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ABSTRACT

Cislunar space presents new challenges for space situational awareness (SSA). Choatic dynamics make orbit uncertainty
propagation difficult, requiring significant computation time for sufficient accuracy and often resulting in rapid growth
in uncertainty. The size of the cislunar regime, lunar and solar exclusion zones, and regions of poor illumination all
contribute to sparsity of observations. As the population of objects in cislunar space grows, so will the need for efficient
multi-target tracking (MTT) algorithms that can mitigate these issues. In order to reduce the computational cost of
track prediction while maintaining accuracy, this paper presents a method for adaptive bi-fidelity orbit uncertainty
propagation. The proposed method is applied in simulated cislunar SSA scenarios and is shown to provide an
improvement in computational efficiency compared to the original bi-fidelity method without compromising tracking
accuracy.

1. INTRODUCTION

Increasing human activity in cislunar space presents new challenges for space situational awareness (SSA) [1]. In
particular, chaotic dynamics make orbit uncertainty propagation difficult, requiring significant computation time for
sufficient accuracy and often resulting in rapid growth in uncertainty [2, 3]. The size of the cislunar regime, lunar
and solar exclusion zones, and regions of poor illumination all contribute to sparsity of observations [4, 5]. As the
population of objects in cislunar space grows, so will the need for efficient multi-target tracking (MTT) algorithms that
can mitigate these issues. The computational cost of a multi-target filter’s prediction step is generally proportional to
the cost of predicting a single object’s probability density function (PDF) times the number of hypothesized tracks.
Therefore, total filter runtime is increasingly dependent on the efficiency of orbit uncertainty propagation as the number
of objects increases.

In order to reduce the computational cost of track prediction while maintaining accuracy, this paper presents a method
for adaptive multi-fidelity orbit uncertainty propagation. The proposed method is applied to the ensemble Gaussian
mixture filter (EnGMF), a particle-based single-target filter that has been shown to enable accurate space object
tracking with sparse observations [6, 7, 8]. We use the EnGMF with adaptive multi-fidelity propagation in a GLMB
filter (GLMBF), which is a labeled random finite set (RFS)-based multi-target filter [9, 10, 11], and assess the effect
of our adaptive propagation method on tracking accuracy and computational cost in simulated cislunar SSA scenarios.
This work builds on previous research into the application of (non-adaptive) multi-fidelity propagation to the cislunar
regime [12].

Multi-fidelity orbit uncertainty propagation balances the accuracy of high-fidelity propagation and the speed of low-
fidelity propagation to increase the computational efficiency of particle-based filters [13]. For example, bi-fidelity
propagation works by propagating all particles with a relatively cheap low-fidelity model, identifying a small set of
important particles, propagating these particles again with the more costly high-fidelity model, and correcting the
low-fidelity particles to better match the distribution of the high-fidelity particles via stochastic collocation [14]. The
accuracy of multi-fidelity propagation can also be increased by using a time history of states for each particle to
construct the multi-fidelity surrogate. By selecting the correct low- and high-fidelity models for a given scenario,
computation time may be minimized without significantly decreasing prediction accuracy.
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The varied orbital dynamics and regimes over cislunar and near-lunar space introduce new challenges for multi-fidelity
uncertainty propagation not present in the near-Earth case. Depending on an object’s location in cislunar space, it is
possible to select the optimal pair of dynamics models from a set of models to achieve a desired level of accuracy
while minimizing computational cost. For example, if the object is close to the surface of the Moon, a detailed
non-spherical gravity field model may be necessary, but if the object is farther from the surface, a point-mass model
may be sufficient. If the object is far from both the Earth and Moon, the optimal low-fidelity model may be the circular
restricted three-body problem (CRTBP) in a rotating reference frame or a model that includes point-mass gravity of
the Earth and Moon.

In this paper, we apply our adaptive multi-fidelity propagation method to simulated SSA scenarios in which objects
pass through a variety of orbital regimes with different dynamics. We use these scenarios to quantify the effect of
the proposed method on multi-target filter runtime and tracking accuracy, with the goal of improving our ability to
efficiently track the growing cislunar population.

2. BACKGROUND

2.1 Multi-Fidelity Orbit Uncertainty Propagation

Our approach to multi-fidelity orbit uncertainty propagation uses stochastic collocation to significantly reduce the
computational cost of propagating a set of particles with only a slight reduction in accuracy [13]. This paper focuses
on bi-fidelity propagation. To apply the bi-fidelity method, we define two dynamics models: a high-fidelity model
suitable for state estimation and a low-fidelity model that is computationally cheaper to evaluate but less accurate.
For example, for propagation in Earth orbit, the low-fidelity model may include only two-body dynamics and the 𝐽2
perturbation, while the high-fidelity model includes drag, solar radiation pressure (SRP), and a more detailed model
of Earth’s gravity field. The set of particles representing a space object (SO)’s state-space PDF is propagated using the
low fidelity model. When a high-fidelity estimate is required (e.g., for estimate extraction, to enable a measurement
update, or for data association), a high-fidelity correction is performed. High-fidelity correction works by identifying
a set of important samples, which are propagated again from the time of the last measurement update using the
high-fidelity model. Then, stochastic collocation is used to adjust the low-fidelity samples to match the distribution of
the high-fidelity samples [14].

The procedure for high-fidelity correction begins by concatenating the last 𝑀 low-fidelity propagated states for each
particle, resulting in the (𝑀 +1) 𝑑 ×𝑁 matrix 𝑋𝐿 (Ξ) =

[
𝑥𝐿 (𝜉1) . . . 𝑥𝐿 (𝜉𝑁 )

]
, where 𝑑 = 6 is the dimension of the

translational state space, 𝑁 is the number of particles, Ξ = {𝜉𝑖}𝑁𝑖=1 is the set of random inputs,

𝑥𝐿 (𝜉𝑖) =

𝑥𝐿 (Δ𝑡𝑘−𝑀 , 𝜉𝑖)

...

𝑥𝐿
𝑘
(Δ𝑡𝑘 , 𝜉𝑖)

 , (1)

𝑥𝐿 is the low-fidelity state, and Δ𝑡𝑘 is the difference between time 𝑡𝑘 and the time of the last measurement update,
or the time of track initialization if there has been no update yet. Our implementation propagates particles backward
in time 𝑀 timesteps using the low-fidelity model when needed, instead of storing their histories, to reduce memory
usage. This makes high-fidelity correction more computationally expensive, but the size of the effect depends on the
number of particles and the computational complexity of the low-fidelity model. The number of important samples is
limited to 𝑟 ≤ (𝑀 +1) 𝑑, so including the 𝑀 previous steps helps ensure that enough important samples may be used
to achieve the desired accuracy. Each column of 𝑋𝐿 (Ξ) may be approximated using the surrogate

𝑥𝐿 (𝜉𝑖) ≈
𝑟∑︁
𝑗=1

𝑐 𝑗 (𝜉𝑖) 𝑥𝐿
(
𝜉 𝑗
)
, (2)

where 𝑐 𝑗 (𝜉𝑖) are a set of coefficients and 𝜉 𝑗 are the random inputs of the important samples. Next, 𝑐 𝑗 (𝜉𝑖) and 𝜉 𝑗 are
found by solving the optimization problem

Ξ̄ = argmin
Ξ

inf
𝑦∈span(𝑋𝐿 (Ξ))



𝑥𝐿 (𝜉) − 𝑦


 , (3)
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using a greedy algorithm based on the pivoted Cholesky decomposition [13, 15]. Finally, the high-fidelity values
𝑥𝐻

(
𝜉 𝑗
)

for the important samples are computed by repropagating with the high-fidelity model, and the corrected
samples are given by

𝑥𝐻 (𝜉𝑖) ≈
𝑟∑︁
𝑗=1

𝑐 𝑗 (𝜉𝑖) 𝑥𝐻
(
𝜉 𝑗
)
. (4)

2.2 The Ensemble Gaussian Mixture Filter
The EnGMF enables accurate but efficient nonlinear estimation. The filter parameterizes the estimated state PDF as a
set of particles and uses kernel density estimation (KDE) to avoid particle depletion, allowing it to function with fewer
particles than a particle filter (PF) [6, 7]. The EnGMF is initialized by drawing 𝑁 random samples from the initial PDF.
The PDF is predicted by propagating each particle forward in time. To update the PDF, first, we compute the sample
covariance 𝑃 of the particles. Then, Silverman’s rule is used to compute the bandwidth parameter 𝛽𝑆 , and the particles
are converted to a Gaussian mixture model (GMM), with each particle becoming the mean of a GMM component with
weight 𝑁−1 and covariance 𝐵𝑆 = 𝛽𝑆𝑃 [16, 7]. The GMM is then updated using an appropriate GMM-based filter and
𝑁 new particles are sampled from the updated GMM. The KDE GMM is also used to extract the estimated mean and
covariance, as opposed to using the sample mean and covariance directly.

In this paper, the GMM update is performed using the square root unscented Kalman filter (SR-UKF) update [17], to
enable accurate nonlinear update with fewer particles. This is intended to reduce the cost of prediction and high-fidelity
correction, but does increase the computational cost of the measurement update per particle. The EnGMF generally
performs better for orbit determination when its particles’ states are parameterized by equinoctial orbital elements, due
to improved linearity when applying Silverman’s rule [18, 7]. However, because equinoctial elements are designed to
represent two-body orbits, here we instead use Cartesian coordinates.
2.3 The Generalized Labeled Multi-Bernoulli Filter
The GLMBF is a labeled RFS-based multi-target filter. An RFS may be thought of as a set of random vectors whose
cardinality is also a random variable. Random finite sets enable Bayesian estimation of the states of unknown numbers
of objects. The GLMBF is a closed-form solution to the Bayes mulit-target filter recursion [9, 10]. This paper uses the
joint predict–update formulation of the GLMBF [11].

2.3.1 Notation

In this section, lowercase letters denote vectors, capital letters denote sets, blackboard bold letters represent spaces, and
calligraphic letters denote sets of sets. Bold symbols indicate the use of label-augmented vectors. For variables that
change over time, the subscript 𝑘 to indicate time is not written and the subscript 𝑘 +1 to indicate the following timestep
is abbreviated to a subscript plus sign. The multi-object exponential is defined as 𝑓 𝑋 =

∏
𝑥∈𝑋 𝑓 (𝑥), the Kronecker

delta is defined as

𝛿𝑌 [𝑋] =
{

1 , 𝑋 = 𝑌 ,

0 , otherwise,
(5)

the indicator function is defined as

1𝑌 (𝑋) =
{

1 , 𝑋 ⊆ 𝑌 ,

0 , otherwise,
(6)

and 1𝑌 (𝑥) = 1𝑌 ({𝑥}). The function F denotes the set of all finite subsets of a space. A label-augmented RFS is defined
on X×L, where X is the state space and L is a discrete label space. This means that each element in a realization of a
labeled RFS is of the form 𝒙 = (𝑥, 𝑙), where 𝑥 is the state and 𝑙 is the label. In this work, object labels are of the form
𝑙 = (𝑖, 𝑘, 𝑗), where 𝑖 is the index of the sensor that first detected the object, 𝑘 is the timestep at which the object’s initial
track was created, and 𝑗 is the object’s unique index out of all objects first detected by sensor 𝑖 at time 𝑘 . A labled RFS
realization may not contain duplicate labels, and this is enforced using the distinct label indicator

Δ(𝑿) = 𝛿 |𝑿 | [|lab(𝑿) |] , (7)

where lab(𝑥, 𝑙) = 𝑙 denotes the projection of the label-augmented state space X×L onto its discrete label space L and
lab(𝑿) = {lab(𝒙1) , . . . , lab(𝒙𝑛)}.
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2.3.2 Random Finite Set PDFs

The GLMBF is constructed using two families of labeled-RFS PDFs: the 𝛿-generalized labeled multi-Bernoulli
(GLMB) and labeled multi-Bernoulli (LMB) distributions [9].

A 𝛿-GLMB RFS PDF may be parameterized by components (𝐼, 𝜉) ∈ F (L) ×Ξ, where Ξ is a discrete space, with
associated weights 𝑤 (𝐼, 𝜉 ) . For MTT, each component typically represents a data association hypothesis, with 𝐼 being
a set of objects that may exist, 𝜉 being their combined measurement association history, and 𝑤 (𝐼, 𝜉 ) being the estimated
probability that the hypothesis is true. A 𝛿-GLMB RFS density is of the form

𝝅(𝑿) = Δ(𝑿)
∑︁

(𝐼, 𝜉 ) ∈F(L)×Ξ
𝑤 (𝐼, 𝜉 )𝛿𝐼 [lab(𝑿)]

(
𝑝 ( 𝜉 )

)𝑿
, (8)

where 𝑝 ( 𝜉 ) (·, 𝑙) is an object’s state-space PDF given association history 𝜉 and label 𝑙.

Instead of representing a mixture of multiple data association hypotheses, an LMB PDF represents a single hypothesis
that contains a probability of existence and a state-space PDF for each object. An LMB PDF may be parameterized by{(
𝑟 (𝑙) , 𝑝 (𝑙)

)}
𝑙∈L

, where 𝑟 (𝑙) is the probability that object 𝑙 exists and 𝑝 (𝑙) is its state-space PDF. The PDF of an LMB
RFS has the form

𝝅(𝑿) = Δ(𝑿)𝑤(lab(𝑿)) 𝑝𝑿 , (9)

where 𝑝(𝑥, 𝑙) = 𝑝 (𝑙) (𝑥) and

𝑤(𝐼) =
∏
𝑙∈L

(
1− 𝑟 (𝑙)

)∏
𝑙∈𝐼

1L(𝑙) 𝑟 (𝑙)

1− 𝑟 (𝑙)
. (10)

2.3.3 Joint Predict–Update Recursion

Given the initial filtering density in (8) at timestep 𝑘 , the predicted and updated density at timestep 𝑘 +1 is given by

𝝅+ (𝑿+) ∝ Δ(𝑿+)
∑︁

𝐼, 𝜉 , 𝐼+ , 𝜃+

𝑤 (𝐼, 𝜉 )𝑤 (𝐼, 𝜉 ,𝐼+ , 𝜃+ )
+ (𝑍+) 𝛿𝐼+ [lab(𝑿+)]

(
𝑝
( 𝜉 , 𝜃+ )
+ (· | 𝑍+)

)𝑿+
, (11)

where 𝐼 ∈ F (L), 𝜉 ∈ Ξ, 𝐼+ ∈ F (L+), and 𝜃+ ∈ Θ+, where L+ = L∪B+, B+ is the space of object labels that could be
born at this time, and Θ+ is the set of maps 𝜃+ : L+ → {0 : |𝑍+ |} assigning measurements in the current measurement
set 𝑍+ to object labels, where 𝜃+ (𝑙) = 0 implies that label 𝑙 is not assigned a measurement. Additionally,

𝑤
(𝐼, 𝜉 , 𝐼+ , 𝜃+ )
+ (𝑍+) =

(
𝑟𝐵,+

)B+∩𝐼+ (1− 𝑟𝐵,+
)B+−𝐼+ (𝑝 ( 𝜉 )

𝑆

) 𝐼∩𝐼+ (
1− 𝑝

( 𝜉 )
𝑆

) 𝐼−𝐼+ (
𝜓̄
( 𝜉 , 𝜃+ ( ·) )
+ (· | 𝑍+)

) 𝐼+
, (12)

𝑝
( 𝜉 , 𝜃+ )
+ (𝑥+, 𝑙 | 𝑍+) =

𝑝
( 𝜉 )
+ (𝑥+, 𝑙)𝜓 (𝜃+ (𝑙) )

+ (𝑥+, 𝑙 | 𝑍+)
𝜓̄
( 𝜉 , 𝜃+ (𝑙) )
+ (𝑙 | 𝑍+)

, (13)

𝑝
( 𝜉 )
+ (𝑥+, 𝑙) = 1B+ (𝑙) 𝑝𝐵,+ (𝑥+, 𝑙) +1L (𝑙)

〈
𝑝𝑆 (·, 𝑙) 𝑓𝑆,+ (𝑥+ | ·, 𝑙) , 𝑝 ( 𝜉 ) (·, 𝑙)

〉
𝑝
( 𝜉 )
𝑆

(𝑙)
, (14)

𝑝
( 𝜉 )
𝑆

(𝑙) =
〈
𝑝 ( 𝜉 ) (·, 𝑙) , 𝑝𝑆 (·, 𝑙)

〉
, (15)

𝜓̄
( 𝜉 , 𝑗 )
+ (𝑙 | 𝑍+) =

〈
𝑝
( 𝜉 )
+ (·, 𝑙) ,𝜓 ( 𝑗 )

+ (·, 𝑙 | 𝑍+)
〉
, (16)

𝜓
( 𝑗 )
+ (𝑥+, 𝑙 | 𝑍+) = 𝛿0 [ 𝑗] (1− 𝑝𝐷 (𝑥+, 𝑙)) + (1− 𝛿0 [ 𝑗])

𝑝𝐷 (𝑥+, 𝑙) 𝑔
(
𝑧+, 𝑗

�� 𝑥+, 𝑙)
𝜅
(
𝑧+, 𝑗

) , (17)

where 𝑟𝐵,+ (𝑙) is the probability that object 𝑙 is born, 𝑝𝐵,+ (·, 𝑙) is the single-target PDF for the newborn object, 𝑝𝑆 is
the probability of survival from one step to the next, 𝑝𝐷 is the probability of detection, 𝑓𝑆,+ (𝑥+ | ·, 𝑙) is the surviving
object transition density, 𝑔 is the measurement likelihood, and 𝜅 is the expected clutter intensity.
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The number of possible hypotheses grows exponentially over time. To maintain computational tracatability, the set
of new hypotheses (𝐼, 𝜉, 𝐼+, 𝜃+) in (11) resulting from prior hypothesis (𝐼, 𝜉) is truncated using a ranked assignment
algorithm and the following cost matrix:

𝑐(𝑙1,−1) · · · ∞ 𝑐(𝑙1,0) · · · ∞ 𝑐(𝑙1,1) · · · 𝑐(𝑙1, |𝑍+ |)
...

. . .
...

...
. . .

...
...

. . .
...

∞ · · · 𝑐(𝑙𝑀 ,−1) ∞ · · · 𝑐(𝑙𝑀 ,0) 𝑐(𝑙𝑀 ,1) · · · 𝑐(𝑙𝑀 , |𝑍+ |)

 , (18)

where 𝑐(𝑙, 𝑗) = − log
(
𝜂 (𝐼, 𝜉 ) (𝑙, 𝑗)

)
and

𝜂 (𝐼, 𝜉 ) (𝑙, 𝑗) =


1− 𝑟

(𝑙)
𝐵,+ , 𝑗 < 0∧ 𝑙 ∈ B+ ,

𝑟
(𝑙)
𝐵,+𝜓̃

( 𝜉 , 𝑗 )
+ (𝑙 | 𝑍+) , 𝑗 ≥ 0∧ 𝑙 ∈ B+ ,

1− 𝑝
( 𝜉 )
𝑆

(𝑙) , 𝑗 < 0∧ 𝑙 ∈ 𝐼 ,

𝑝
( 𝜉 )
𝑆

(𝑙) 𝜓̃ ( 𝜉 , 𝑗 )
+ (𝑙 | 𝑍+) , 𝑗 ≥ 0∧ 𝑙 ∈ 𝐼 .

(19)

If an object is assigned to the left block of the cost matrix, it does not exist, if it is assigned to the center block, it exists
but was not detected at time 𝑘 +1, and if it is assigned to the right block, it exists and produced measurement 𝑧+, 𝑗 . The
classic approach to solve this ranked assignment problem is to use Murty’s algorithm [19, 9, 10], but for large cost
matrices, a Gibbs sampler-based approach is more efficient [11].

3. ADAPTIVE MULTI-FIDELITY ORBIT UNCERTAINTY PROPAGATION

This paper proposes an improvement to multi-fidelity orbit uncertainty propagation that is designed to further reduce
its computational cost without reducing its accuracy. Recall from Section 2.1 that the bi-fidelity method uses a pair of
dynamics models, one low- and one high-fidelity, to provide a particular balance of computational cost and prediction
accuracy. The proposed approach takes advantage of the fact that different orbital regimes may have different optimal
pairs of dynamics models, depending on the desired level of accuracy. For example, accurate prediction in the near-
Earth regime typically requires accounting for acceleration due to non-spherical gravity, at least in the high-fidelity
model, while these terms may be neglected when an object is farther away from the Earth. The same holds for the
near-Moon regime.

Given a set of dynamics models 𝐹 = { 𝑓1, 𝑓2, . . .}, we seek a map 𝑚 : X→ 𝐹 × 𝐹 such that
(
𝑓 𝐿 , 𝑓 𝐻

)
= 𝑚(𝒙̂), where

𝒙̂ is an object’s mean state estimate at time 𝑘 and the functions 𝑓 𝐿 and 𝑓 𝐻 are the low- and high-fidelity models,
respectively, that solve the following optimization problem:

min
( 𝑓 𝐿 , 𝑓 𝐻)∈𝐹×𝐹

𝑡𝑅

(
𝑓 𝐿 , 𝑓 𝐻

)
subject to 𝐷

(
𝑝+




 𝑝+ ( 𝑓 𝐿 , 𝑓 𝐻 )) < 𝜀𝐷 , (20)

where 𝑡𝑅
(
𝑓 𝐿 , 𝑓 𝐻

)
is the real-time computational cost of choosing model pair

(
𝑓 𝐿 , 𝑓 𝐻

)
(including both prediction and

correction), 𝐷 is a divergence metric, 𝑝+ is the object’s state-space PDF predicted from 𝑘 to 𝑘 +1 using a full-fidelity
dynamics model, 𝑝+

(
𝑓 𝐿 , 𝑓 𝐻

)
is the object’s PDF predicted using 𝑓 𝐿 and corrected using 𝑓 𝐻 , and 𝜀𝐷 is a user-defined

value. In order to achieve the desired improvement in computational efficiency, it is obviously impractical to solve the
optimization problem online. Instead, simulations should be performed in advance to compute an approximation of
the map 𝑚 given 𝐹. Note that if 𝑓 𝐿 = 𝑓 𝐻 over the time interval between two measurement updates, there is no need to
perform high-fidelity correction, which may result in significant time savings.

As a proof-of-concept, the implementation used to generate the results in the following section uses a simple definition
for 𝑚, comprising three position-based regions: one near the Earth, one near the Moon, and one not near either body.
A position in space is defined as near a body, in this case, if it is inside a sphere of some set radius centered on the body.
The precise radii used in this work were found by a coarse search for the smallest multiple of 𝑅 which resulted in no
significant decrease in tracking accuracy compared to the original bi-fidelity method, where 𝑅 is the radius of either
body. Maintaining the same average tracking accuracy was used as a proxy for satisfying the divergence constraint 𝜀𝐷
in (20).
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4. SIMULATION

This section describes a multi-target tracking simulation used to assess the tracking error and time cost of the proposed
adaptive orbit propagation algorithm.

4.1 Scenario Description

The simulation considers four small clusters of SOs, each containing five objects. Cluster 1 is in a distant retrograde
orbit (DRO), Cluster 2 is in a near-rectilinear halo orbit (NRHO), Cluster 3 is in a lunar transfer orbit (LTO), and
Cluster 4 is heading for a low flyby of the Moon. The objects in each cluster all have the same initial state PDF,
with the respective mean given in Table 1 and diagonal covariance 10−8𝐼6 in the normalized units (LU2, LU2/TU2) in
the rotating barycentric frame. Figure 1 shows the trajectories of the mean objects for each cluster over the ten-day
simulation. The nominal trajectory for Cluster 4, the flyby, reaches a minimum altitude of 133 km, assuming a spherical
Moon, but due to random initialization, the actual flyby altitude may be lower or higher for each object.

Table 1: Initial means for the objects in each cluster, expressed in normalized units (LU, LU/TU) in the rotating
barycentric frame.

Cluster Mean
𝑥 𝑦 𝑧 ¤𝑥 ¤𝑦 ¤𝑧

1 0.806 0.000 0.000 0.000 0.519 0.000
2 1.022 0.000 −0.182 0.000 −0.103 0.000
3 −0.112 0.000 0.000 2.194 −3.440 0.000
4 0.949 −0.019 0.304 −0.006 0.064 0.003

Fig. 1: Plot of mean trajectories for each cluster in the rotating barycentric frame.

Single target prediction and update is performed via the EnGMF, with a constant number of particles 𝑁 = 200. Tracking
information is provided to the filter by a single sensor located at the center of the Moon, which records Moon-centered
inertial (MCI) measurements of right ascension and declination, and their respective rates. The sensor produces
measurements every 12 h after the beginning of the simulation, with probability of detection 𝑃𝐷 = 0.95. The angle and
angle rate measurements have constant standard deviations 0.1arcsec and 0.001arcsec/s, respectively. Clutter is not
modeled, and the multi-target filter assumes a constant clutter intensity 𝜅 = 10−9. The filter also assumes probability
of survival near one for all objects, does not model spontaneous birth, prunes hypotheses with weights less than 10−3,
and truncates its hypothesis list via Murty’s algorithm to a maximum of 50 hypotheses. This limit on the number of
updated hypotheses is allocated to each prior GLMB component in proportion to the square root of its weight.

The true dynamics model includes the point-mass gravity of the Earth, Moon, and Sun, and a 70× 70 spherical
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harmonics models for the Earth and Moon’s non-spherical gravity (EGM2008 and LP150Q) [20, 21]. Non-spherical
gravity terms are only computed for whichever body is closest at the beginning of the propagation timespan. For
bi-fidelity propagation, the high-fidelity model is the same as the truth model but with only a 10× 10 gravity field
model. The low-fidelity model includes only the point-mass gravity of the Earth, Moon, and Sun. Note that a 10×10
gravity field may not be sufficient for accurate propagation in the low lunar orbit (LLO) regime [22, p. 150].

For adaptive bi-fidelity propagation, the near-Earth regime is defined as a sphere around the Earth with a radius of
10 Earth radii. The near-Moon regime is defined as a sphere around the Moon with a radius of 10 Moon radii.
The low-fidelity model described in the previous paragraph is used in all three regions. When near either body, the
high-fidelity model includes the point-mass gravity of the Earth, Moon, and Sun, and a 10×10 non-spherical gravity
field for the near body. When not near either body, the high-fidelity model is identical to the low-fidelity model.

The simulation timestep is 1 h and all models are integrated using an RK45 variable-step integrator. With either bi-
fidelity propagation method, high-fidelity correction is performed only before each multi-target measurement update.

4.2 Results

Five scenarios are constructed using the four SO clusters described in the previous section: a scenario with all 20
objects, a scenario only considering the five objects in Cluster 1, a scenario only considering Cluster 2, and so on. Each
set of results reflects the average of 100 Monte Carlo runs with each of the four propagation methods (low-fidelity,
high-fidelity, bi-fidelity, and adaptive bi-fidelity). The observations, initial SO states, and initial EnGMF particles are
randomized for each set of four runs.

The simulation is implemented in C++ with the maximum safe level of optimization enabled. Each run is performed on
a single thread. The simulation runs are performed on a computer with six 3.2 GHz CPUs. The computer can support
a total of 12 concurrent threads, but only a maximum of four runs are performed simultaneously, to avoid running out
of memory or biasing timing results by overtaxing the system.

Figure 2 shows the average optimal subpattern assignment (OSPA) tracking error with each propagation method [23],
with cutoff 100 km and order 2, for the scenario with all objects. The low-fidelity results are significantly worse than
the other three methods. This is partially due to the fact that some objects’ state-space PDF estimates tend to diverge
with only low-fidelity propagation. The four methods have average OSPA errors 19.08 km, 15.59 km, 15.93 km, and
15.69 km respectively. This shows that, in this case, neither original bi-fidelity propagation nor our new adaptive
bi-fidelity propagation yields a significant decrease in tracking accuracy.

Fig. 2: Average OSPA tracking error with each propagation method, computed after each measurement update.

Figure 3 shows the computational cost of the multi-target filter at each simulation timestep. As expected, these results
show that both the original and adaptive bi-fidelity methods roughly match the computational cost of low-fidelity
propagation when only predicting the multi-target density. When a measurement update occurs, the cost of filtering
increases for all four methods, but we can see that the adaptive method results in smaller spikes than the original
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bi-fidelity method. The biggest advantage of bi-fidelity propagation (original or adaptive) is observed around 𝑡 = 8.5d,
which corresponds to the LTO objects (Cluster 3) returning to the near-Earth regime. This causes a wide spike in
high-fidelity cost, but a narrower and shorter spike in the bi-fidelity costs. The average total filter runtimes for the four
methods are 25.72 s, 115.05 s, 34.97 s, 30.94 s. This indicates that adaptive bi-fidelity propagation reduces filtering
time by an average of 12% compared to the original bi-fidelity method in this case.

Fig. 3: Average runtime cost of multi-target filter with each propagation method. Markers correspond to measurement
updates.

Tables 2 and 3 summarize the results for the other four scenarios, each only considering the objects in a single cluster.
These results show that the adaptive bi-fidelity propagation causes a negligible change in tracking error compared
to the original bi-fidelity method. Furthermore, the new propagation method reduces total runtime cost by 11–17%
across the five scenarios, with the greatest improvement in Cluster 1. This is because the DRO never passes close
enough to either body to require high-fidelity correction, meaning that adaptive bi-fidelity propagation has the same
computational cost as low-fidelity propagation in this case.

Table 2: Average OSPA tracking error (km) for each propagation method and scenario. “Change” is relative increase
from original bi-fidelity to adaptive bi-fidelity.

Method All Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4

Lo-Fi 19.08 15.45 11.36 15.23 17.04
Hi-Fi 15.59 15.75 8.74 9.52 14.69
Bi-Fi 15.93 15.66 8.96 9.51 14.72

Adaptive 15.69 15.26 9.12 9.67 15.13
Change −2% −3% 2% 2% 3%

Table 3: Average total runtime cost (s) of multi-target filter for each propagation method and scenario. “Change” is
relative decrease from original bi-fidelity to adaptive bi-fidelity.

Method All Clusters Cluster 1 Cluster 2 Cluster 3 Cluster 4

Lo-Fi 25.72 6.25 9.26 14.77 8.28
Hi-Fi 115.05 12.61 43.25 121.97 28.97
Bi-Fi 34.97 7.47 15.89 21.61 11.14

Adaptive 30.94 6.22 14.06 18.12 9.87
Change 12% 17% 12% 16% 11%
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5. CONCLUSION AND FUTURE WORK

We have presented an adaptive bi-fidelity method for orbit uncertainty propagation. The method uses a predetermined
map to select the optimal pair of low- and high-fidelity dynamics models for bi-fidelity propagation based on an
object’s estimated state. We have shown via numerical simulation that the method provides an improvement in
computational efficiency compared to the original bi-fidelity method without compromising tracking accuracy. The
greatest improvement has been observed in orbit families that spend significant periods of time not close to either the
Earth or Moon. Fortunately, this includes popular families for cislunar mission planning, including distant retrograde
orbits (DROs), near-rectilinear halo orbits (NRHOs), and lunar transfer orbits (LTOs).

As a proof-of-concept for the proposed method, these results provide motivation for the development of a more rigorous
map for cislunar orbit uncertainty propagation. This map could draw on a more varied set of models, such as the
circular restricted three-body problem (CRTBP) in the rotating frame and models including additional forces such
as solar radiation pressure (SRP). Another possible area for further development of the adaptive bi-fidelity method
may be to replace estimate-based model selection with per-particle model selection. This could result in a partition
of the particle set based on the model selection map. Particle partitioning may be necessary to use the proposed
method in scenarios with much larger gaps between detections, where a single object’s state-space probability density
function (PDF) may have significant mass in multiple regimes.
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