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ABSTRACT

Space safety and sustainability has recently received formalized recognition in the light of proliferation by large
satellite constellations operated by the commercial sector. Enhanced space operations - detection, characterization,
and tracking - are critical for safety and sustainability. A large portion of the lethal (non-)trackable debris reside
in low Earth orbit (LEO) while the new commercial constellations reside dominantly in the lower LEO (LLEO)
regime with significant plans for exploiting very LEO (VLEO) for future missions. With the new LEO population
biased toward LLEO and VLEO, operations have become significantly more sensitive to atmospheric drag, modeling
of which remains a primary challenge. Under support from the Intelligence Advanced Research Projects Activity
(IARPA) Space Debris Identification and Tracking (SINTRA) program and the Office of Space Commerce (OSC),
we are developing the next-generation drag modeling framework that accurately characterizes atmospheric density
uncertainty due to space weather in a physics- and data-driven approach. This paper introduces one of the elements of
the new framework we call stochastic Unscented Transform (SUT), a mathematical formulation designed to capture
the joint statistics of probabilistic atmospheric density models and their probabilistic drivers or inputs. We present the
mathematical derivation of SUT and its validation with simple numerical examples of linear and non-linear systems
and then apply it to the case of drag modeling by incorporating the effects of uncertainty in the solar driver and density
models in real-time orbit propagation. Enabled by the generalized nature of the SUT formulation, we also apply it
to uncertainty and orbit prediction. This work moves us in the direction of realistic covariance for operations and
eventually space safety and sustainability.

1. INTRODUCTION

The need to include reliable uncertainty information for probabilistic atmospheric density models, like CHAMP-ML
[1] and its drivers, for example, F10.7, in the context of drag modeling is critical for accurate orbit prediction and
safe space operations in low Earth orbit (LEO). The lack of reliable uncertainty information in dynamic modeling
for orbit covariance propagation is typically overcome by employing process noise, Q, that is optimized during the
orbit determination process and accounts for un-modeled and/or mis-modeled dynamics [2]. The current operational
model for atmospheric drag, the High Accuracy Satellite Drag Model (HASDM) [3], uses the JBH09 [4] empirical
density model , a JB2008 [5] variant, to perform forecasts. The forecasts use a time-invariant estimate of thermosphere
density uncertainty modeled as a simplified function of perigee altitude and solar activity which can be significantly
improved for operations. The HASDM system also does not currently account for driver forecast uncertainty. The next-
generation drag modeling framework will leverage models that provide reliable physics- and data-driven uncertainty
estimates (Figure 1).

The primary sources of uncertainty in the drag acceleration, a⃗drag, model described in (Figure 1) are the thermosphere
mass density, ρ , and the drag coefficient, CD. Cross-sectional area, A, and satellite mass, m, are typically well known
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Fig. 1: A schematic of the next-gen drag modeling framework. The elements of the new framework are highlighted in
green while those being replaced are strikeout in red. SwX: Space Weather, OD: Orbit Determination, and OP: Orbit
Propagation.

but can also be uncertain depending on the object. As a result, they are commonly lumped into a single uncertain
ballistic coefficient parameter, B = CDA

m , to simplify the modeling. The final parameter is the velocity of the orbiting
object with respect of the co-rotating atmosphere, vrel , which is also generally well known but can induce errors in the
presence of strong neutral winds [6]. This work focuses on addressing the uncertainty in ρ .

Despite being climatological with limited fidelity, empirical models such as JB2008/JBH09 and MSIS [7] have been
preferred for operations primarily because of the ease-of-use. Physics-based models have been touted as the next big
thing for decades, however, the computational cost of such models have kept them from operations. All of the existing
models are deterministic. We have recently developed a series of probabilistic empirical and quasi-physical density
models (HASDM-ML [8], CHAMP-ML [1], MSIS-UQ [9], and TIE-GCM ROPE [10]). We define probabilistic
models as those that provide a stochastic output (density distribution) for a deterministic set of inputs. Additionally,
several efforts in the space weather community have led to probabilistic models for space weather (swx) drivers of
density models (e.g. F10.7 [11, 12] and Ap/Kp [13, 14]).

Because probabilistic models for orbital dynamics, drag in this case, have only been recently developed, leveraging
such capabilities requires a novel mathematical framework to efficiently and effectively capture the joint statistics
(driver and model; see Figure 1) for operations. The primary contribution of this work is the development of such
a mathematical framework we call Stochastic Unscented Transform (SUT). Unlike the traditional (deterministic) un-
scented transform (UT) [15], SUT accurately captures the joint statistical characteristics of probabilistic space weather
inputs driving stochastic atmospheric density models. This capability enables a more accurate modeling of inherently
dynamic systems, providing a more realistic representation of the complex dynamics. Due to the improved state
estimation and prediction, this framework can find application across diverse fields, proving particularly beneficial
in complex environments where deterministic models fall short, and Monte Carlo simulations become inefficient.
Notably, the SUT is well-suited for problems with limited computational resources and is suitable for real-time appli-
cations. These attributes make it particularly well-suited for use in space applications. Leveraging this generalization
of SUT, as a second contribution, we demonstrate the application of the SUT framework in orbit and uncertainty
propagation.

The outline of the paper is as follows: The next section describes in detail the mathematical derivation of the gener-
alized SUT framework. The developed SUT formulation is then validated using simple numerical examples of linear
and non-linear systems and then applied to the case of probabilistic density modeling for the drag application (primary
contribution). The setup of SUT for orbit and uncertainty propagation (second contribution) and validation with Monte
Carlo is presented next. Finally the SUT framework is applied in a 2-tier end-to-end scenario where it is first used to
obtain joint uncertainty in density resulting from both driver and model uncertainties and then for real-time orbit and
uncertainty/covariance propagation using the estimated joint density uncertainty.
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2. SUT DERIVATION

2.1 Problem Statement

The goal of SUT framework is to accurately model the statistical mean and variance for a system using a probabilistic
model driven by probabilistic inputs. Any given system can be broadly segmented into three basic components: input,
model, and output. Each of these components can be deterministic or probabilistic. While previous studies have
investigated systems with probabilistic inputs/outputs, no generic framework exists for incorporating a probabilistic
model without linearizing or incorporating some form of approximation.

In the SUT framework, sigma points are defined as a specific set of data points collected from the input distribution.
The input can generally have any arbitrary distribution, however, in this work, we consider the input distribution as a
best-fit Gaussian distribution. (Similar to a standard unscented transform, the modeling seeks to incorporate and track
the first two distribution moments, whether the input distribution is Gaussian or not. Other works investigate capturing
higher order moments for cases where it may be needed [16].) Each sigma point includes the effects of uncertainty
applied on the input distribution, such that the mean and variance of each sigma point is transformed through the
stochastic model to produce new/transformed mean and variance. For N sigma points:

µx0 , µx1 , . . . , µxN −→
{

µy0

σ2
y0

}
,

{
µy1

σ2
y1

}
, . . . ,

{
µyN

σ2
yN

}
where sigma points, x0, x1, x2, ..., xN , smartly sampled from an input distribution, X, are fed through the model to obtain
the output points, y0, y1, y2, ..., yN , where each output point is conveyed as a mean and variance, as illustrated in Figure
2. The approach is to treat each sigma point output shown above as best-fit, normally-distributed random variables.
Once the input distribution sigma points and weights are defined, these data points are transformed by a probabilistic
model to compute output information statistics. These (multiple) sigma-point statistics are then used to compute the
overall system transformation distribution, Y, not only incorporating the properties of the input distribution, but also
the uncertainties associated with the model transform itself.

Fig. 2: Schematic Diagram of the SUT framework.

2.2 Standard ”Deterministic” Unscented Transform

The common approach known for the Unscented Transform is to track the first and second moments of an input distri-
bution through a (semi-) arbitrary nonlinear function [17]. We call this standard unscented technique ”deterministic”
because it treats the underlying transformation as a deterministic model; it does not consider any uncertainty from the
model/transformation itself. Here, provided an input value, the model provides a (deterministic) output value with no
reported uncertainty.

By choosing smartly sampled sigma points along with only attempting to track the first and second order moments,
applying an unscented approach is more efficient than Monte Carlo or particle filtering techniques. The principle of
this idea stands by selecting specific points known as sigma points obtained from the Gaussian input distribution’s
mean µ̃x and variance σ̃2

x . While the methodology within the paper can address higher-dimensional cases, we only
address a single dimension (1D) herein. With this information, the sigma points and a set of weights can be obtained.
The input sigma point values are defined as xi with selected unscented weights for mean estimation, wa

i , and variance,
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wc
i , estimation. From previous contributions, different algorithms exist to select sigma point locations and weights

using a set of scaling parameters [18].

Let the location of the sigma point relative to the mean (in units of standard deviations or σ ) be defined as si, so that
sigma-points are located at µ + siσ . For example, si = 1 defines a sigma-point located at µ +1σ , and si =−1 defines
a sigma-point located at µ −1σ . Then weights may be selected arbitrarily as long as they follow

N

∑
i=0

wa
i si = 0 (1)

N

∑
i=0

wa
i = 1 (2)

for the mean estimator, and for a valid variance estimator,

N

∑
i=0

wc
i = 1 (3)

with wc
i = 0 for/if si = 0. (4)

Adherence to the above constraints ensure that the sigma points can result in unbiased overall system estimates.

By translating the input sigma point values, xi, through the (deterministic) model, f , we obtain output values as

yi = f (xi). (5)

where we can estimate the desired statistics of the overall system mean µy and variance σ2
y as

µ̃y =
N

∑
i=0

wa
i yi (6)

σ̃
2
y =

N

∑
i=0

wc
i

s2
i
(yi − µ̃y)

2 , (7)

where we use a tilde to denote estimated values.

The above equations may be proven by inserting the input sigma points xi into Equations (6) and (7) and the result
would match the mean µx and the variance σx, respectively.

The investigations developed in this work led us to analyze a case of a common set of N = 2 sigma points chosen
simply at µ ±σ .

2.2.1 Common Symmetric N = 2

Here, sigma points are selected by evenly weighting two data points around the mean. The collection of these points
are x0 = µx +σx and x1 = µx −σx. By the nature of the symmetric approach, when the average is taken for both sigma
points, we obtain the mean of the input distribution. To preserve this observation, the value for the weights of each
point are wa

0 = wa
1 = wc

0 = wc
1 =

1
2 . With this, the mean (6) and covariance (7) can be rewritten as

µ̃y =
1
2
(y0 + y1) (8)

σ̃
2
y =

1
4
(y0 − y1)

2 (9)

We choose this (common symmetric N = 2 case) for its simplicity. Other cases may be considered such as asymmetric
cases (where wa

i ̸= wc
i ) and also cases with additional sigma points.
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2.3 Stochastic Unscented Transform
The next step is to evolve the unscented transform to incorporate probabilistic modeling (using the symmetric case).
The main characteristic of this method is that we are implementing the same rules as the deterministic unscented
transform, but instead of having scalars, we are working with model output distributions. Here, model outputs are
provided as a mean value with an associated uncertainty variance, yi = (µyi ,σ

2
yi
). Also, importantly, we assume herein

that each resultant sigma point distribution is independent.

Considering the deterministic mean and variance estimators, we derive new stochastic mean and variance estimators
by carrying through each sigma-point output result as a distribution. Here we denote Y as the overall system output
distribution.

2.3.1 General Mean Estimator

Using (6), the resultant mean is the weighted sum of all of the yi output sigma points. Based on this, we develop a
general mean estimator that can be applied to any set of sigma points with their appropriate weights. Since each Y
output sigma point represents a normal distribution, the distribution for the weighted sum associated with the mean
estimator for Y can be described as

N

∑
i=0

wa
i N
(
µyi ,σ

2
yi

)
∼N

(
N

∑
i=0

wa
i µyi ,

N

∑
i=0

(wa
i )

2
σ

2
yi

)
∼N

(
µ̃y, σ̃

2
µy

)
, (10)

again assuming each sigma point is independently distributed. Thus,

µ̃y =
N

∑
i=0

wa
i µyi (11)

σ̃
2
µ̃y =

N

∑
i=0

(wa
i )

2
σ

2
yi

(12)

The weighted sum of (independent) normal distributions remains normal, where weighted means and squared weighted
variances add. It is important to note that σ̃2

µ̃y
is the estimated variance of the mean estimator, and not the Y system

variance. σ̃2
µ̃y

conveys the uncertainty of the mean estimator.

2.3.2 General Variance Estimator

For the variance estimator stemming from Equation (7), one can use the χ2 formulation in Appendix B to compute a
generalized variance estimator for any given UT weights and sigma points. Noting that the distribution of the mean
estimator is given in Equation (10), one can derive the distribution of the variance estimator by substituting the sigma
point distributions into (7) as1

N

∑
i=0

wc
i

s2
i

(
N
(
µyi ,σ

2
yi

)
−N

(
µ̃y, σ̃

2
µ̃y

))2
∼

N

∑
i=0

wc
i

s2
i

(
N
(

µyi − µ̃y,σ
2
yi
+ σ̃

2
µ̃y

))2
(13)

∼ χ̃
2





wc
0

s2
0

(
σ2

y0
+ σ̃2

µ̃y

)
wc

1
s2
1

(
σ2

y1
+ σ̃2

µ̃y

)
...

wc
N

s2
N

(
σ2

yN
+ σ̃2

µ̃y

)

 ,


1
1
...
1

 ,



(µy0−µ̃y)
2

σ2
y0
+σ̃2

µ̃y

(µy1−µ̃y)
2

σ2
y1
+σ̃2

µ̃y
...

(µyN −µ̃y)
2

σ2
yN

+σ̃2
µ̃y




(14)

1It is noted that (13) assumes that (10) is distributed independently of yi, which is incongruent since (10) is dependent on yi. As such, the
variance terms of (13) and the resultant overall distribution may be considered as upper bounds.
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With this and equations (45) and (46), which denote the mean and variance, respectively, of a generalized χ2 distribu-
tion, the above generalized variance estimator distribution has mean and variance as

σ̃
2
y =

N

∑
i=0

wc
i

s2
i

(
σ

2
yi
+ σ̃

2
µy +(µyi − µ̃y)

2
)

(15)

σ
2
σ̃2

y
= 2

N

∑
i=0

(
wc

i

s2
i

)2((
σ

2
yi
+ σ̃

2
µy

)2
+2
(

σ
2
yi
+ σ̃

2
µy

)
(µyi − µ̃y)

2
)

(16)

It is true that (16) illustrates the uncertainty variance of the variance estimator. With this, we have knowledge of the
confidence in the estimation of the variance. For the purposes of our work, this term is not immediately relevant, but
we include it because of its equivalent derivation from the generalized χ2 distribution and potential inclusion in future
work.

2.3.3 Stochastic Unscented Transformation with Common Symmetric N = 2 Sigma Points

Recall from section 2.2.1, the two sigma points defined as s0 =+1 and s1 =−1 with weights as wa
0 = wa

1 = wc
0 = wc

1 =
1
2 .

Inserting these values into the generalized mean and variance estimators yields

µ̃y =
1
2
(
µy0 +µy1

)
(17)

σ̃
2
µ̃y =

1
4
(
σ

2
y0
+σ

2
y1

)
(18)

σ̃
2
y =

1
2

(
σ

2
y0
+σ

2
y1
+2σ̃

2
µ̃y +

(
µy0 − µ̃y

)2
+(µy1 − µ̃y)

2
)

(19)

=
1
2

(
σ

2
y0
+σ

2
y1
+2σ̃

2
µ̃y +

1
2
(
µy0 −µy1

)2
)

(20)

Intuitively, we can now see the inherent contribution of incorporating the model uncertainty with the use of the stochas-
tic unscented transform. By grouping the terms of (20), we realize the output variance uncertainty consists of 3 parts:

• The model/transform uncertainty: 1
2

(
σ2

y0
+σ2

y1

)
• The transformed input distribution uncertainty (matching eq (9)): 1

4

(
µy0 −µy1

)2

• The uncertainty of the mean estimation: σ̃2
µ̃y

Incorporating and accounting for all three of these terms derives the complete stochastic system characterization.

3. SUT VALIDATION

In this section, simple examples of a linear and a nonlinear system are presented followed by the results for space
weather application where we use the output of a model that provides the index of the solar radio flux F10.7 with
uncertainty and CHAMP-ML model with the SUT approach. Finally, an orbit propagation is implemented using
MSIS along with the inclusion of the F10.7 with its uncertainty.
3.1 Linear System Example
Without loss of generality, any linear function, y = f (x), can be simplified to the following diagram shown in Figure
2. Input values x are selected as members of an input normal distribution, X , the linear function f scales the input
values by an arbitrary, deterministic scalar value, a, and then adds a random value b selected from a non-centric normal
distribution, B, to produce y = ax+ b. Here, the model also reports the variance of B (which is σ2

b ) as a secondary
output, which is the uncertainty of the reported y value. Since the result is a simple Gaussian scale followed by a
Gaussian addition, the true output distribution Y is Gaussian, where µy = aµx +µb and σ2

y = a2σ2
x +σ2

b .

With the given setup, the aim is to derive unscented symmetric estimator for accurately calculating the mean and
variance for the given linear system in the example.
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Fig. 3: Simple Linear System Example.

3.2 Unscented Symmetric N=2 Estimators

Using the results from Section 2.3.3, we can test the weighted mean and variance estimators. As specified by the
symmetric N = 2 approach, the unscented mean and variance weights are all equal to 1

2 , and the input values are
selected as x0 = µx +σx, x1 = µx −σx. With this,

y0 = f (x0) = f (µx +σx)∼N
(
a(µx +σx)+µb,σ

2
b
)

(21)

y1 = f (x1) = f (µx −σx)∼N
(
a(µx −σx)+µb,σ

2
b
)

(22)

representing the information outputted by the functional model.

Examining the expected value of the mean estimator, by using (17), yields

µ̃y =
1
2
(a(µx +σx)+µb +a(µx −σx)+µb) (23)

= aµx +µb (24)

displaying the correct (true) µy, validating the mean estimator for the symmetric N = 2 case.

For the variance estimator, we reference the generalized variance estimator (20) while also noting the variance of the
mean estimator (18) and substitute our example values to yield

σ̃
2
y =

1
2

(
σ

2
y0
+σ

2
y1
+2σ̃

2
µ̃y +

1
2
(
µy0 −µy1

)2
)

(25)

=
3
4

σ
2
y0
+

3
4

σ
2
y1
+

1
4
(
µy0 −µy1

)2 (26)

=
3
2

σ
2
b +a2

σ
2
x (27)

which, interestingly, fails to properly match the true variance estimate, as the σ2
b portion is 3

2 of the intended amount.
So, this estimator develops accurate capture of uncertainty contributions from the input but not from the model.

However, the findings in our studies show that the estimator is capable of matching accurately with the true output by
establishing absolute confidence in the mean (i.e. σ̃µ̃y = 0). Applying this idea we obtain

σ̃
2
y =

1
2

(
σ

2
y0
+σ

2
y1
+

1
2
(
µy0 −µy1

)2
)

(28)

= σ
2
b +a2

σ
2
x (29)

such that the correct unbiased variance estimator is derived. We arrive at the conclusion of the correct estimation by
establishing the mean of variance estimator being equal to zero. Details of why this condition happens are explained
in the end of this section.
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3.3 Non Linear System Example
The conditions of this system are exactly the same as the Linear system, but with the new application of squaring the
input of the model to implement the non-linearity aspect as displayed in the Figure below,

Fig. 4: Simple Non-Linear System Example.

Again, we analytically test the weighted mean and variance estimators. Just like before,

y0 = f (x0) = f (µx +σx)∼N
(

a2 (µx +σx)
2 +µb,σ

2
b

)
(30)

y1 = f (x1) = f (µx −σx)∼N
(

a2 (µx −σx)
2 +µb,σ

2
b

)
(31)

We go ahead and examine the expected value using (17) and the mean estimation yields,

µ̃y =
1
2

(
a2 (µx +σx)

2 +µb +a2 (µx −σx)
2 +µb

)
(32)

= a(µ2
x +σ

2
x )+µb (33)

Thus, displaying an accurate capture of the mean for the nonlinear case. The symmetric case for mean estimation is
validated.

Proceeding with the variance estimation, we note that the variance of the mean estimator, using (18), gives

σ̃
2
µ̃y =

1
4
(σ2

b +σ
2
b ) =

1
2

σ
2
b (34)

Then, we proceed to use the generalized variance estimator (18) and substitute our values,

σ̃
2
y =

1
2

(
σ

2
y0
+σ

2
y1
+2σ̃

2
µ̃y +

1
2
(
µy0 −µy1

)2
)

(35)

=
3
2

σ
2
b +4a4

µ
2
x σ

2
x (36)

We observe similar behavior as the linear system where and overestimation of 3/2 of the uncertainty being reported
from the model and again, the σ4

x term is missing. From the result, applying absolute confidence in the mean estimator
will yield the correct variance reported from the model and if we also insert the missing higher-order term 2a4σ4

x .
With this, we get

σ̃
2
y = σ

2
b +4a4

µ
2
x σ

2
x +2a4

σ
4
x , (37)

which now provides the correct estimation for the variance estimator. This result implies that for the conditions to
obtain correct estimation, a correction factor needs to be implemented and that factor will depend on the nature of the
non-linearity of the model itself, and of course, assume perfect confidence in the mean estimation.
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3.4 Space Weather Application
In this section, we analyze the overall output of stochastic density model driven by an input distribution (mean and
variance) of the space weather index. Two different scenarios consisting of a low solar activity and high solar activity
for the solar radio flux as defined in previous work [19] are used. We apply the generalized estimators for the mean
and variance estimation. The model selected for this study was CHAMP-ML. The F10.7 distribution is obtained using
the models developed in [11]. We proceed to use the rules of UT to establish the input points. The model reports
neutral atmospheric density with a source of uncertainty where we can implement the SUT method. We establish a
Monte Carlo simulation as our ground truth. The parameters for each scenario are shown in Table 1. The scenarios
are shown below,

Table 1: Space Weather Parameters for each scenario

Mean Solar Flux (F10.7) Variance Case
Scenario 1 73.6 sfu 54.8 Low Solar Activity
Scenario 2 224.7 sfu 175.6 High Solar Activity

Fig. 5: Output results from CHAMP-ML with SUT approach. Leftmost panels display results of the general estimators
including the variance of the mean estimator. Rightmost panels displays the results of the general estimators without
the inclusion of the variance of the mean estimator

From Figure 5, we have two illustrations: rightmost panels contains the results from Equations (17) and (20) for the
common symmetric case, whereas, the leftmost panels show the General Estimators where the Variance of the Mean
Estimator σ̃2

µ ̸= 0. There is an overestimation bias in the leftmost panels for the symmetric case, respectively, making
it unable to report the correct output. For the rightmost panels, the same results happen here as for the basic linear
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example shown previously. The results in the leftmost panels matches accurately the expected overestimation of 3/2
due to the inclusion of the variance from the mean estimator.

From all the examples, we observe an equivalent behaviour of the estimators. An overestimation of the uncertainty
from the model is being reported as we apply the variance of the mean estimator. When we set the variance of the mean
estimator to zero, we capture the correct distribution matching the output from all example cases. In the nonlinear case,
we must not forget an additional correction factor is needed for correct capture of the variance besides the correction
factor for σ2

b . The SUT approach tends to overestimate the variance of the mean, inflating the variance of the model
in the output by 1/2 for all the cases. For the CHAMP-ML case, we observe in the different solar cases, the response
of the model captures closely the nature of F10.7 linearly.

4. SUT FOR ORBIT AND UNCERTAINTY PROPAGATION

4.1 SUT and Simulation Scenario Setup

After applying the generalized SUT framework for obtaining the joint statistics on density resulting from both driver
and model uncertainty, we employ SUT for orbit and uncertainty propagation. The case of 2-tier SUT application for
end-to-end processing is schematically represented in Figure 6. To isolate the effects on density and drag uncertainty,
we set the initial state covariance to a small value. The current SUT framework supports 1-dimensional application.
Therefore, we consider the uncertainty in the F10.7 space weather driver obtained from the model of [11]. We use
the MSIS00 model for density apply a constant level of model uncertainty. While we have several probabilistic
models available, we chose MSIS00 because the HASDM-ML and CHAMP-ML use other solar drivers that require
a n-dimensional SUT to accurately account for uncertainty. They can be used with future extensions of the SUT
framework. The initial version of the TIE-GCM ROPE model is limited to an altitude of 450 km. Extension of the
model to higher LEO altitude is currently underway.

Fig. 6: A schematic of the application of SUT for density uncertainty estimation and state and covariance propagation.

The simulation parameters are summarized in Table 2. We simulate the strongest storm over the last 30 years, the
Halloween storm of 2003, to highlight the impact of drag and uncertainties on operations. Figure 7 shows the density
during the three day storm period as well as the drivers. The Halloween storm has two days of strong storm activity
resulting from two stacked coronal mass ejections (CMEs).

4.2 State and Uncertainty Propagation Results

Figure 8 shows the results of the density uncertainty characterization with SUT and its impact on covariance prop-
agation. As previously mentioned, the F10.7 mean and uncertainty forecasts are derived from the models of [11].
Different levels of model uncertainty are implemented around the mean density from MSIS00 ranging from 5-30%. It
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Table 2: Simulation set-up for the orbit uncertainty propagation using SUT and MC approach.
Parameter Value/Details

Initial position (ECI) [3782900.7032, -5441600.6779, -1420075.1327] m
Initial velocity (ECI) [-606.6600, 1539.2559, -7488.3946] m/s

State Position and Velocity
Dynamic Model 2-body, J2 and drag

Propagation period 3 days
Object shape/type Spherical & symmetric

Cross-sectional AMR 0.002 m2/kg
Drag coefficient 2.2

Initial epoch 00:00:00 UTC, October 29, 2003 - Halloween Storm
Orbit propagation method SUT Modified MC 2 (Paul et. al.) half-life = 18 min, 180 min, and ∞

Number of MC iterations 1000

is observed that while the impact of driver uncertainty remains constant, the overall position deviation is significantly
influenced by changes in model uncertainty. As model uncertainty increases, the position uncertainty also increases.

The stochastic models (e.g. HASDM-ML) suggest that the model uncertainty level during a storm period like the
Halloween storm is expected to be between 25-30%. Therefore, position uncertainty of tens of kilometers in operations
can be expected after 3 days of propagation. It is important to note that the driver uncertainty currently does not include
the uncertainty in storm-time driver, Ap. We expect that with uncertainty in Ap considered, the contribution of the space
weather drivers to position uncertainty will be significantly larger. Even during non-storm conditions, at the level of
5-10% model uncertainty, position uncertainty of several kilometers can be expected after a 3-day propagation during
high solar activity at approximately 400 km altitude.

As a reminder to the reader, these position deviations are for the scenario where orbit is propagated without any
new observations and are most suitable for conjunction assessments. The ground tracking of a resident space object

Fig. 7: Density and driver values from the NRLMSISE-00 atmospheric density model during the Halloween 2003
storm. Epoch is from the 29th October to 1st November 2003.
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Fig. 8: Propagated position deviation for a LEO orbit. Different model (M) and driver (D) uncertainty combinations
have been simulated for high solar activity conditions using the NRLMSISE-00 atmospheric density model. Epoch is
from the 29th October to 1st November 2003 at a timestep of 10 seconds.

(RSO) relies on various parameters, these include orbital characteristics (including altitude, eccentricity, and inclina-
tion), object properties (including dimensions, shape, surface reflectivity, and maneuverability), sensor characteristics
(including telescope aperture size, resolution, sensitivity, and radar frequency), and environmental factors (including
atmospheric conditions, cloud cover, and solar phase angle). Typically, majority of cataloged objects at the LEO
altitude have an average revisit rate of 1-2 observations per day, while median revisit rate is generally around 3-4
observations per day. The operational RSOs are some of the most well-tracked objects and can have up to 7-8 obser-
vations each day [20]. However, during the storm conditions or when objects maneuver, ground tracking is disrupted
which can significantly affect the revisit rates to an extent that some RSOs can go missing for days. The purpose
of presenting the results for propagation-only scenario is to simulate the ”worst-case” tracking performance during
adverse conditions. The objective is to assess the overall trajectory deviation, thereby showcasing the capabilities of
proposed approach to realistically model uncertainties without additional tracking data.

4.3 Monte Carlo Validation

We employ a Monte Carlo (MC) algorithm to validate the orbit and uncertainty propagation algorithm using SUT.
We follow the methods of Paul et. al., to implement the MC algorithm to account for the uncertainty in density [21].
We use the same initial conditions as in the SUT framework and simulate three cases with different half-lives for a
first order Gauss-Markov process to model atmospheric density uncertainty. The Gauss-Markov process models the
temporal autocorrelation of atmospheric density fluctuations compared to simpler models. This approach allows for
a more realistic simulation of the stochastic nature of atmospheric drag, a critical factor in orbit propagation at LEO
altitudes. The MC simulation parameters including the half-lives considered are also given in Table 2.

Residuals are calculated as the absolute position error for each MC run with respect to the mean trajectory. The results
demonstrated a notable spread in the spacecraft’s position, with deviations growing over the 3-day propagation period.
This spread is more pronounced in the along-track direction, reflecting the cumulative effect of atmospheric drag acting
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Fig. 9: Propagated position deviation for a LEO orbit using Monte Carlo and SUT. Results have been simulated for
the Halloween storm conditions using the NRLMSISE-00 atmospheric density model. Epoch is from the 29th October
to 1st November 2003 at a timestep of 10 seconds. Three cases are presented for Monte Carlo with different half-life
for the atmospheric density uncertainty, whereas for SUT different update times matching with corresponding Monte
Carlo results have been shown.

over time. A key observation from the results was the relationship between the half-life of the Gauss-Markov process
and the position deviation. As the half-life increases, decay of density perturbations decreases, thereby increasing
the position deviation as the long-lasting atmospheric density variations are consistently applied on the spacecraft’s
trajectory, leading to greater uncertainty in position.

Figure 9 confirms this trend, showing larger deviations from the mean trajectory as the half-life increased. Overall,
the findings underscore the importance of accounting for the temporal characteristics of atmospheric density when
modeling drag forces in LEO. The challenge is to identify what half-life represents the truth. This can only be achieved
through comparison with measurements and will be a subject of future work for us. Figure 9 also shows the comparison
of the SUT propagated position uncertainty with that from the MC simulations. By default since the SUT framework
tracks the +/- 1σ uncertainty in density, it represent a half-life of ∞ as simulated with MC. Simulating non infinity MC
half-lives with SUT requires manual tuning how often the sigma points get orthogonalized. As shown in Figure 9, for
a 180 min half-life, a orthogonalization time of 8 hours in required while for a half-life of 18 min, a orthogonalization
time of 1 hour is required.

5. CONCLUDING DISCUSSION AND FUTURE WORK

Accurately modeling of the dynamic space environment and effective incorporation of said variations into orbital
dynamics of space objects through drag modeling is a critical challenge that requires innovative solutions. Existing
operations use models that carry two primary limitations: limited-fidelity and deterministic. Improving the fidelity
and developing probabilistic capabilities are essential to achieving advances in orbit determination and prediction.

We are developing the next-generation drag modeling which will integrate several technical innovations. The first
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innovative element was recently established in the form of stochastic/probabilistic models for neutral mass density.
The second innovation is the development of state-of-the-art probabilistic models for the drivers of the density models.
We have developed models for the solar driver(s) (F10.7) while several community efforts have been dedicated for the
geomagnetic driver (Ap).

This works presents the next in line of innovation, a mathematical framework we call stochastic unscented transform
(SUT) that efficiently and effectively provides the joint statistics resulting from probabilistic input models (F10.7 and
Ap) driving stochastic neutral density models. We present the mathematical derivation of the SUT framework as well
as its validation with simple linear and nonlinear examples and finally a space weather example. Because the SUT
framework is highly general in nature, we also demonstrate its application to the case of orbit covariance propagation.
We successfully validate the covariance propagation with Monte Carlo simulations.

The close agreement between the SUT and MC results confirms the validity of the SUT framework in modeling
the complex interactions between atmospheric density and spacecraft dynamics in LEO. Incorporation of this in the
orbital propagation is novel as the stochastic trends are translated to orbital dynamics in real-time thereby reducing the
latency. This methodology is particularly valuable for day-to-day space operations, as it facilitates covariance realism
and enhanced conjunction assessment. In a conjunction assessment, atmospheric density is typically assumed to be
constant and the corresponding stochastic behavior is generally not incorporated while calculating the probability of
collision (Pc). These assumptions can fail during the high solar activity and storm scenarios where the atmospheric
drag perturbation can significantly impact the relative trajectories of the two RSOs. Realistic conjunction assessment
can significantly influence Go/No-Go decision for satellite operators and is particularly important during high risk
conjunctions [22]. The SUT framework proposed in this work helps in incorporating the drag uncertainties in the
propagated orbit of each RSO which consequently help improve conjunction assessment and Pc calculation.

Current limitations of the SUT framework include 1-dimensional and Gaussian distribution assumption. Future work
will focus on extending the SUT framework for n-dimensional and multi-variations. Further extension will attempt to
capture non-Gaussian statistics.
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6. APPENDICES

APPENDIX A - COMMON LINEAR GAUSSIAN OPERATIONS

Common Gaussian linear transformations are noted here. For these, let X ∼N
(
µx,σ

2
x
)

and Y ∼N
(
µy,σ

2
y
)
, where X

and Y are independently distributed.

Translation:
Let a be a deterministic scalar, then

X ±a ∼N
(
µx ±a,σ2

x
)

(38)

Scaling:

aX ∼N
(
aµx,a2

σ
2
x
)

(39)

Addition:
Let b be another deterministic scalar, then

X ±Y ∼N
(
µx ±µy,σ

2
x +σ

2
y
)

(40)

aX ±bY ∼N
(
aµx ±bµy,a2

σ
2
x +b2

σ
2
y
)

(41)

APPENDIX B - GENERALIZED GAUSSIAN SQUARES

Let X ∼ N
(
µ,σ2

)
and a be a deterministic scalar, then aX2 ∼ χ̃2

(
aσ2,1, µ2

σ2

)
, where χ̃2 denotes a generalized χ2

distribution [23]. This can be shown by first noting that

X
σ

∼N (µ,1) . (42)

From here, with a normalized (unit-variance) Gaussian, we can square this result to formulate a non-central χ2 distri-
bution [24] as (

X
σ

)2

=
X2

σ2 ∼ χ
2
1

(
µ2

σ2

)
, (43)

noting the χ2 distribution’s degree-of-freedom (k = 1), and non-centrality parameter (λ = µ2

σ2 ).

With this, we can now multiply by the desired scalar, a, and reapply the proper variance, by noting that

aX2 = aσ
2
(

X2

σ2

)
∼ χ̃

2
(

aσ
2,1,

µ2

σ2

)
, (44)

where the generalized χ2 distribution’s scaling parameter (w = aσ2), degree-of-freedom (k = 1), and non-centrality
parameter (λ = µ2

σ2 ).

Of particular interest, it can be noted [23] that the generalized χ2 distribution notated as χ̃2 (w,k,λ ) has a mean of

∑
j

w j (k j +λ j) (45)

and variance of
2∑

j
w2

j (k j +2λ j) . (46)
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Thus for (44), the resultant mean is
a
(
µ

2 +σ
2) (47)

with variance
2a2

σ
2 (2µ

2 +σ
2) (48)

Note: Multiple Gaussian squares can be additively combined by vectorizing the w, k, and λ parameters as

aX2 +bY 2 ∼ χ̃
2

[aσ2
x

bσ2
y

]
,

[
1
1

]
,

 µ2
x

σ2
x

µ2
y

σ2
y

 (49)

Lastly, if an additional, independent Gaussian Random Variable, B ∼ N (µb,σ
2
b ), is added, then one can make use of

the (optional) additional parameters associated with the generalized χ2 distribution. With these, it may be shown that

aX2 +B ∼ χ̃
2
(

aσ
2,1,

µ2

σ2 ,σb,µb

)
, (50)

where the system mean can be analytically expressed as

a
(
µ

2 +σ
2)+µb (51)

and the system variance is
2a2

σ
2 (2µ

2 +σ
2)+σ

2
b . (52)

REFERENCES

[1] Richard J. Licata and Piyush M. Mehta. Uncertainty quantification techniques for space weather modeling:
Thermospheric density application. CoRR, abs/2201.02067, 2022.

[2] Nathan Stacey and Simone D’Amico. Analytical process noise covariance modeling for absolute and relative
orbits. Acta Astronautica, 194:34–47, 2022.

[3] Mark F. Storz, Bruce R. Bowman, Major James I. Branson, Stephen J. Casali, and W. Kent Tobiska. High
accuracy satellite drag model (hasdm). Advances in Space Research, 36(12):2497–2505, 2005. Space Weather.

[4] L. Newman, R. Besser, and M. Hejduk. Predicting Space Weather Effects on Close Approach Events. In S. Ryan,
editor, Advanced Maui Optical and Space Surveillance Technologies Conference, page 39, January 2015.

[5] Bruce Bowman and W. K. Tobiska. JB2008: Empirical Thermospheric Density Model. Astrophysics Source
Code Library, record ascl:2007.021, July 2020.

[6] Piyush M. Mehta, Andrew Walker, Craig A. McLaughlin, and Josef Koller. Comparing physical drag coefficients
computed using different gas–surface interaction models. Journal of Spacecraft and Rockets, 51(3):873–883,
2014.

[7] J. T. Emmert, D. P. Drob, J. M. Picone, D. E. Siskind, M. Jones Jr., M. G. Mlynczak, P. F. Bernath, X. Chu,
E. Doornbos, B. Funke, L. P. Goncharenko, M. E. Hervig, M. J. Schwartz, P. E. Sheese, F. Vargas, B. P. Williams,
and T. Yuan. Nrlmsis 2.0: A whole-atmosphere empirical model of temperature and neutral species densities.
Earth and Space Science, 8(3):e2020EA001321. e2020EA001321 2020EA001321.

[8] Richard J. Licata, Piyush M. Mehta, W. Kent Tobiska, and S. Huzurbazar. Machine-Learned HASDM Thermo-
spheric Mass Density Model With Uncertainty Quantification. Space Weather, 20(4), 2022.

[9] Richard J. Licata, Piyush M. Mehta, Daniel R. Weimer, W. Kent Tobiska, and Jean Yoshii. Msis-uq: Calibrated
and enhanced nrlmsis 2.0 model with uncertainty quantification. Space Weather, 20(11):e2022SW003267, 2022.
e2022SW003267 2022SW003267.

[10] Richard J. Licata and Piyush M. Mehta. Reduced order probabilistic emulation for physics-based thermosphere
models. Space Weather, 21(5), May 2023.

[11] Joshua D. Daniell and Piyush M. Mehta. Probabilistic solar proxy forecasting with neural network ensembles.
Space Weather, 21(9):e2023SW003675, 2023. e2023SW003675 2023SW003675.

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



[12] Joshua D. Daniell and Piyush M. Mehta. Probabilistic short-term solar driver forecasting with neural network
ensembles. Space Weather, 22(3):e2023SW003785, 2024. e2023SW003785 2023SW003785.

[13] Evangelos Paouris, Maria Abunina, Anatoly Belov, and Helen Mavromichalaki. Statistical analysis on the current
capability to predict the ap geomagnetic index. New Astronomy, 86:101570, 2021.

[14] Chakraborty, Shibaji and Morley, Steven Karl. Probabilistic prediction of geomagnetic storms and the kp index.
J. Space Weather Space Clim., 10:36, 2020.

[15] S.J. Julier and J.K. Uhlmann. Unscented filtering and nonlinear estimation. Proceedings of the IEEE, 92(3):401–
422, 2004.

[16] Donald Ebeigbe, Tyrus Berry, Michael M. Norton, Andrew J. Whalen, Dan Simon, Timothy Sauer, and Steven J.
Schiff. A generalized unscented transformation for probability distributions, 2021.

[17] Simon J. Julier and Jeffrey K. Uhlmann. New extension of the kalman filter to nonlinear systems. In Defense,
Security, and Sensing, 1997.

[18] E.A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear estimation. In Proceedings
of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373), pages 153–158, 2000.

[19] Richard J. Licata, W. Kent Tobiska, and Piyush M. Mehta. Benchmarking forecasting models for space weather
drivers. Space Weather, 18(10):e2020SW002496, 2020. e2020SW002496 10.1029/2020SW002496.

[20] Darren McKnight, Rachit Bhatia, Erin Dale, Chris Gates, Owen Marshall, Adam Marsh, and Mohin Patel. An-
alytic space domain awareness. In Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS)
Technologies Conference, September 2023.

[21] Smriti Nandan Paul, Richard J Licata, and Piyush M Mehta. Advanced ensemble modeling method for space ob-
ject state prediction accounting for uncertainty in atmospheric density. Advances in Space Research, 71(6):2535–
2549, 2023.

[22] Rachit Bhatia and Darren McKnight. Assessment of evolving conjunction risk for small satellite missions. In
Small Satellite Conference, 2023.

[23] DA Jones. Statistical analysis of empirical models fitted by optimization. Biometrika, 70(1):67–88, 1983.
[24] PB Patnaik. The non-central χ 2-and f-distribution and their applications. Biometrika, 36(1/2):202–232, 1949.

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 


	Introduction
	SUT Derivation
	Problem Statement
	Standard "Deterministic" Unscented Transform
	Common Symmetric N=2

	Stochastic Unscented Transform
	General Mean Estimator
	General Variance Estimator
	Stochastic Unscented Transformation with Common Symmetric N = 2 Sigma Points


	SUT Validation
	Linear System Example
	Unscented Symmetric N=2 Estimators
	Non Linear System Example
	Space Weather Application

	SUT for Orbit and Uncertainty Propagation
	SUT and Simulation Scenario Setup
	State and Uncertainty Propagation Results
	Monte Carlo Validation

	Concluding Discussion and Future Work
	Appendices



