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ABSTRACT

As presence in cislunar space expands, new methods for characterizing the capabilities of low-thrust spacecraft in the
regions beyond geosynchronous orbit (GEO) are becoming more important. Spacecraft reachability analysis, which
refers to the determination of the set of states that a spacecraft can travel to or come from using its propulsion sys-
tem over a given amount of time, is fundamental to our understanding of spacecraft trajectories and their neighboring
phase-space regions in this new dynamical topography. Reachability analysis offers multi-faceted utility to the space
situational awareness community for tracking, detection, maneuver reconstruction, and evaluation of collision prob-
abilities. However, the computation of reachable sets is a particularly formidable problem in astrodynamics and few
methods exist to accurately and rapidly compute reachable sets for low-thrust spacecraft. Furthermore, computing
reachable sets in the xGEO (beyond GEO) regime presents unique challenges due to the highly sensitive and chaotic
dynamics environment. In this paper, we present a unique technique for propagating the reachable sets of low-thrust
spacecraft in the cislunar environment that leverages state-transition tensors and set-based computing techniques.

1. INTRODUCTION

Growing international interest in cislunar missions beyond the geosynchronous belt (xGEO) necessitates enhanced
tools and algorithms for space situational awareness (SSA) in order to facilitate safe and cooperative expansion into
this multi-body regime. This requires the ability to evaluate collision probabilities, propagate uncertainty, characterize
mission capabilities, and track spacecraft. Simultaneous to increasing cislunar interest is a push towards the use of
electric propulsion (EP) for driving spacecraft missions. As space exploration moves towards these novel frontiers,
new techniques must be adapted and developed.

Spacecraft reachability analysis refers to the set of states that a spacecraft can travel to or come from using its propul-
sion system over a given amount of time. It offers multifaceted utility for the aforementioned SSA capabilities,
ensuring safety of missions, and path planning and control. However, evaluating the reachable sets of low-thrust
spacecraft is a notoriously difficult problem owing to the fact that these spacecraft are continuously thrusting. More-
over, the highly nonlinear and chaotic environment that characterizes cislunar multi-body space renders the evaluation
of reachable sets an endeavor fraught with considerable difficulty.

Reachability analysis is a classical problem in dynamical and controls systems for system verification, invariant-set
computation, observation, and set-based prediction. It has been shown that the reachability problem is undecidable
with even the simplest of dynamical systems [2], meaning there exists no algorithm that can solve the reachability
problem correctly for most dynamical systems. Therefore, reachability analysis techniques require some form of
approximation in order to reframe the problem in a manner that is computationally feasible. There are several means
of computing reachable sets, however the three main categories involve: 1. solving an associated Hamilton-Jacobi-
Bellman partial differential equation (HJB PDE) for propagating zero-sublevel sets; 2. random sampling integration
of a large number of points; and 3. directly propagating reachable sets through set-based computing.
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The most popular approach that has seen success for low-thrust, cislunar spacecraft, involves random sampling and
the propagation of a large number of trajectories. For example, [8] proposes a technique that leverages the indirect
method of trajectory optimization by solving many optimal-control problems with a randomly sampled objectives.
This technique produces a large number of extremal trajectories that outline the boundary of the reachable set in
relevant directions. An adaptation of this technique is outlined in [15], whereby each optimal-control problem is
suboptimally solved to improve computation time. Recently, [13] showed that generating extremal trajectories does
not require solving an optimal-control problem and can be done simply by solving an ODE. However, this technique
does not allow for sampling of extremal trajectories in specific spaces, such as the position or velocity space. All of
these techniques suffer from the fact that they require a large number of trajectories to produce a good outline of the
boundary of the reachable set. Moreover, these techniques can only provide mathematical guarantees on the convex
hull of the reachable set, and therefore can struggle to produce good samples of non-convex reachable sets. Lastly, for
those systems that demand a considerable expenditure of computational resources, such as realistic ephemeris models,
this approach can be slow as it necessitates the resolution of numerous trajectories.

In this paper, we propose a novel approach to reachability analysis of low-thrust, cislunar spacecraft that leverages
state-transition tensors and set-based computing to directly propagate reachable sets. Set-based reachability analy-
sis, which uses set representations like polytopes, zonotopes, Taylor models, and polynomial zonotopes, is a popular
method for performing reachability analysis among the cyberphysical systems community. However, such a technique
for reachability analysis has not been demonstrated for the purposes of cislunar SSA. Moreover, typical implementa-
tions of set-based reachability computing use inaccurate means of discretization. By leveraging state-transition tensors,
which have become popular for many astrodynamics applications like uncertainty propagation and optimal control,
higher accuracy non-convex approximations of reachable sets can be obtained. Additionally, only one numerical in-
tegration need be performed, in contrast to other algorithms where numerous numerical integrations are required. We
show how the proposed method performs in comparison to a selection of previously proposed methods for reachability
set computation for distant retrograde orbits (DROs) in the circular, restricted, three-body problem (CR3BP). We then
show how the method can be easily extended for higher-fidelity, reachable-set computation using ephemeris models
of a cislunar spacecraft in a near-rectilinear halo orbit (NRHO).

2. BACKGROUND AND METHODOLOGY

2.1 Reachability
In this paper, the characterization of reachable sets under bounded time and bounded continuous time inputs is of
interest. The reachable set at time t from some initial set X0 and input constraints U is defined as

R(t)≜
{

xxx0 +
∫ t

t0
fff (xxx(τ),uuu(τ),τ)dτ | xxx0 ∈ X0,uuu(τ) ∈ U ∀τ ∈ [t0, t]

}
. (1)

Moreover, the reachable tube of the system is defined as

R([t0, t])≜
⋃

τ∈[t0,t]
R(τ). (2)

Lastly, we define an extremal trajectory x̄xx(t) as a feasible trajectory that lies on the boundary of the reachable set; i.e.,

x̄xx(t) ∈ ∂R(t),∃uuu(t) ∈ U s.t. ˙̄xxx(t) = fff (x̄xx(t),uuu(t), t) ∀t. (3)

As is shown in [13], extremal trajectories can be generated by solving the following state-costate ODE:[
ẋxx(t)

λ̇λλ (t)

]
=

 fff (xxx(t),uuu∗(t), t)

−
(

∂ fff
∂xxx

∣∣
xxx(t),uuu∗(t),t

)⊺
λλλ (t)

 ∀t ∈ [t0, t f ],

uuu∗(t) = argmin
uuu∈U

λλλ
⊺ fff (xxx(t),uuu, t) ∀t ∈ [t0, t f ],

xxx(t0) = xxx0,

λλλ (t0) = λλλ 0

(4)
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where uuu∗(t) is the input that minimizes the Hamiltonian at time t. This ODE can be solved many times with different
random initial costates, λλλ 0 to produce an estimate of the boundary of the reachable set. We henceforth refer to this
technique of estimating reachaable sets as ODE.

Additionally, the initial condition λλλ (t0) = λλλ 0 can be replaced with a final condition λλλ (t f ) = λλλ f = −ẑzz which results
in a boundary value problem that, under Pontryagin’s Maximum Principle, maximizes the final state along ẑzz [8].
By sampling several final directions, this technique can produce better estimates of the reachable set than simply
solving the initial value problem, but comes at the cost of being difficult to solve and requiring more computation
time. Moreoever, this technique can be ineffective for reachable sets that are non-convex. By solving the problem
with successive alterations to ẑzz and using previous iterations to kickstart the solution to the current boundary value
problem, the technique can be more efficient. We refer to this technique as BVP.

Lastly, the boundary value problem can be approximately solved using a technique called FFOE, suggested in [15],
whereby the dynamics are discretized about a reference trajectory and the costate dynamics are integrated backwards
from the final costates to approximate the initial costates.

2.2 Dynamical Systems

2.2.1 Circular, Restricted, Three-Body Problem

To characterize the motion of spacecraft in the cislunar multi-body regime, we employ the circular, restricted, three-
body problem (CR3BP) as a simple yet effective means of representing the spacecraft motion. The second-order
equations of motion under no external acceleration are given by

ξ̈ −2η̇ = ξ − 1−µ

r3
1

(ξ +µ)+
µ

r3
2
(ξ +µ−1) ,

η̈ +2ξ̇ = η− 1−µ

r3
1

η− µ

r3
2

η ,

ζ̈ =−1−µ

r3
1

ζ − µ

r3
2

ζ ,

(5)

where ξ , η , and ζ represent the Cartesian position of the spacecraft in the rotating synodic frame, and r1 and r2
represent the relative distances of the spacecraft to the Earth and Moon, respectively. The gravitational parameter of
the system is represented by µ , which depends on the relative masses of the primary bodies. These equations can be
equivalently represented as a first-order ordinary differential equation (ODE) ẋxx(t) = fff (xxx(t)), where fff : Rnx →Rnx and
nx = 4 in the planar case and nx = 6 in the non-planar case.

2.2.2 High-Fidelity Ephemeris Model

For precise study of reachable sets of low-thrust cislunar spacecraft, we employ a high-fidelity ephemeris model. The
equations of motion are expressed in the synodic frame and are non-dimensionalized to be analogous to the CR3BP.
Ephemeris positions, velocities, accelerations, and jerks of the gravitational bodies are obtained in the J2000 frame
about the Solar-System barycenter and are non-dimensionalized. The synodic frame is determined by the ephemeris
positions and velocities of the Earth and Moon and its origin is given by the barycenter of the Earth and Moon. The
acceleration in this rotating frame, denoted by r̈rrR, is given by

r̈rrR =−
np

∑
i=1

µi

∥dddi∥3
2

dddi−M⊺M̈−2M⊺ṀṙrrR−M⊺R̈RRI . (6)

Here, RRRI is the location of the synodic frame origin in the J2000 frame; M is the direction cosine matrix associated
with the synodic rotating frame; dddi is the vector from the ith gravitational body to the spacecraft in the rotating frame,
given by dddi = rrrR−M⊺(rrri−RRRI); and, lastly, µi is the non-dimensionalized gravitational parameter of the ith body. The
quantities RRRI , M, Ṁ, M̈, and rrri are all obtained from ephemeris data and are therefore purely time varying. Like the
CR3BP, these equations of motion can be expressed as a first-order time-varying ODE of the form ẋxx(t) = fff (xxx(t), t).
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2.2.3 Propulsion System

For modeling of the inputs to the system, the equations of motion can be written as

ẋxx(t) = fff (xxx(t), t)+
Tmax

m
Buuu(t), (7)

where Tmax represents the maximum thrust of the propulsion system, m denotes the mass of the spacecraft, and B =
[000 nx

2 ×
nx
2
, I nx

2 ×
nx
2
]⊺. We neglect varying mass due to its negligible impact on the results. Under this system, the input

set is given by
U = {uuu | ∥uuu∥2 ≤ 1} . (8)

2.3 State-Transition Tensors

State-transition tensors (STTs) approximate continuous-time dynamics about a reference trajectory as discrete-time
polynomial equations. They have seen use in numerous astrodynamics applications such as orbital guidance [4],
uncertainty propagation [14], and stochastic optimal control [6]. In comparison to the state-transition matrix, STTs
can produce higher accuracy approximations of deviations from some reference trajectory due to deviations at some
earlier time.

Considering an arbitrary ODE, ẋxx(t) = fff (xxx(t), t), the flow of the system is defined as xxx(t) = φ(t,xxx(t0), t0) and satisfies
the system’s ODEs. The deviation from a trajectory is defined as

δxxx(t)≜ φ(t,xxx(t0)+δxxx(t0), t0)−φ(t,xxx(t0), t0). (9)

Using state-transition tensors, this deviation can be represented analytically with

δxxxi(t) =
n

∑
j=1

1
j!

Φ
( j)
i,n1···n j

(t, t0)δxxxn1(t0) · · ·δxxxn j(t0), (10)

where n represents the order of the STT computation and Φ( j) ∈ R{nx} j . Note that Einstein summation convention
is used in Equation (10) and subsequent equations; and that with N = 1, the state-transition matrix is recovered. For
brevity, we henceforth write the tensor multiplication in Equation (10) as δxxx(t) = ∑

n
j=1 Φ( j)(t, t0)⊠δxxx(t0).

The ODEs that characterize the STTs are given up to third-order:

Φ̇i,a = fff ∗i,α Φα,a,

Φ̇i,ab = fff ∗i,α Φα,ab + f ∗i,αβ
Φα,aΦβ ,b,

Φ̇i,abc = fff ∗i,α Φα,abc + fff ∗i,αβ

(
Φα,aΦβ ,bc +Φα,abΦβ ,c +Φα,acΦβ ,b

)
+ fff ∗i,αβγ

Φα,aΦβ ,bΦγ,c,

(11)

where fff ∗i,n1···nk
≜ ∂ k fff i

∂xxxn1 ···∂xxxnk

∣∣∣
x=x∗

. From some initial state, the STTs can be integrated Equation (11) along with the

nominal trajectory to yield the STTs at any arbitrary time points. For more details on STT derivation and application,
see [14] and [16].

For a system with inputs, that is with dynamics given by ẋxx(t) = fff (xxx(t),uuu(t), t), an augmented state vector can be
defined such that zzz(t) = [xxx⊺(t),uuu⊺(t)]⊺. Then the augmented dynamics are given by

żzz(t) = FFF(zzz(t), t) =
[

fff (xxx(t),uuu(t), t)
000nu×1

]
. (12)

With these augmented dynamics, STTs can be integrated along a grid of time points to reexpress the dynamics in a
discrete form. As such, the dynamics with inputs can be represented with STTs as

δxxxi(tk+1) =
n

∑
j=1

1
j!

Φ
( j)
i,n1···n j

(tk+1, tk)δ zzzn1(tk) · · ·δ zzzn j(tk) ⇐⇒ δxxx(tk+1) =
n

∑
j=1

1
j!

Φ
( j)
k ⊠δ zzz(tk), (13)
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Fig. 1: Visualization of the polynomial zonotope from Equation (15). The unit box is mapped through a polynomial
to produce the blue shape, which represents the polynomial zonotope.

where Φ
( j)
k ∈ Rnx×{nz} j−1 .

State-transition tensor computation time can be significantly improved using a technique that approximates them as so-
called directional STTs, proposed in [5]. The technique involves determining the directions of maximum nonlinearity
and only propagating these directions, leading to tensors of lower dimensionality such that Φ( j) ∈Rnx×n1×···×n j−1 . The
dimensions of the tensors are either determined heuristically or by analyzing the eigenstructure of the Cauchy-Greene
tensor. For more information on the technique, see [5].

2.4 Set-Based Computing and Polynomial Zonotopes

Set-based computing has been used for reachability analysis in several applications, including autonomous driving,
robotics, and system biology and involves representing mathematical sets in a computationally tractable manner. Some
popular set representations for computing that have been implemented for reachability analysis include ellipsoids,
zonotopes, polytopes, and polynomial zonotopes, all of which but the latter are convex representations. Since in
nonlinear systems, reachable sets can quickly become non-convex, we make use of sparse polynomial zonotopes [11]
to represent reachable sets. We represent polynomial zonotopes, denoted by PZ , with

PZ ≜ ⟨G,E, id⟩=

{
h

∑
i=1

(
p

∏
k=1

α
E(k,i)
k

)
G(·,i) | ∥α∥∞ ≤ 1

}
. (14)

A polynomial zonotope is characterized by generator matrix G ∈ Rn×h and exponent matrix E ∈ Rp×h. The represen-
tation also includes a list identifiers, id ∈ Rp, which is used to keep track of the dependent factors, α ∈ Rp.

To demonstrate polynomial zonotopes and their ability to represent unique sets, consider the following example:

PZ =

〈[
2 3 0 1
0 2 4 2

]
,

[
0 1 0 2
0 0 2 1

]
, [1,2]

〉
=

{[
2
0

]
+

[
3
2

]
α1 +

[
0
4

]
α

2
2 +

[
1
2

]
α

2
1 α2 | α1,α2 ∈ [−1,1]

}
. (15)

The above polynomial zonotope is visualized in Figure 1. Recall that polynomial zonotopes can be used to represent
non-convex sets, as can clearly be seen in the visualization.

A polynomial zonotope is closed under several set operations that are relevant for reachability analysis. These rele-
vant set operations, their definitions, and their computation, are as follows: given PZ1 = ⟨G1,E1, id1⟩ and PZ2 =
⟨G2,E2, id2⟩,

Minkowski Sum: PZ1⊕PZ2 ≜ {sss1 + sss2 | sss1 ∈ PZ1,sss2 ∈ PZ2}= ⟨[G1,G2],blkdiag(E1,E2), [id1, id2]⟩

Linear Map: MPZ1 ≜ {Msss1 | sss1 ∈ PZ1}= ⟨MG1,E1, id1⟩

Tensor Map: T ⊠PZ1 ≜ {T ⊠ sss1 | sss1 ∈ PZ1}= (See Appendix A)

Cartesian Product: PZ1×PZ2 ≜
{
[sss⊺1 ,sss

⊺
2 ]
⊺ | sss1 ∈ PZ1,sss2 ∈ PZ2

}
= ⟨blkdiag(G1,G2),blkdiag(E1,E2), [id1, id2]⟩

For complete proof of the closedness of these operations, see [11]. It should be noted that certain operations, such
as the Minkowski Sum and the Cartesian product, can be adjusted in the case of overlapping identifiers, in order to
preserve interdependencies between the dependent factors.
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Fig. 2: Visualization of the proposed reachability technique. The polynomial-zonotope reachable sets and input sets
can be mapped through the STT-polynomial dynamics.

Many of the above operations increase the dimensionality of the polynomial zonotope. For example, a three-dimenisonal
tensor map of a polynomial zonotope with h generators results in a polynomial zonotope with h2 generators. Repeated
operations on a polynomial zonotope will lead to exponential growth in the number of generators. As such, it is neces-
sary to periodically perform reduction to the polynomial zonotope to keep the number of generators at a manageable
size. polynomial-zonotope reduction is performed by reducing the order of the zonotope approximated by the weakest
generators of the polynomial zonotope. For more information on zonotope and polynomial-zonotope reduction, see
[12] and [11]. For reduction, we employ the principle-component analysis (PCA) technique outlined in [12]. The
reduction operation of polynomial zonotope to a desired order hdes is henceforth denoted by Reduce(PZ,hdes).

3. REACHABILITY ALGORITHM

With the background established, we now present the algorithm for propagating polynomial-zonotope reachable sets
under STT approximation of the continuous-time dynamics. The reachable set at each time point is defined by Rk ≜
R(tk). Additionally, the deviated reachable set is given by δRk ≜ Rk ⊕ (−φφφ(tk)). The input set in polynomial-
zonotope form at each time point is given by Uk. This input set can be expressed as a polynomial zonotope using
standard conversion techniques. For example, the unit circle input set can be approximated in polynomial-zonotope
form with

U =
{

uuu ∈ R2 | ∥uuu∥2 ≤ 1
}
≈

〈
I2×2⊗

[
1,−1

4
,− 1

32
,− 1

128

]
, I2×2⊗1111×4 +

[
0 1
1 0

]
⊗ [0,2,4,6] , idk

〉
. (16)

Moreover, each input set must have a unique set of identifiers idk to differentiate it from all other input sets. With these
definitions, we see that{

[δxxx(tk)
⊺,uuu(tk)⊺]

⊺ | δxxx(tk) ∈ δRk,uuu(tk) ∈ Uk
}
=
{

δ zzzk | δ zzzk ∈ δZk ≜ δRk×Uk

}
. (17)

Furthermore, the polynomial zonotope produced by the Cartesian product of δRk and Uk, δZk, can be mapped through
the STT dynamics in Equation (13) since{

n

∑
j=1

1
j!

Φ
( j)
k ⊠δ zzzk | δ zzzk ∈ δZk

}
=

{
n⊕

j=1

1
j!

Φ
( j)
k ⊠δZk

}
. (18)
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Algorithm 1 State Transition Tensor Reachable Set Propagation Algorithm
Input Initial State xxx1, Initial Deviation δR1, Input Set U , Discretization {t}, STT Order n, Max Generators hmax
Output Reachable Set Sequence {R}

1: function STT REACHABILITY
2:

{
{φφφ},{Φ(1)}, · · · ,{Φ(n)}

}
← IVP solution to STT Equation (10) along {t} under dynamics fff (xxx,uuu, t).

3: for tk ∈ {t} do
4: Uk←PZ(U) ▷ Convert input set to polynomial zonotope with unique identifiers
5: δZk← δRk×Uk

6: δRk+1←
⊕n

j=1
1
j! Φ

( j)
k ⊠δZk

7: if hk+1 ≥ hmax then ▷ Perform Reduction
8: Reduce(δRk+1,hmax)
9: end if

10: Rk+1← δRk+1⊕ (φ(tk+1))
11: end for
12: end function

Therefore, the following sequence can be applied to propagate reachable sets:

δRk+1 =
n⊕

j=1

1
j!

Φ
( j)
k ⊠δZk,

Rk+1 = δRk+1⊕ (φ(tk+1)) .

(19)

Under Equation (19), the polynomial-zonotope representations of the reachable set and input set at the current time
point undergo a Cartesian product, linear mapping, tensor mapping, and Minkowski summation to produce a polynomial-
zonotope representation of the reachable set at the next time point. Since all of these operations are exact, the reachable
set at the next time point is exact under the STT dynamics.

However, under this propagation rule, the order of the polynomial zonotopes increases exponentially. If Rk has
h generators, then Rk+1 will have ∑

n
j=1 h j generators. As such, it is necessary to apply order reduction when the

polynomial-zonotope order exceeds some threshold, hmax. This inevitably leads to some inaccuracy in the propagation
since the order-reduction operation will produce slight over-approximations of the polynomial zonotope. The final
algorithm is presented in Algorithm 1 and is visualized in Figure 2.

The algorithm includes several tunable parameters that affect the runtime and accuracy of the resulting reachability
computation. Increasing the order of the STTs, n, increases the runtime of the STT computation and the set propaga-
tion but can provide greater accuracy computation of the reachable sets. Moreover, increasing the maximum generator
count, hmax, likewise increases the computation time, but can provide greater tightness on the resulting reduced poly-
nomial zonotope.

3.1 Van der Pol Oscillator Example

Algorithm 1 is evaluated for a Van der Pol oscillator system. The reachability problem is given by:

ẋxx =

 x2

(1− x2
1)x2− x1 + .05u

 , U = {u | u ∈ [−1,1]}, xxx1 = [.5,0]⊺ , δR1 = /0, {t}= {0.0, .1, · · · ,3.0}.

The problem is solved with hmax = 200 and n = 3. The runtimes of the operations of the algorithm are listed in Table 1.
The resulting sets are visualized in Figure 3 along with 100 extremal trajectories generated using the ODE technique
outlined in Section 2.1.
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Fig. 3: Reachability solution for Equation (20).

Operation Evaluations Total Runtime

STT Generation 1 1.549s

δRk+1←
⊕n

j=1 Φ
( j)
k ⊠δZk 30 3.750s

Reduce(δRk+1,hmax) 26 0.478s

Table 1: Runtimes of Algorithm 1 for the Van der Pol system.

In this example, the algorithm produces tight over-approximations of the exact reachable set, which is outlined by
the extremal trajectories. The inaccuracy of the computed sets grows in time for two reasons: 1. Repeated reduction
of successive polynomial zonotopes leads to inaccuracy over time; and 2. As the reachable set expands, the STT
approximation of the dynamics in the vicinity of the reference becomes less accurate. For these reasons the algorithm
performs best for short timespans and for problems involving low control authority.

4. REACHABILITY ANALYSIS OF LOW-THRUST, CISLUNAR SPACECRAFT

In this section, we demonstrate the algorithm in two scenarios for low-thrust cislunar spacecraft. Firstly, we compare
Algorithm 1 and existing techniques for a spacecraft in a distant retrograde orbit under planar CR3BP dynamics.
Secondly, we demonstrate Algorithm 1 for a spacecraft with a close flyby of the moon under ephemeris dynamics.

For the following examples, the following parameters are used for the dynamical system, which are consistent with
low-thrust spacecraft in the cislunar system:

Gravitational Parameter Distance Unit [m] Time Unit [s] Maximum Thrust [N] Spacecraft Mass [kg]

µ = .0122 DU = 3.825e8 TU = 3.724e5 Tmax = 1.1e−3 m = 14

Furthermore, for the ephemeris system, we include additional gravitational perturbations from the Sun and Venus. The
epoch for the ephemeris simulation is 2024-05-01 12:00:00 TDB.

4.1 Distant Retrograde Orbit Comparison

In this example, we compare several reachability techniques for a distant retrograde orbit (DRO) in the planar CR3BP.
The reachability problem is formulated as:

ẋxx = fff (xxx)+
Tmax

m
Buuu, U = {uuu | ∥uuu∥2 ≤ 1}, xxx1 = [0.2765,0.0,0.0,2.1379]⊺ , δR1 = /0, {t}= {0.0,0.1, · · · ,3.0}.

The problem is solved with the following methods: 1. Solutions to the IVP in Section 2.1; 2. The Fast First-Order
Estimate algorithm (FFOE) [15]; 3. Continuous-time BVP [8]; and 4. Algorithm 1. Each method is visuallized in
Figure 4. The reachability estimates are projected into the position and velocity space and visualized in Figure 5. The
runtimes for each algorithm are found in Table 2 For the three extremal trajectory based methods, 100 trajectories are
resolved. Moreover, for the FFOE and BVP, samples are taken in the position space as to produce extremal trajectories
that maximize distance. For the STT reachability method, we take n = 2 and hmax = 400. Moreover, due to difficulties
with ellipsoidal sets, we instead use U = [−1,1]2, i.e., the unit box, as the input set. This leads to over-approximation
of the reachable set, but tighter approximations than if the unit circle were used.

The final reachability estimates in Figure 5 show that the set propagation results in greater over-approximations than
the extremal trajectories.
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(a) ODE [13] (b) FFOE [15]

(c) BVP [8] (d) Algorithm 1

Fig. 4: Low-thrust DRO reachability realizations for various methods.

(a) Position reachability projection. (b) Velocity reachability projection.

Fig. 5: Final DRO reachability estimates.

Algorithm Runtime

ODE [13] 4.0389s

FFOE [15] 18.2106s

BVP [8] 16.5983s

Algorithm 1 5.7925s

Table 2: Algorithm Runtimes
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4.2 Near-Rectilinear Halo Orbit Moon Flyby

In this example, we demonstrate Algorithm 1 for a satellite starting from a near-rectilinear halo orbit under the high-
fidelity ephemeris model outlined in Section 2.2.2. The reachability problem is given by:

ẋxx = fff (xxx, t)+
Tmax

m
Buuu, U = {uuu | ∥uuu∥2 ≤ 1}, xxx1 = [0.91,−0.01,0.16,0.03,−0.08,0.01]⊺ ,

δR1 = /0, {t}= {0.0,0.05, · · · ,1.0}.

Algorithm 1 is used with n = 2 and hmax = 60. The resulting sets are projected onto the x− y and y− z planes and can
be visualized along with 100 extremal trajectories in Figure 6. The reachable sets are computed in 0.716 seconds.

(a) Top position view. (b) Side position view.

Fig. 6: NRHO Moon flyby reachable sets.

5. DISCUSSION

In both the distant retrograde orbit and near-rectilinear halo orbit examples, the proposed algorithm is able to produce
good estimates of the reachable sets with quick computation time. In contrast to techniques that rely on the propaga-
tion of a large number of trajectories, the proposed algorithm requires only one numerical integration for the entire
reachability computation. This is beneficial for situations in which the numerical integration is computationally inten-
sive, as is the case for high-fidelity propagation. Moreover, we believe that the proposed method is advantageous in
that it provides the reachability estimates in a set realization, instead of as a collection of points. The polynomial zono-
topes can be converted into polytopes, which can be then be used for evaluating collision regions, visualization, and
determining detection regions. Polynomial zonotopes can also represent non-convex sets, which allows for uniform
sampling of the boundary of the reachable set.

There exist several key areas of improvement and exploration for the proposed method. Since the STT dynamics are
only valid within some region of the reference trajectory, large sets cannot be accurately propagated. Some means of
alleviating this issue include incorporating splitting, whereby the polynomial zonotope is split into numerous compo-
nents and reference trajectories. Additionally, tightness of reachable set can be lost over long propagation times due
to repeated order reduction of the polynomial zonotope. Improving the tightness of the reduction step of polynomial
zonotopes is therefore an important area for improvement. Lastly, the proposed algorithm provides no guarantees for
over or under approximation of the true reachable set. Formulating the problem with STTs to produce these guarantees
would be beneficial for safety-critical scenarios.
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6. CONCLUSION

In this paper, we presented a novel technique for performing reachability analysis for low-thrust cislunar spacecraft.
By leveraging state-transition tensors to propagate polynomial zonotopes, reachable sets can be generated about a
reference trajectory. Moreover, the technique only requires one numerical integration, in contrast to other popular
techniques that rely on the propagation of a large number of trajectories. Because of this, the method lends itself well
to reachability computation for high-fidelity, ephemeris models. Additionally, the algorithm produces a continuous set
realization of the reachable set, in contrast to existing techniques which rely on the propagation of several trajectories.

Further improvements to the proposed algorithm could involve better methods for polynomial-zonotope order reduc-
tion, methods for guaranteeing over-approximation or under-approximation of the reachable set, and reachable tube
estimation. Moreover, to the knowledge of the authors, this paper presents the first implementation of set-based com-
puting for SSA applications. The authors believe that extending some of the presented techniques to other key aspects
of astrodynamics, such as uncertainty propagation and state estimation, would be a fruitful endeavor.
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A. TENSOR MAP OF A POLYNOMIAL ZONOTOPE

Given a tensor T ∈ Rnx×{nk}N−1 with dimension N, the tensor mapping of a polynomial zonotope PZ = ⟨G,E, id⟩ is
defined by

T ⊠PZ ≜ {T ⊠ sss | sss ∈ PZ} , (20)

and can be solved for with
T ⊠PZ = ⟨Ḡ, Ē, id⟩, (21)

where
Ḡ(i,hN−1(i1−1)+···+iN−1) = Ti,n1···nN−1Gn1,i1 · · ·GnN−1,iN−1 ,

Ē(·,hN−1(i1−1)+···+iN−1) = Ē(·,i1)+ · · ·+ Ē(·,iN−1),

i j = {1, · · · ,h} ∀ j = {1, · · · ,N−1}.

(22)

Note that Einstein notation is used in Equation (22) as is used for state-transition tensors.
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