity
of instrument design, alignment, and operation.

For clarity, we refer to multi aperture experiments as Dragonfly, after their namesake instrument, for the remainder of
this paper.
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Fig. 5: Multiaperture Dragonfly performance across rocket bodies. In this subset confusion matrix, we isolate rocket
bodies from the full dataset. For this reason, rows need not sum to unity. Here we demonstrate the performance of the
Dragonfly performance on rocket bodies, including the Thor family. This figure is presented for comparison to Toucan
multispectral performance in Figure 6.

5. EXPERIMENTS

In each experiment, detections are sliced out of simulated imagery to construct data cubes with 10x10 spatial size and
10 spectral channels. This is the exact mode to be used in an active SDA scenario, where the preceding detection
step allows for cube extraction. For the Toucan systems, the frame is first reconstructed from 2048x2048 pixels to
512x512x10. The Dragonfly data is naturally in this latter cube form.

The compact nature of each example allows for rapid training even on large datasets. For each model backbone
discussed in §3 we run a 200 trial hyperparameter experiment to maximize performance per model and data type. The
results of that experiment are shown in Table 1.

Performance measurements in this work relate to spectral recognition alone. In practice, additional accumulated
information can provide enhanced performance, such as position angle and seasonal phase, telescope pointing location,
and so forth.

Dragonfly class multi aperture telescopes performed admirably, with maximum overall classification accuracy of
82.7%. This is well within the performance expected based on earlier, less realistic simulations [19], and shows
that filter based photometry using on sky imagery (instead of the simulated one dimensional spectra) should unlock
the final step in a single instrument with combined detection, localization, and recognition capabilities. For the chal-
lenging dataset in which multiple generations of satellite designs are represented, the Dragonfly performance drops
roughly 13% to 69.6%. Given that the performance drop reflects confusion within satellite families (Figure 4), the
lower performance is consistent with expectation.

Initial tests with the Toucan design and challenging dataset show poor performance of only 24.7%, unacceptable for a
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Fig. 6: Effects of defocusing on multispectral instruments. Subset confusion matrices isolate a narrow selection of
classes for visibility, and thus rows and columns may not sum to unity. Rocket bodies in the focused Toucan experiment
(left) and the defocused experiment (right). As is apparent in Table 1, the performance of the Toucan class instrument
is significantly improved when defocusing, which spreads target PSFs over a larger number of pixels and promotes
stability in Bayer spectral sampling.

SpectraNet technology. Despite a random performance on this dataset of 0.9%, such low classification accuracies do
not provide information to stakeholders which lowers the risk of action. On the single satellite class dataset, perfor-
mance jumps to only 33.4%. As discussed in §4.1, we attribute these low performance numbers to the confounding
variable of PSF position relative to Bayer filter alignment (see §4.2).

To test this, we generate a second dataset in which we heavily defocus the Toucan system with the expectation that
a more diffuse PSF will decrease the PSF placement artifacts and increase the number of Bayer pattern pixel ma-
trices covered per observation. This technique is fairly common in astronomy, but is generally applied to maximize
flux and thus decrease read noise in exoplanet transit work [17]. We find that this increases the performance of the
Toucan system by an impressive 30-40% and suggest that this presents opportunities for the Toucan system to reach
performance similar to that of the Dragonfly telescope. In this work we still see a discrepancy favoring the Dragonfly
design, with the Toucan multispectral performance on the challenging dataset of 57.1% (-12.5%) and for the simpler
dataset of 74.3% (-8.4%). Despite this, the performance numbers are promising and suggest that both multispectral
and multiaperture systems should be prototyped and tested on sky.

In these experiments, the best performing model backbone was the HybridSN model, which combines 3D convolutions
for spectral features and 2D convolutions for spatial features. The 3D convolutions provide inductive biases for spectral
data and offer a promising new line of research to maximize performance on spectrally aware space imagery.

6. CONCLUSIONS

In this work we demonstrate that “single shot” space domain awareness, in which a single telescope can detect,
localize, and recognize spatially unresolved satellites is possible with technologies available today. Unlocking this
ability allows mainstream SDA applications of spectral recognition which is otherwise impossible due to impractical
single mission sensors. The ideal instrument for this type of work follows a Dragonfly class design; a single robotic
telescope mount with multiple apertures. A simpler design in which a single aperture feeds a multispectral camera
also offers promise and the roughly ten percent drop in recognition accuracy may be overcome with proper instrument
configuration and novel network backbones.
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