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ABSTRACT

The computer vision community continues to develop new architectures and methods for image processing with neural
networks, but not all these advancements are transferable to Space Domain Awareness (SDA) imagery. Many of the
popular neural network components and best practices, such as choices in normalization and preprocessing, can have
negative effects on a neural network’s ability to process SDA data. Of particular interest are decisions in the feature
extraction, or “backbone” layers of a neural network, which can prevent it from capturing the salient information
in an SDA scene. In this paper, we analyze several popular architecture choices, observe their effects on a model’s
performance against SDA image processing tasks, and make recommendations for designing backbone architectures
for processing SDA data.

1. INTRODUCTION

Neural networks provide state-of-the-art performance for many common image processing tasks, such as detection,
segmentation, classification, and de-noising. However, most of the publications and improvements to these models
focus on types of imagery common on the internet. Imagery of people, buildings, and vehicles may vary in content,
but have similar properties from an image processing perspective. Neural network architectures codify assumptions
about the data that they process, such as scale, pixel value distribution, feature size, and object shapes. As a result,
many of the publically available backbone models include components that are not suited to Space Domain Aware-
ness (SDA) imagery, and can prevent a network from learning to complete image processing tasks. By identifying
these components and potential alternatives, we can modify advanced image processing architectures to improve their
suitability to SDA.

In comparison to imagery from social media or similar sources, SDA images have high dynamic range and are very
sparse, consisting primarily of background pixels with occasional small, thin objects that occupy few of the pixels in
their bounding box. Sparse, high dynamic range imagery interacts poorly with the most popular normalization layers.
Small, unresolved objects are not prioritized by neural network models that are designed to detect large, well-resolved
objects. Neural networks for SDA must survey large, high-resolution images while perceiving small, pixel-scale
features.

In this paper, we consider components that are common in backbone models designed for ImageNet-like and remote
sensing data, such as preprocessing, attention, and normalization layers, and aspects such as receptive field. We
analyze the suitability of these components to processing SDA data and identify practices that significantly hinder or
enhance performance. We provide recommendations for modifying popular image processing backbone models to
improve their performance on SDA data, and a recommended backbone model architecture for general-purpose SDA
image processing.
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(a) Slow moving RSO (b) Fast moving RSO

Fig. 1: Synthetic imagery exemplar of Resident Space Objects (RSOs) with different apparent velocities

1.1 Unresolved Targets

In ImageNet-like datasets[3], the objects of interest are well resolved in the image, with potentially tens of thousands
of pixels sampling a single object. From an image processing perspective, the challenge of detecting these objects is to
aggregate information across a large area of the input image, analyzing shapes and textures and their relationships to
each other. The object pixels often account for a substantial fraction of the pixels inside of a rectangular bounding box
around the target. This allows simple down-sampling operations, such as rectangular pooling kernels, to effectively
summarize the information about an object[13]. As a result, convolutional networks designed for object detection
on these types of datasets are focused on aggregating information from pixel-scale to large scale (often 1:32 resolu-
tion) [7], with pooling and striding operations that hierarchically down-sample the image in rectangular regions. Fine
spatial detail is less important than fusion of thousands of pixels.

Wide-area SDA imagery, on the other hand, are characterized by small, point sources that may be moving across the
imager’s field of view. The Resident Space Objects (RSOs) in the scene are smaller than a single pixel, and are not
“resolved” by the sensor into an image of the object, but do reflect light toward the sensor. Blurring of the reflected light
due to atmospheric seeing and the optical system results in a characteristic “blob” shape of an unresolved target. For
such a target, there is no signal to be found more than a few pixels away from the target’s center. For layers of a neural
network that was designed to aggregate information across thousands of pixels, the only information to be gained at
this scale is context. Context can include the background level, scene conditions, or information about the star field in
a catalog-free detection task. We hypothesize that networks should be modified to emphasize high-resolution features,
rather than large-stride features.

The behavior is more complicated for fast-moving unresolved RSOs. An unresolved object with apparent motion
relative to the imager will appear as a line or “streak” across the image. Depending on sensor configuration and the
object’s orbit, these streaks can be hundreds or thousands of pixels in length. To be able to simultaneously perceive
both ends of a 100-pixel streak, a convolutional neural network would need a receptive field more than 100 pixels
across [13]. A convolutional layer with 100 pixels receptive field aggregates information across a 100∗100 = 10,000
pixel-square area, with the streak comprising a small fraction. Attention-based models, on the other hand, will be able
to aggregate information across the entire image without a rectangular downsampling prior[4][12][1]. We hypothesize
that attention-based models will be more effective than convolutional pooling or striding models at streak-based tasks.

These architectures are discussed in detail in Section 2.
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(a) No Dynamic Range Compensation (b) IQR-Log Dynamic Range Compen-
sation

Fig. 2: A synthetic SDA scene depicting a noisy star field. Without dynamic range compensation, the brightest star
dominates the scaling of the image. While this is an effect of the visualization of the image, it has a similar effect on
the normalization layers inside of a neural network. With nonlinear dynamic range compression, we can emphasize
the lower end of the representable range and prevent the bright star from suppressing other signals.

1.2 Dynamic Range Compensation

Imagery captured with a consumer camera, such as a smartphone camera, generally has small bit depth (8 bits per
channel) and has been pre-processed such that the pixel values are well distributed across the representable range. The
brightest possible value is 255 times as bright as the smallest representable value, and about 2 times as bright as a
median value.

SDA imagery are generally captured by 12-16 bit imagers in a raw data format, with the brightest representable value
potentially 65,000 times brighter than the smallest representable value. This can complicate detection of faint RSOs,
since the pixel values for a faint signal are likely near the lower end of the representable range. From a filtering
perspective, it is difficult to suppress a signal that is orders of magnitude stronger than the signal of interest with
piecewise linear operations such as convolutions and ReLU[5] nonlinearities. Common normalization methods that
involve mean and variance computations are not robust to outliers, and are disproportionately affected by the presence
or absence of bright stars. As a result, neural network normalization layers such as BatchNorm[9], LayerNorm[2], and
GroupNorm[22] can behave differently depending on the brightness of stars in the scene.

We investigated multiple strategies for dynamic range compensation, including modifying the neural network layers
and applying dynamic range compression as a pre-processing step. The strategies are described in Section 2.2.

2. METHODOLOGY

2.1 Models Under Test

To establish a baseline of performance on several image processing tasks, we selected a handful of architectures that are
popular for SDA, popular in the wider computer vision community, or that we have successfully applied to detection
on SDA data.

• FullRes[14] A simple convolutional neural network architecture designed for real-time embedded inference on
a Field Programmable Gate Array (FPGA). With no upsampling or downsampling layers, the image is processed
at full resolution through the entire network. It is simple and effective in low-memory environments, but cannot
be scaled to large numbers of parameters.

• U-Net[15][21] A family of convolutional neural networks designed for high-resolution tasks, such as segmen-
tation or inpainting. Characterized by a symmetrical, U-shaped architecture with a decoder that mirrors the
encoder.
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• Residual Networks (ResNet)[7] Arguably the most successful convolutional neural network architecture, ResNets
are characterized by their use of residual or “skip” connections which stabilize training of very deep models. A
ResNet’s multi-stage encoder produces a feature pyramid at different resolutions (1:4, 1:8, 1:16, 1:32).

• Shifted-Window Transformers (Swin)[12] A ResNet-like network that uses windowed-attention transformer
layers instead of convolutions. Architecturally similar to a ResNet, the Swin Transformer also produces a feature
pyramid at multiple resolutions.

• Vision Transfomers (ViT)[4] Fundamentally different from a convolutional network, ViT is a benchmark for
the attention-based models. After breaking the input image in to small tiles, or “patches”, the transformer
uses global attention to collect information from the entire image simultaneously. This information is used to
transform the input tokens into a more useful output representation. Very powerful, scalable models that are
limited by computational complexity on large images, since the self-attention computation scales quadratically
with the number of tokens.

• Cross-Covariance Image Transformers (XCiT)[1] Similar to a ViT, but replaces the token-based self attention
with feature-based self attention. As a result, the computational and memory requirements of XCiT scale linearly
with the number of input patches, allowing high-resolution processing of very large images.

We used the timm[20] implementations for ResNet, Swin, ViT, and XCiT, and our own implementations of FullRes
and U-Net.

Model Scaling With the exception of FullRes, we scaled all models to use approximately 10M parameters. Param-
eter count is an imperfect but commonly used proxy for the learning capacity of a model. 10M parameters is a small
configuration for many of these architectures, but our goal is to study the relative performance with respect to differ-
ent architectural decisions, rather than absolute performance of any particular model. With modern machine learning
architectures, higher-parameter-count models nearly always outperform their smaller siblings given enough data and
training time[7][12][4]. This is especially true of the feature extraction backbones, where well-trained larger models
lead to improved performance on downstream tasks, such as detection or classification[4].

Note that the models have widely varied computational requirements, measured in floating point operations (FLOPs)
per image, despite similar parameter count. This can be an important consideration for processing large amounts of
data, or for systems with real-time processing requirements.

Table 1: Configuration parameters for model architectures under test.

Parameter U-Net FullRes ResNet+FPN Swin+FPN XCiT ViT

Depths 4 scales 7 (3, 3, 3, 3) (2, 3, 4, 4) 12 12
Base Dimension 96 64 32 48 256 256
Output embedding dimension 96 64 256 256 256 256
Feature map resolution 1:1 1:1 1:4 1:4 1:8 1:8
Maximum Feature Stride 1:16 1:1 1:32 1:32 1:8 1:8
Parameters 10.7M 60K 10.1M 10.0M 11.6M 10.6M
FLOPs per 1K x 1K image 450B 64B 68B 59B 156B 1,800B

Feature Map Resolution For the ResNet and Swin backbones, we use a Feature Pyramid Network (FPN)[10] neck
to produce a high-resolution feature map. Recall that the feature pyramids produced by a model like ResNet or Swin
include high-resolution, low-information feature maps from early stages of the network as well as low-resolution,
high-information feature maps from the later stages. The FPN module fuses information from the later feature maps
back into the earlier ones, producing high-resolution, high-information feature maps. This is conceptually similar to a
U-Net, but with a non-symmetrical, encoder-heavy architecture.
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2.2 Dynamic Range Compensation

We investigated multiple strategies to compensate for the high dynamic range of SDA data, including modifications to
layers within the network and applying dynamic range compression as a pre-processing step.

ReLU vs ReLU6 The Rectified Linear Unit (ReLU)[5] is a popular activation layer in convolutional neural networks.
The ReLU6 variant [8] adds an additional nonlinearity, saturating values above some fixed threshold. It is possible that
this saturating behavior will block large signals early in the network and prevent them from propagating to the deeper
layers, improving performance in high dynamic range situations.

Normalization Layers Batch Norm[9] is a standard normalization for convolutional neural networks, but its sen-
sitivity to training batch size has spurred development of newer normalization methods, including Group Norm[22],
Instance Norm[19], or Layer Norm[2]. While the Batch Norm parameters are fixed after training, the newer normal-
ization layers recompute mean or variance estimates at inference time. This can lead to wildly varying behavior based
on the presence or absence of bright stars in an image, as demonstrated in Section 3.4

Preprocessing Normalizing the input imagery is common practice with computer vision models, often with mean/variance
standardization. We can also manipulate the dynamic range of the data by preprocessing the images before passing
them to the model. We experimented with multiple normalization and dynamic range compression strategies, includ-
ing:

• Mean/Variance Standardization: Compute the mean µ and standard deviation σ of every pixel value in the
image, then normalize each pixel with x′ = x−µ

σ

• Square Root: Per-pixel x′ =
√

x with input clipped at 0

• Log1p: Per-pixel x′ = ln(1+ x) with input clipped at 0

• Percentile Clipping: Compute the 1st and 99th percentile pixel values of the entire image, then clamp each
pixel to within this range

• Inter-Quartile Range, clipped (IQR-Clip): A robust analog to mean/standard deviation normalization. After
computing the first, second, and third quartiles of the input image, x′ = x−q2

q3−q1
. Values more than 5 IQR from the

median are clipped.

• Inter-Quartile Range, soft clipped (IQR-Log): After IQR normalization, apply a logarithmic nonlinearity to
values above or below a certain deviation from the median (±5 IQR in this experiment)

2.3 Training

All models were trained on NVIDIA A100 GPUs with 40GB of VRAM. With 512 x 512 input frames, we used a batch
size of 16 in order to fit on a single A100 for every task/model combination. We used Focal Loss[11] for segmentation
tasks, SmoothL1 loss for regression tasks. We used a OneCycle[17] learning rate schedule and a peak learning rate
of 1e-3, which allowed us to train models to convergence in 25 epochs. We used an AdamW optimizer with weight
decay of 0.1. For regression tasks, maximum learning rate was lowered to 1e-4. We expect that absolute performance
of all models would improve with a longer training schedule, but the relative performance of the models appears to be
stable with respect to training duration.

ViT Pre-Training We found that the ViT model did not perform well when trained with the same dataset and
procedure as the other models. This is consistent with the findings of [4] and [18], which suggest that extensive
pretraining or knowledge distillation are essential for ViT performance. We pre-trained all ViT backbones with a
Masked Autoencoder (MAE) [6] on a similar but separately generated synthetic dataset, and then adapted to the
downstream tasks with the same procedure as the other models.
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2.4 Dataset

We generated synthetic scenes with corresponding ground truth information. With synthetic scenes, we can manipulate
the statistics of the training and validation data to test the behavior of the networks under different conditions. We can
also generate arbitrary amounts of training data to support training large models.

Our simulator injects targets and stars with random positions and velocities. We intentionally avoid simulating targets
or stars based on catalogs, to prevent our models from learning about real constellations or the relative positions of
GEO objects. We have found that generating artificially target-rich scenes (e.g. 200 targets per 512 x 512 pixel
image) helps the models to learn more quickly and improves performance on real data. We image each scene with a
different sensor whose parameters are randomly generated within specified bounds. These randomized sensors vary in
ensquared energy, integration time, dark current, stray light, bad pixels, time-varying atmospheric seeing conditions,
and structured noise levels.

For these experiments, we generated a dataset with 50,000 training scenes and 1,000 validation scenes. Each scene
consists of a 512 x 512 image with associated ground truth information. Assuming a 1:32 resolution feature extractor,
this corresponds to approximately 12M training patches for the segmentation task, and approximately 6M training
chips for our chip extraction task before augmentation.

3. EXEMPLAR TASKS

We designed a set of tests to evaluate a network’s ability to extract certain types of information from SDA imagery.
We simulated datasets for each task as described in Section 2.4, with the simulation parameters in Appendix A. For
each task, we designed a minimal network head to process the feature maps and produce the desired result. The task
heads are intentionally simple in order to emphasize the effect of the backbone, and the same head architecture is used
with each backbone. The backbones and heads are trained from random initialization for each task, with the exception
of ViT.

3.1 Location Estimation from an Image Chip

(a) Slow moving RSO (b) Fast moving RSO (c) Fast moving RSO

Fig. 3: Example chips with ground-truth annotation of centroid and velocity

3.1.1 Task Description

The network must estimate the centroid, or midpoint location, of a moving target from a small image chip around a
synthetic detection. To emulate detections on the synthetic truth data, we select a random location along the length
of the target streak, then perturb this location by up to ±3px in x and y. From an image centered on this detection
location, the network must estimate the offset to the true centroid of the original target with sub-pixel precision. The
centroid estimation head uses the feature map pixels corresponding to a 32x32 pixel chip in the input image.

This task is intended to measure a backbone’s ability to extract fine spatial information.
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Feature map resolution, or feature map downsampling factor, is an important attribute of a feature extraction backbone.
Some architectures, such as FullRes, are designed to produce feature maps at pixel resolution with no downsampling.
Others, such as ViT, produce features at a fixed downsampling factor (e.g 1:16). Hierarchical models such as ResNet
produce a pyramid of features at different downsampling factors, which we fuse with a Feature Pyramid Network to
produce feature maps at a number of resolutions (e.g. 1:4, 1:8, 1:16).

This test is especially sensitive to the method used to convert the model’s coarse positional information to fine position
estimates. We tested two variants of the centroiding head:

• Bilinear: Upsample feature maps from feature map resolution to pixel resolution using bilinear interpolation.
Upsampled feature maps are flattened and passed to a linear layer which produces the x and y position estimates.
Bilinear interpolation is the most common form of upsampling in FPN or UNet architectures.

• PixelShuffle: Identical to Bilinear, except that we replace bilinear interpolation with PixelShuffle [16], which
should be capable of extracting high-spatial-frequency information from the feature maps

The measure of performance on this task is L2 error between the predicted target centroid location and the actual target
centroid location, in units of pixels.

3.1.2 Results

Table 2: Position estimation performance of different backbone architectures. Models with high downsample factors
did not converge (“*”) using bilinear interpolation. PixelShuffle extracts high-precision spatial information from
models with large downsampling factor.

Position Error Percentiles (Pixels L2)
Architecture Feature Map Bilinear PixelShuffle

Resolution 50th 95th 50th 95th

Initial Detection Location 2.43 4.11 2.43 4.11
FullRes 1:1 0.23 1.86 0.23 1.87
U-Net 1:1 0.30 2.28 0.31 2.17
Swin+FPN 1:4 0.44 2.74 0.32 2.31
ResNet+FPN 1:4 0.39 2.29 0.28 2.23
XCiT 1:8 0.34 2.91 0.29 2.63
ViT 1:8 0.57 3.23 0.36 2.80

ResNet+FPN 1:4 0.39 2.29 0.28 2.23
ResNet+FPN 1:8 0.83 3.32 0.29 2.30
ResNet+FPN 1:16 * * 0.32 2.45
XCiT 1:8 0.34 2.91 0.29 2.63
XCiT 1:16 * * 0.43 3.19
ViT 1:8 0.57 3.23 0.36 2.80
ViT 1:16 * * 0.69 3.76

Results are presented in Table 2. Models with more emphasis on high-resolution features perform exceptionally well
on this task, producing median positional errors of less than 1/3rd of a pixel. With the default bilinear interpolation
used by models like UNet or FPN, training did not converge for larger downsample models (1:16). By replacing
bilinear interpolation with PixelShuffle, we can produce high-precision location estimates even from models with low
spatial resolution. This implies that the backbones are capable of embedding this information, but care must be taken
to allow a task head to access that information in the feature maps.

The positional errors are lower for ResNet+FPN at 1:16 downsample with PixelShuffle upsampling than for the
ResNet+FPN 1:4 output. FPN uses bilinear interpolation to upsample and fuse feature maps to produce the 1:4
features, and it appears that PixelShuffle operation is better for preserving fine detail.
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3.2 Low SNR Point Detection

(a) Example Image (b) Expected Segmentation Mask

Fig. 4: Synthetic input image and ground-truth segmentation mask for Low SNR Point Detection

3.2.1 Task Description

The network must detect dim, point-like targets in imagery with stars, stray light, bad pixels, and noise. The scenes are
reminiscent of data from fixed-staring GEO belt observations, with stars streaking across the image at a random angle
and targets appearing as points or elongated blobs. We intend this task to assess a backbone’s ability to extract subtle
variations in intensity near the noise floor, with very little spatial support. There is no overlap between the simulated
shapes of stars and the shapes of targets; the network can learn to identify targets by shape a priori.

From a theoretical perspective, optimal detection of these signatures in a Gaussian noise field would involve matched
filtering to extract maximum signal from a small area of the image with minimal noise contribution. This task is more
complex, since the networks must also reject non-Gaussian noise sources and confounding signals from stars or stray
light.

We use a minimal segmentation head to produce a binary segmentation mask from the backbone features. Following
from the results of the centroid estimation task, we use PixelShuffle to upsample the feature map to pixel resolution,
followed by a linear layer and sigmoid activation to produce a binary segmentation mask.

The measures of performance on this task are Average Precision (AP)–precision averaged between multiple points on
the precision-recall curve–and recall for targets with a peak SNR (pSNR) between 3 and 5. Targets with peak SNR
below 5 are challenging for single-frame detection algorithms to detect with a low false detection rate. There are also
targets below SNR of 3 and above SNR of 5 which contribute to the overall recall measurement.

3.2.2 Results

Results are presented in Table 3. The detection performance of the models is surprisingly clustered despite large
variations in architecture, parameter count, and feature map resolution. This could imply that all models have found a
solution which is a good compromise between recall and precision as prescribed by the Focal Loss training objective.

The noteworthy outliers are XCiT, which significantly outperforms the other models despite a relatively large down-
sampling factor (1:8), and ViT, which underperforms all other models while being the most computationally expensive
by far. Large downsample factors significantly degrade the performance of the patch-based transformer algorithms
(XCiT and ViT), but not the hierarchical features produced by ResNet+FPN.
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Table 3: Detection performance of different model architectures for the Low SNR Point Detection task

Feature Map AP Recall
Resolution All pSNR 3-5 All

FullRes 1:1 0.79 0.58 0.65
UNet 1:1 0.78 0.59 0.66
Swin+FPN 1:4 0.77 0.59 0.66
ResNet+FPN 1:4 0.81 0.62 0.69
XCiT 1:8 0.85 0.67 0.74
ViT 1:8 0.76 0.57 0.64

ResNet+FPN 1:4 0.81 0.62 0.69
ResNet+FPN 1:8 0.79 0.60 0.68
ResNet+FPN 1:16 0.78 0.59 0.66
ResNet+FPN 1:32 0.74 0.55 0.62
XCiT 1:8 0.85 0.67 0.74
XCiT 1:16 0.70 0.50 0.56
ViT 1:8 0.76 0.57 0.64
ViT 1:16 0.04 0.01 0.01
ViT 1:32 0.00 0.00 0.00

3.3 Anomalous Low SNR Streak Detection

(a) Example Image (b) Expected Segmentation Mask

Fig. 5: Synthetic input image and ground truth segmentation mask for Anomalous Low SNR Streak Detection

3.3.1 Task Description

The network must detect dim streaking targets (moving >20px-frame) in imagery with stars, stray light, bad pixels,
and noise. The scenes are analogous to detecting LEO or MEO objects from a fixed-staring sensor, with stars streaking
at a random angle across the image. The model does not have access to a star catalog and must detect targets by their
anomalous shape compared to the stars. However, the backbone can also integrate energy from multiple pixels to make
a detection decision, which should improve detection performance relative to the point detection task if the model is
able to utilize that additional signal.

The design of the segmentation head and measures of performance are identical to the Low SNR Point Detection task.

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



Table 4: Detection performance of different model architectures for the Anomalous Low SNR Streak Detection task

Feature Map AP Recall
Resolution All pSNR 3-5 All

FullRes 1:1 0.57 0.38 0.33
UNet 1:1 0.86 0.75 0.71
Swin+FPN 1:4 0.92 0.85 0.82
ResNet+FPN 1:4 0.94 0.89 0.85
XCiT 1:8 0.98 0.93 0.91
ViT 1:8 0.95 0.89 0.86

ResNet+FPN 1:4 0.94 0.89 0.85
ResNet+FPN 1:8 0.93 0.85 0.82
ResNet+FPN 1:16 0.93 0.86 0.83
ResNet+FPN 1:32 0.87 0.79 0.75
XCiT 1:8 0.98 0.93 0.91
XCiT 1:16 0.93 0.86 0.84
ViT 1:8 0.95 0.89 0.86
ViT 1:16 0.88 0.77 0.75
ViT 1:32 0.15 0.04 0.06

3.3.2 Results

Results are presented in Table 4. For most architectures, the detection performance is higher in this experiment than
for the point detection task despite similar pixelwise SNR. This suggests that these backbones are capable of using
target energy spread over many pixels to make detection decisions. We also observe a much larger spread in detection
performance between architectures on this task compared to point detection.

The detection performance of the FullRes model declined substantially. This is most likely due to the FullRes model’s
limited receptive field (15x15px), which makes it impossible for the model to gather context for anomalous streak
detection. While it can likely “see” the targets, it cannot discriminate between a target and a star without context.

Conversely, the models with large receptive fields or global attention perform exceptionally well. Large feature map
downsample factors were less detrimental on this task than for point detection, but still had a more significant effect on
the XCiT and ViT models than ResNet. ViT performs well on this task, especially compared to its poor performance
on localization and point detection tasks.

3.4 Bright Star Rejection

(a) Baseline Image (b) Bright Star Variant

Fig. 6: Synthetic input images for bright star rejection test. Detection behavior on both images should be identical if
the model is robust.
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3.4.1 Description

The Bright Star Rejection task is intended to test a model’s robustness to high dynamic range data. We used models
trained for the Low SNR Point Detection task and generated new validation scenes with the same simulator config-
uration. For each of these baseline scenes, we also generated a modified version with the intensity of the brightest
star increased by a factor of 1000. Without retraining the networks, we measured their detection performance on the
baseline and bright-star pairs. The measure of performance on this task is the change in AP and recall between the
baseline and bright-star images.

3.4.2 Results

We tested with many architecture variants, and the results shown in Table 5 are exemplar of what we observed. We
tested several models with ReLU or ReLU6 activation functions, and found that ReLU6 had no effect. We observed
stronger effects from normalization layers and preprocessing. In Table 5 we show the performance of two variants of
ResNet: one with BatchNorm and one with the GroupNorm layer that is popular in newer models, and XCiT which
uses BatchNorm in the initial patch embedding stage and LayerNorm before transformer layers.

Table 5: Loss of detection performance in the vicinity of a bright star. Full results in Appendix B. Results with small
loss of performance in bold.

Architecture Normalization Preprocessing Baseline Difference
AP Recall AP Recall

ResNet Batch None 0.81 0.49 -24% -6%
ResNet Batch Mean/Variance 0.80 0.48 -38% -92%
ResNet Batch IQR-Log 0.79 0.46 -0% -0%
ResNet Batch Log1p 0.81 0.50 -0% -0%

ResNet Group None 0.71 0.27 -97% -100%
ResNet Group Mean/Variance 0.81 0.51 -98% -100%
ResNet Group IQR-Log 0.80 0.48 -0% -0%
ResNet Group Log1p 0.81 0.50 -0% -0%

XCiT Batch/Layer None 0.83 0.55 -2% -0%
XCiT Batch/Layer Mean/Variance 0.84 0.58 -43% -88%
XCiT Batch/Layer IQR-Log 0.84 0.57 -0% -0%
XCiT Batch/Layer Log1p 0.85 0.58 -1% -0%

Pairing GroupNorm with ResNet leads to a total degradation of detection performance when the bright star is injected.
BatchNorm is more robust, but still suffers a moderate loss of detection precision without preprocessing. XCiT is
robust to the presence of the bright star by default. This is noteworthy, because XCiT uses LayerNorm in the body
of the network after patch embedding. LayerNorm and GroupNorm are closely related, and both apply inference-
time mean/variance normalization, which appears to be the cause of the performance loss on the ResNet GroupNorm
test. We suspect that the presence of large outliers, such as the bright star signal, corrupts these mean and variance
estimates, leading to degraded performance. If that is the case, then why is XCiT unaffected?

To address this question, we note that the Mean/Variance preprocessing step severely degrades the performance of all
models on the bright star test, including XCiT. Combining mean/variance preprocessing with BatchNorm is similar
to applying the GroupNorm operation with a group size of 1 on the first layer of the network. It is possible that the
impact of high dynamic range is greatest on the early layers of the neural network, and that models can compensate as
long as the early layers are robust (BatchNorm, in the case of XCiT).

However, we also found that strong dynamic range compression, such as Log1p preprocessing, made all models
robust to the bright star test and improved baseline detection performance. Log1p and IQR preprocessors allow us to
use GroupNorm over BatchNorm, which can be essential to training large models [22]. While Log1p produced the
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best detection performance in all of our tests, we noted that IQR-Log stablized training and has standardizing behavior
that may improve generalization to real datasets.

4. CONCLUSION

We demonstrated that modern neural network architectures for computer vision can provide excellent performance
on Space Domain Awareness (SDA) image processing tasks. Some models require modification for robust perfor-
mance in the presence of unresolved targets or high dynamic range. PixelShuffle upsampling layers unlock fine
spatial details from large models, and strong dynamic range compression improved performance for all models tested.
Cross-covariance image transformers (XCiT) were the strongest backbone architecture that we tested, with excellent
detection performance, good preservation of spatial detail, stable training, and robustness to high dynamic range by
default.
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A. SIMULATION PARAMETERS

Distribution Low SNR Detection Low SNR Detection Streaks

Number of Training Scenes fixed 50000 50000
Number of Validation Scenes fixed 1000 1000
Image Rows fixed 512 512
Image Columns fixed 512 512
Scene ensquared energy uniform (0.05, 0.60) (0.05, 0.60)
Scene dark current log-uniform (10, 104) (10, 104)
Scene stray light variance log-uniform (10, 104) (10, 104)
Structured noise variance log-uniform (10, 103) (10, 103)
Intensity of bad pixels log-uniform (10, 106) (10, 106)
Number of bad pixels log-uniform (10, 103) (10, 103)
Number of Targets uniform (50, 200) (50, 200)
Target Intensities log-uniform (10, 104) (102, 105)
Target Speeds uniform (1, 5) (20, 100)
Target Directions (deg) uniform (0, 360) (0, 360)
Number of Stars uniform (100, 1000) (100, 1000)
Star Intensities log-uniform (10, 106) (10, 106)
Scene Star Speed uniform (10, 50) (10, 50)
Scene Star Direction (deg) uniform (0, 360) (0, 360)

B. BRIGHT STAR REJECTION EXPERIMENTS

Architecture Normalization Preprocessing Baseline Bright Star Difference
AP Recall AP Recall AP Recall

ResNet Batch None 0.81 0.49 0.62 0.46 -0.19 -0.03
ResNet Batch Mean/Variance 0.80 0.48 0.50 0.04 -0.30 -0.44
ResNet Batch Percentile 0.80 0.49 0.71 0.48 -0.09 -0.01
ResNet Batch IQR-Clipped 0.79 0.48 0.71 0.47 = -0.01
ResNet Batch IQR-Log 0.79 0.46 0.79 0.46 = =
ResNet Batch Sqrt 0.00 0 00 0.00 0.00 = =
ResNet Batch Log1p 0.81 0.50 0.81 0.50 = =

ResNet Group None 0.71 0.27 0.01 0.00 -0.70 -0.27
ResNet Group Mean/Variance 0.81 0.51 0.02 0.00 -0.79 -0.51
ResNet Group Percent 0.81 0.51 0.44 0.21 -0.37 -0.30
ResNet Group IQR-Clipped 0.80 0.48 0.80 0.46 = -0.02
ResNet Group IQR-Log 0.80 0.48 0.80 0.48 = =
ResNet Group Sqrt 0.82 0.52 0.62 0.07 -0.20 -0.45
ResNet Group Log1p 0.81 0.50 0.81 0.50 = =

XCiT Layer None 0.83 0.55 0.81 0.55 -0.02 =
XCiT Layer Mean/Variance 0.84 0.58 0.44 0.07 -0.40 -0.51
XCiT Layer Percent 0.84 0.57 0.82 0.57 -0.02 =
XCiT Layer IQR-Clipped 0.83 0.56 0.83 0.56 = =
XCiT Layer IQR-Log 0.84 0.57 0.84 0.57 = =
XCiT Layer Sqrt 0.83 0.54 0.82 0.54 -0.01 =
XCiT Layer Log1p 0.85 0.58 0.84 0.58 -0.01 =
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