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1. ABSTRACT

The paper presents the UK operational deployment of the Advanced Ensemble Networked Assimilation System 

(AENeAS; [1]) at the UK Met Office, aimed at enhancing Space Situational Awareness (SSA) and Space Domain 

Awareness (SDA) in Low Earth Orbit (LEO). AENeAS, a physics-based data assimilation model, integrates diverse 

data sources – including electron density profiles, total electron content (TEC) measurements, radio occultation data, 

and derived neutral densities – to accurately predict satellite trajectories and mitigate collision risks. This capability 

is vital due to the increasing congestion in LEO, posing significant threats to the safety and longevity of space-based 

assets. 

The operational implementation of AENeAS provides satellite operators with real-time thermospheric nowcasts and 

actionable forecasts, with uncertainties, crucial for collision avoidance decisions. Moreover, the model's validation, 

using independent data sources like the Swarm and CHAMP satellites, demonstrates its superior performance over 

other models in offering more accurate neutral density estimates. This advancement underscores AENeAS's 

significant contribution to the SSA/SDA community, highlighting its role in creating a safer, more reliable, and 

sustainable operational environment for satellite technologies amid growing space congestion. The integration of 

novel thermospheric observations and the provision of critical atmospheric data make AENeAS a pivotal tool for the 

future of space operations management.   

2. INTRODUCTION

The proliferation of satellite technology has brought about a significant evolution in how we communicate, navigate, 

and monitor our planet. However, the growing number of objects in Low Earth Orbit (LEO) introduces a heightened 

risk of collisions, which could lead to substantial disruptions of the space-based infrastructure that underpins many 

aspects of contemporary life. Addressing this challenge requires advanced predictive tools capable of accurately 

modeling the complex dynamics of the upper atmosphere, particularly within the ionosphere and thermosphere. The 

Advanced Ensemble Networked Assimilation System (AENeAS) is a critical innovation in this arena. By integrating 

first-principles models with real-time observations using a sophisticated variant of the ensemble Kalman filter, the 

Local Ensemble Transform Kalman Filter (LETKF), AENeAS offers a cutting-edge approach to forecasting 

atmospheric conditions. This capability is vital for satellite operators who require precise orbit determination and 

effective strategies for collision avoidance. 

AENeAS has been implemented and is now operational at the UK Met Office Space Weather Operations Centre 

(MOSWOC) under the Space Weather Instrumentation, Measurement, Modelling, and Risk (SWIMMR) initiative. 

Launched in 2020, SWIMMR represents a significant step forward in enhancing the UK's capacity to predict and 

mitigate the impacts of space weather. As the UK moves toward a future with an increased reliance on space-based 

assets, ensuring the protection of both terrestrial and orbital technological infrastructures is of paramount 

importance. Supported by the UK Research and Innovation's Strategic Priorities Fund, SWIMMR aligns closely 

with national research goals, fostering interdisciplinary collaboration to address the multifaceted challenges posed 

by space weather phenomena. 

3. BACKGROUND

Modeling the upper atmosphere, particularly the thermosphere, is essential for understanding the forces acting on 

satellites and debris in LEO. There are three primary categories of models used for this purpose: empirical models, 

physics-based models, and data assimilation models. 
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Empirical models, which often incorporate machine learning techniques, typically offer lower spatial and temporal 

resolution [2]. Examples of such models include: NRLMSIS-2.0 [3], DTM2020 [4], JB2008 [5], and HASDM-ML 

[6]. These models are frequently employed in operational settings due to their simplicity and computational 

efficiency, despite their limitations in accuracy and resolution. 

 

Physics-based models, in contrast, are grounded in the fundamental equations governing the physical processes 

within the thermosphere, often in conjunction with the ionosphere. These models are driven by initial and boundary 

conditions, as well as proxies for solar and geomagnetic activity. Examples include: CTIPe [7], TIE-GCM [8], [9], 

WAM [10], GITM [11], WACCM-X [12], and GAIA [13]. These models provide a more detailed and dynamic 

understanding of the thermosphere, enabling predictions that reflect real-time solar and geomagnetic influences. 

 

Data assimilation models combine observational data with either empirical or physics-based models to improve 

prediction accuracy. For example, HASDM [14] incorporates data assimilation into an empirical framework, while 

AENeAS [1] integrates it into a physics-based context. Fig. 1 showcases model outputs of neutral density at an 

altitude of 250 km, illustrating the thermosphere's response to the geomagnetic storm on March 17, 2013. Physics-

based models, in particular, are adept at capturing the dynamic response of the thermosphere to solar and 

geomagnetic activity. 

 

Although empirical models are widely used in operational orbit prediction and space traffic management, there is a 

growing shift toward the use of physics-based models in these applications. For instance, the US Space Weather 

Prediction Centre (SWPC) employs the WAM model, and the UK Met Office uses AENeAS to support advanced 

orbit prediction capabilities. These physics-based models offer the advantage of providing a consistent data 

framework that can be applied to multiple objects in orbit, improving computational efficiency when predicting the 

orbits of thousands of satellites and debris. The ability of physics-based models to forecast thermospheric conditions 

is crucial for accurate satellite and debris tracking. However, these models often exhibit biases and may 

underperform relative to empirical models, a limitation that data assimilation techniques, such as those used in 

AENeAS, are designed to mitigate. The challenges and benefits of using physics-based models for supporting LEO 

satellite operations, as well as a number of solutions to overcome the challenges, are described in [15].  
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Fig. 1. Model density maps at 250 km just before (left frames) and at the height of the 13 March 2013 minor storm 

(right frames), from [2]. 

 

 

4. METHODOLOGY 

4.1 AENeAS 

 

AENeAS represents a fusion of observational data with a background physics model using an advanced variant of 

the ensemble Kalman filter (EnKF) [16]. The EnKF is part of the broader family of Kalman filters, which operate by 

iteratively predicting and correcting system states. Unlike the standard Kalman filter, the EnKF utilizes an ensemble 

of forecasts to approximate error covariance, thereby avoiding the direct computation of these covariances. The 

EnKF process involves three main steps: 

 

1. Initialization: An ensemble of state estimates, reflecting the uncertainty in initial conditions, is generated. 

2. Forecasting: The ensemble members are advanced forward in time using the physics model. 

3. Analysis: When new observational data becomes available, the ensemble is updated through a weighted 

average based on the Kalman Gain, integrating the observations to refine the forecast. 

 

While the Kalman filter is optimal under specific assumptions – such as Gaussian distributions, linearity, and no 

biases – the EnKF is more flexible, allowing for non-linear and non-Gaussian processes. AENeAS uses the Local 

Ensemble Transform Kalman Filter (LETKF) [17], which introduces localization to manage the spurious 
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correlations that can occur due to the limited size of practical ensembles. LETKF operates by transforming the 

ensemble into observation space within localized regions, reducing computational complexity and improving the 

accuracy of the model. 

 

The LETKF offers several key advantages: 

 

• Efficiency: By breaking down the global analysis problem into smaller, localized problems, the LETKF can 

solve these independently and in parallel, significantly improving computational efficiency. 

• Reduced Spurious Correlations: Localization ensures that only relevant, nearby observations influence the 

state update, reducing the impact of distant, uncorrelated data points. 

• Scalability: The LETKF is well-suited to high-dimensional systems, as it avoids the need to store or 

manipulate full covariance matrices, making it scalable to large-scale problems. 

 

Mathematically, the LETKF computes the analysis increment for each ensemble member as a linear combination of 

the ensemble perturbations, with weights optimized to minimize analysis error variance based on local observations. 

 

4.2 Drag Force Modelling 

 

Accurate modelling of thermospheric density is essential for predicting drag forces on satellites and debris in LEO. 

The drag force (𝐹𝑑) acting on an object is given by: 

 

𝐹𝑑 =
1

2
𝐶𝑑𝜌𝑣

2𝐴, 

 

where 𝐶𝑑 is the drag coefficient, 𝜌 is the thermospheric density, 𝑣 the relative velocity of the object, and 𝐴 is the 

cross-sectional area perpendicular to the velocity vector.  

 

The thermosphere's density varies significantly with solar and geomagnetic activity, leading to fluctuations that 

complicate the estimation of drag forces. Accurate drag modeling is crucial for several reasons: 

 

• Orbital Decay Prediction: Errors in density estimates can lead to inaccuracies in predicting how quickly a 

satellite's orbit will decay due to drag. 

• Collision Avoidance: Precise drag force calculations are necessary to improve the accuracy of orbital 

trajectory predictions, which are critical for collision avoidance strategies. 

• Fuel Optimization: Satellites equipped with propulsion systems must adjust their orbits periodically. 

Improved density models can help optimize fuel usage by reducing the need for frequent corrections. 

 

 

5. APPLICATION OF AENeAS 

 

AENeAS has a broad range of applications that are vital for maintaining the safe and efficient operation of satellites 

in LEO. By providing highly accurate predictions of atmospheric densities, AENeAS enables satellite operators to 

make better-informed decisions regarding orbital adjustments, leading to enhanced collision avoidance, fuel savings, 

and extended satellite lifespans. 

 

The collision probability between two orbiting objects is determined by analyzing their conjunction data points, 

where their orbits come closest together. This analysis relies on the relative position and velocity vectors of the 

objects, as well as the positional uncertainties (errors) in various directions. The probability of collision (𝑃𝑐) is 

calculated using: 

 

𝑃𝑐 = exp (−
1

2
[𝑑𝑇(𝐶𝑜𝑣1 + 𝐶𝑜𝑣2)

−1𝑑]), 

 

where 𝑑 is the “miss distance vector” representing the closest approach between the two objects, and 𝐶𝑜𝑣𝑖 for 𝑖 =
1,2 are the covariance matrices describing the positional uncertainties of the objects.  
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Improving the specification of thermospheric conditions with AENeAS reduces positional uncertainties, leading to 

more accurate predictions of 𝑃𝑐. This accuracy enables satellite operators to make more informed decisions, 

potentially reducing the frequency of unnecessary orbital maneuvers. 

 

6. HANDLING NON-GAUSSIAN UNCERTAINTIES 

 

In the realm of satellite operations, accurately estimating the probability of collisions between objects in Low Earth 

Orbit (LEO) is a critical concern. Traditionally, this estimation process has relied on the assumption that the 

underlying thermospheric density distributions, critical to calculating drag forces, are Gaussian. While Gaussian 

distributions offer mathematical simplicity and ease of implementation, they do not always capture the complex 

realities of the thermosphere, particularly during periods of heightened solar or geomagnetic activity. Non-Gaussian 

probability distribution functions (PDFs) present a more flexible and realistic approach, allowing for the 

representation of statistical features such as heavy tails, skewness, and multimodality, which are often observed in 

thermospheric data. By utilizing non-Gaussian PDFs, satellite operators can achieve more accurate estimations of 

collision probabilities, leading to improved decision-making and enhanced safety in space operations. 

 

6.1 Limitations of Gaussian Assumptions 

 

The Gaussian distribution, often assumed in traditional models, is characterized by its symmetrical bell curve, which 

is defined entirely by its mean and variance. This assumption implies that extreme values (outliers) are rare and that 

the distribution of data points is symmetrically centered around the mean. In the context of thermospheric density 

and drag forces, these assumptions may not hold true, especially under the influence of dynamic space weather 

conditions. For instance, during geomagnetic storms or periods of high solar activity, the thermosphere can exhibit 

significant deviations from a normal distribution, including skewed distributions where one side of the mean 

contains more extreme values than the other, or distributions with heavy tails that indicate a higher likelihood of 

extreme events. 

 

Relying on Gaussian assumptions can therefore lead to underestimation or overestimation of satellite collision 

probabilities. For example, if the thermospheric density distribution has a heavy tail, a Gaussian model might 

underestimate the likelihood of encountering high-density regions, which could result in inaccurate predictions of 

drag forces and, consequently, collision risks. Similarly, skewed distributions can lead to biased estimations of 

satellite positions, affecting the accuracy of conjunction analyses used to predict close approaches between objects 

in orbit. 

 

6.2 Advantages of Non-Gaussian PDFs 

 

Non-Gaussian PDFs offer a more accurate and flexible framework for modeling the uncertainties associated with 

thermospheric density and drag forces. These PDFs can accommodate the statistical nuances of real-world data, 

leading to more precise estimations of collision probabilities. Specifically: 

 

• Heavy Tails: Non-Gaussian PDFs can capture the higher probability of extreme events, such as sudden 

increases in thermospheric density due to solar flares or geomagnetic storms. This capability is particularly 

important for modeling the drag forces acting on satellites, as it allows for a more realistic estimation of 

how these forces vary over time. By accurately representing the likelihood of extreme density values, non-

Gaussian PDFs reduce the risk of underestimating collision probabilities, which is crucial for avoiding 

unexpected satellite conjunctions. 

 

• Skewness: The ability to model skewed distributions is another key advantage of non-Gaussian PDFs. In 

many cases, the distribution of thermospheric density may be asymmetrical, with more frequent 

occurrences of high or low-density values depending on the space weather conditions. Skewed distributions 

can lead to more accurate predictions of satellite positions, particularly in scenarios where the traditional 

Gaussian assumption might cause systematic biases. By better representing the true distribution of density 

values, non-Gaussian PDFs improve the precision of orbital predictions and collision probability estimates.  
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• Multimodality: Non-Gaussian PDFs can also model multimodal distributions, where the data exhibits 

multiple peaks corresponding to different regimes or states of the thermosphere. This is especially relevant 

during complex space weather events, where the thermosphere might exhibit different behaviors in 

different regions or at different times. By capturing these multiple modes, non-Gaussian PDFs provide a 

more comprehensive view of the possible states of the thermosphere, leading to more robust collision 

probability calculations. 

 

6.3 Practical Implementation in Satellite Operations 

 

Incorporating non-Gaussian PDFs into the estimation of satellite collision probabilities involves using advanced 

statistical techniques and data assimilation methods that can accurately capture the underlying distribution of 

thermospheric parameters. One effective approach is the use of ensemble modeling, where multiple simulations are 

run to generate a range of possible outcomes, each reflecting different initial conditions and uncertainties. The 

resulting ensemble can then be analyzed to construct a non-Gaussian PDF, which provides a detailed representation 

of the probability distribution of thermospheric densities. 

 

By integrating non-Gaussian PDFs into the collision probability estimation process, satellite operators can achieve a 

more nuanced understanding of the risks involved in satellite conjunctions. This improved risk assessment enables 

operators to make more informed decisions about collision avoidance maneuvers, reducing the likelihood of 

unnecessary maneuvers and conserving valuable fuel resources. Moreover, the enhanced accuracy in collision 

probability estimates contributes to the overall safety and sustainability of space operations, as it allows for more 

precise management of the increasingly crowded space environment. 

 

 

6.4 Implementation with AENeAS 

 

AENeAS, as an ensemble-based model, offers the capability to estimate these non-Gaussian PDFs directly from its 

ensemble members. There are several approaches to constructing PDFs from ensemble data: 

 

1. Frequentist Approach: This method involves treating ensemble members as samples from an underlying 

random process. A PDF is constructed by counting the occurrences of each outcome and representing these 

counts as a histogram. However, this approach can be sensitive to the choice of bin sizes and boundaries, 

potentially leading to an unstructured PDF. 

 

2. Kernel Density Estimation (KDE): KDE is a non-parametric method for estimating the PDF of a random 

variable. It involves placing a kernel function, such as a Gaussian curve, at each data point and summing 

these kernels to produce a smooth estimate of the PDF. The choice of bandwidth in KDE is crucial; a 

narrower bandwidth results in more detailed features but risks overfitting, while a broader bandwidth may 

oversmooth the data. 

 

3. Fitting to a Known Distribution: If the data is believed to follow a specific distribution, such as Gaussian or 

exponential, the parameters of this distribution can be estimated from the ensemble data. This approach 

involves selecting an appropriate distribution, fitting it to the data using techniques like maximum 

likelihood estimation (MLE), and validating the fit using statistical tests. The resulting parameterized 

distribution provides a mathematical model of the PDF. 

 

 

Among these various approaches, AENeAS employs Kernel Density Estimation (KDE) to estimate the underlying 

PDFs of neutral densities. Fig. 2 presents a typical PDF of neutral density derived using KDE, with the ensemble 

members' raw output depicted as black crosses and the smoothed PDF shown in blue, calculated using Silverman’s 

Rule (a popular heuristic that can be used as a “rule of thumb” to estimate the bandwidth for the KDE). 

 

This means that, using AENeAS as the underlying LEO thermosphere model in satellite prediction applications, we 

can improve the underlying estimates of collisions probability not only by reducing the error in specifying the 

neutral density, but also by better understanding the errors and uncertainties.  
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Fig. 2. Estimated PDF of neutral densities at a specific location  

(7.5˚N, -95˚E and an altitude of 357 km) 

 

 

7. CONCLUSIONS 

 

The operational deployment of AENeAS at the UK Met Office represents a significant advancement in the realm of 

satellite orbit prediction and collision avoidance. AENeAS's integration of sophisticated data assimilation techniques 

with real-time atmospheric observations marks a substantial improvement in the accuracy of thermospheric models. 

This enhanced precision is critical for the safety and sustainability of space operations, both in the UK and globally. 

 

Utilizing AENeAS as the foundational LEO thermosphere model in satellite prediction applications allows for a 

significant enhancement in the estimation of collision probabilities. This improvement is achieved not only by 

refining the accuracy of neutral density specifications, critical for precise drag force calculations, but also by 

providing a deeper and more nuanced understanding of the associated errors and uncertainties. By integrating 

AENeAS, operators can account for the complex variability in thermospheric conditions, leading to more accurate 

predictions of satellite trajectories and potential collision events. The advanced data assimilation techniques 

employed by AENeAS enable the model to capture and represent the inherent uncertainties in thermospheric density 

with greater fidelity. This results in a more comprehensive error analysis, allowing satellite operators to make more 

informed decisions regarding collision avoidance maneuvers. Ultimately, this leads to a reduction in the likelihood 

of unnecessary orbital adjustments, optimizing fuel use and extending satellite operational lifespans, while 

simultaneously ensuring a higher level of safety and reliability in space operations. 
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