Action-Free Inverse Reinforcement Learning for Evaluating
Satellite Similarity and Anomaly Detection

D. Witman, T. Olson, B. Williams, D. Kesler, B. Marchand
Slingshot Aerospace, 841 Apollo Street, Suite 350, El Segundo, CA 90245

ABSTRACT

Human operators and analysts will be increasingly challenged to detect anomalous satellites (or actors) within mega-
constellations as more are deployed. Automated identification and flagging of events and anomalous actions are
critical to ensure safe operations in congested and contested space environment. Given observed actor information
(states and actions), inverse reinforcement learning (IRL) provides a framework for quantifying the reward function
(how desirable a state/action pair is) of an actor in an environment. In many real-world environments, the actions that
an actor takes are unknown. This paper will present a novel action-free IRL approach that is used within a larger suite
of scalable machine-learning based capabilities for characterizing inter-satellite similarity amongst a large collection
of resident space objects (RSOs). Inter-satellite similarity is then used to identify distinct or anomalous satellites that
may be operating outside of typical mission boundaries. We first describe the implementation of action-free IRL and
then share its ability to distinguish known anomalies within a large simulated low earth orbit constellation. The results
of our method show similar performance to the widely used dynamic time warping method. Notably, we are able to
achieve these results at a significant computational speedup (15-20x), which allows our approach to efficiently scale
to very large constellations.

1. INTRODUCTION

As the number and size of constellations operating in low Earth orbit expands, there is a need for understanding be-
havioral characteristics of interacting satellites within larger constellations. Near-real time algorithms that quantify
expected behaviors and detect anomalous departures from the norm will be required for owner operators and constel-
lation orbital neighbors to ensure safe operations in a congested and contested environment. Existing and planned
space domain awareness data enables new methods to analyze the behaviors of satellites.

In 2023 Slingshot’s data science team developed a unique machine learning (ML) based time-series, or sequential,
comparison pipeline called Agatha, a high level representation is illustrated in Fig. 1. The Agatha pipeline can incor-
porate many heterogeneous feature sets across a variety of domain applications and compare individualized entities.
These comparisons can be used for downstream insights, including anomaly detection, grouping behavioral neighbors
and many other space situational awareness applications. Additionally, Agatha uses a variety of similarity and detec-
tion algorithms as well as many feature decomposition and pre-processing techniques in an ensemble framework. This
allows the ability to consider many unique cross correlations and methods for answering questions of interest.

One component of the Agatha pipeline is the use of action-free inverse reinforcement learning (AFIRL). AFIRL is
a framework for representing agent actions and behaviors given only observed state information. This is different
from many common inverse reinforcement learning algorithms for which observed state and action information is
required. AFIRL can be used in cases where an agent’s actions are challenging to determine or difficult to represent.
The main goal of AFIRL is to generate a reward function that ideally represents an agent’s behavioral intent[1]. This
reward function is similar to an optimization objective where larger rewards are generated for behaviors that mimic
the observed agent. With a reward function, one can accomplish many tasks such as training forward reinforcement
learning agents to serve as surrogates in simulated environments. But for the purposes of this paper, we make use of
AFIRL in order to compare satellites behavioral intent via the reward function. We refer to this specific application of
the AFIRL technique as action-free inverse reinforcement learning for assessing satellite-similarity (AFIRLS).

This paper first presents a background on the space situational awareness application area for which the Agatha pipeline
was designed, along with requisite overviews of reinforcement learning and time series analysis terminology. Then our
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Fig. 1: The Agatha pipeline was developed in 2023 to detect satellites that exhibited anomalous behaviors within a
large constellation

methodology is discussed in the context of the detection of anomalous satellites within a constellation. To illustrate
the application of this methodology we share details on simulated constellation benchmark examples. Finally, we
demonstrate performance results on detecting anomalous satellites amongst the simulated constellations and compare
against a popular existing technique. Conclusions and discussions address where and when this method is applicable.

2. BACKGROUND

The fields of space situational awareness (SSA), inverse reinforcement learning, and time-series analysis have a large
existing corpus of material in their respective areas. AFIRLS brings together these three concepts to provide a novel
similarity measure that can be used for contrasting satellite behavioral differences. This section will provide a high-
level overview of these three fields and share some remarks on why AFIRLS fills a needed gap.

2.1 Space Situational Awareness: Constellation Profiling

Existing and planned satellite mega-constellations have become normal for space operators seeking to accomplish
missions that include geo-spatial image collection, weather forecasting, and providing communications and internet.
Substantial prior work has focused on how best to construct and manage a constellation, given specific mission pa-
rameters. Additionally, there has been some work on detecting deception in space [2] based on publicly available SSA
data. Even more recently, there has been related work on detecting potential network intrusions and anomalies within
low Earth orbit (LEO) constellations [3]. But detecting differences in satellite operations and characteristics within a
constellation based on SSA data is a relatively new field.

2.2 Time Series Similarity

Generating time-series similarity metrics is of great interest to a number of application areas including finance,
medicine, and human speech [4] [5]. Successfully relating multiple multi-dimensional time-series signals allows
for better correlation of financial stocks, patient drug responses, and distinct bio-metric indicators. For our work, we
were interested in comparing astrodynamic signals across time for multiple unique entities (satellites). Given n satel-
lites, we intended to generate an n X n similarity matrix that could be used for downstream correlation and anomaly
detection. The Agatha pipeline supports multiple algorithms that provide similarity matrices in this format.

Dynamic time warping (DTW) [6] [7] is perhaps one of the most popular time series comparison methods. DTW
determines the minimum Euclidean distance between shifted signals. Under this construction, similarly scaled sine
and cosine functions should be exactly similar according to DTW. But there are a few drawbacks, including the
computational complexity which in most implementations is dependent on the length of each time series (O(n?))
being compared. Additionally, DTW can be sensitive to noise in the time-series signal leading to biased similarity
metrics.
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2.3 Inverse Reinforcement Learning

The field of reinforcement learning (RL) was developed on the concept of Markov decision processes (MDP) wherein
one considers an agent that must make sequential decisions in an environment in order to accomplish a defined objec-
tive. In any RL formulation, there are four main components (see Fig. 2) that must be considered: states (or sometimes
referred to as observationsl), actions, rewards, and policies. States (s) comprise information (encoded images, kine-
matic state etc.) about the world or environment that must be used to make decisions. Actions (a) are the numerical
representations of the decisions (maneuvering, attitude changes etc.) that are made by the agent. Rewards (R(s,a))
provide a functional mapping that generates scalar feedback to the agent based on how well it is performing given its
defined objective. And finally the policy (7(s) — a) is the model that decides how an agent acts in its environment.

States (s)

Reward (R)

I
[ Environment ] [ Policy m(s) ]
I

Action (a)

Fig. 2: In reinforcement learning, a policy (or agent) is tasked with generating actions that maximize the long-term
expected reward given observed information

In the traditional, and generally more popular, forward RL framework [8], the goal is to determine an optimal 7 such
that the overall long term reward is maximized. For example, deep RL [9] [10] [11] makes use of deep neural networks
to form a policy based on a pre-defined reward function. Deep RL has emerged as the predominant method for solving
forward RL problems. But there are many real world tasks for which the reward function is unknown or challenging
to specify. Conversely, the inverse RL (IRL) framework (Fig 3) has access to perceived state and action data from a
teacher or expert agent demonstrations. The goal of which is extracting the policy or the reward function, and in many
cases both.

Within the field of IRL there are many related fields that attempt to solve a specific aspect of the overall IRL problem.
One related field is behavior cloning, wherein a surrogate policy is created based on collected state and action pairs
generated by an expert or teacher policy. More recent behavior cloning methods introduce state based techniques
[12] in which policies can be developed to mimic large datasets of states without explicit actions. Behavior cloning
can be quite effective when the observed teacher dataset is large and spans the space of states/actions. But behavior
cloning can also introduce dangerous pitfalls if the teacher policy injects a sub-optimal bias in addition to over-fitting
considerations that can lead to unintentional behaviors [13].

States (s)

Surrogate
Reward (R) Policy m*(s)
[ 1
[ Environment ] [ Teacher Policy n(s) ] [ IRL ]7
t | t 3 -
) | urrogate I
Action (a) Rewgrd

Fig. 3: In inverse reinforcement learning, observed state information and (optionally) action data are used to generate
a surrogate reward representation. Some techniques also build a surrogate policy along with the surrogate reward.

!Generally, RL literature uses the terminology states as opposed to observations. In this context a state can refer to any data (or feature set) that
can be used to define an instance in which an agent can make a decision
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In contrast to behavior cloning methods in which the student policy is learned directly from teacher demonstrations,
core IRL methods seek to develop a formulation of a surrogate reward function that approximates the preferences
demonstrated by the underlying teacher/expert agent.> Recall, this reward often is a function based on the unique
state and action pair. One technique that has been used to represent the reward function uses a linear combination of
weighted feature vectors that map the states to a reward scalar [1] [14]. Maximum entropy IRL provides an alternate
approach [15] [16] that builds a discrete representation of the reward based on the expected transition between states,
given actions. For the purposes of this work, we are interested in comparing objectives and behaviors of individual
satellites via the reward function. The action-free formulation of the IRL reward representation in AFIRLS is distinct
from previous IRL approaches and provides a novel reward formulation that is especially applicable when action
histories are not directly available in the historical data.

3. METHODOLOGY

There are multiple components of AFIRLS: this section outlines each of the components and how they are used to
generate a similarity metric between satellites. We first define the action-free IRL methodology and explain how
we make use of it to generate a reward representation. From there, we develop a pairwise similarity metric, given
the reward representation, that can be used to generate a similarity matrix over all satellites. Finally, we apply this
pre-computed similarity matrix to identify anomalous satellites. This section will discuss each of these three steps in
detail.

3.1 Action Free Inverse Reinforcement Learning

Inverse reinforcement learning relies on a set of collected data from a teacher policy referred to as a set of trajectories
7. Generally, these trajectories comprise a sequence of state/action pairs: (s;,a;) fori € 1...N where N is the length of a
single trajectory. Given these trajectories, we seek to extract a surrogate reward representation that captures the teacher
policy’s dynamics. A challenge in many applications is that the actions a; are not available or overly difficult to obtain.
For instance, a non-cooperative satellite operator is unlikely to share information about their constellation’s station-
keeping maneuvers. Though it may be possible to infer certain details from independently gathered data sources,
representing the specific maneuvers that took place and correlating them with the states that led to those actions is
itself a non-trivial problem.

3.1.1 Markov Decision Processes

Before introducing the details of our action-free IRL approach, we first define a few useful relations and provide a
background to stochastic Markov decision processes. Recall, an MDP defines the sequential decision making process
where a policy (7) is able to make actions (a) given some observed state (s) information. At its core, an MDP must
obey:

P(sivtlsi) = P(siv1ls1,--r50) (D

which is to say that the probability of transitioning to s;+| can be fully represented by s;. This allows a policy to act
independently of all previous states (s;...s;—1) and only rely on s;.

Given a state, s;, and a subsequent state, s ;, we can write the probability of transitioning directly (in a single step) from
state i to state j as:

pij = p(si;sj) = p(siv1 = sjlsi) - 2
This relation implies a transition matrix of the form:
P11 - Pld
T=1: 3)
Pld - DPdd

>The IRL reward surrogate need not bear any formal relationship to the teacher’s underlying behavioral motivations. In fact, an explicit reward
function may not even exist for the teacher policy.
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where the rows of the matrix sum to one and d represents the dimensionality of our state space. It is important to
note the spaces in which we are operating are constrained to discrete representations; additional comments on how to
operate with continuous spaces will be presented below.

3.1.2 Reward Representation

Given the state transition matrix relation in equation 3, we now seek to build a reward structure that is dependent only
on states. AFIRLS considers two perspectives on the reward definition: global and local rewards. In this context,
we refer to global rewards (Rg) as the most desirable states that a teacher policy is striving for. Local rewards (Ry)
on the other hand represent the path that observed trajectories take to reach the global goal. For instance, global
rewards would be able to capture the high level station keeping parameters of an earth observing satellite, whereas
local rewards would provide feedback on the path a satellite takes to maintain that station. Providing both a global and
a local representation of the reward allows us to capture not only distributional differences (global) but also transitional
differences (local). This is one potential advantage over other time-series comparison methods where the bias tends to
be more on the transitional shape of the time-series.

Global Rewards

Global rewards (Rg) are defined by a mapping from the overall state visitation frequencies to the reward:
p(si) = Rg(s;) for s; € §7, 4)

where S¢ represents the space of possible states, and p(s;) is the frequency by which s; was encountered in the expert
trajectories. The translation from frequency to reward depends on the choice of normalization for the reward scale.
Generally speaking, in practice most forward RL methods learn best when Rg(s;) € [—1,1] [17].

Local Rewards

Local rewards (R ) capture path-dependent properties of the expert trajectories, so we make use of the transition matrix
T from Eq. 3. Similar to the global rewards obtained from the state visitation frequencies in equation 4, we can define
a local reward mapping from the state transition frequencies

T,’j—>RL(S,',Sj) fOI‘sl-’Sj Esd. )

3.2 Mapping Continuous Spaces to Discrete

From the definition of both the global and local reward structures, it is clear that they are dependent on discrete state
spaces. Yet, many practical applications involve continuous state spaces. To bridge this gap, we implemented a bin-
based discretization technique that built a compact map between continuous and discrete feature spaces. Fig. 4 shows
how we are able to decompose a continuous space into discrete regions of the feature space. It is important to note that
we are able to consider a sparse representation of this space. This means that even though our discrete dimensionality
grows exponentially as new features are added, it remains relatively compact with respect to the spread of the feature
distributions.
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Fig. 4: AFIRLS bin-based discretization scheme allows continuous feature spaces to be represented in a discrete sense.
Bins are defined and stored in a sparse format allowing for compression of the overall dimensionality, d.

3.3 Similarity Metrics

Once we have representations for both the global and local rewards, the next step is to define a comparison metric to
assess similarity. We make the assumption that we have a set of m trajectories (7,,) of discrete d dimensional feature
data. Additionally, we assume that each of these 7, trajectories are m unique entities (or in our context satellites) with
aligned temporal states s; € S¢. In practice, each entity can also be segmented into multiple time-history batches to
form 7. Given these assumptions, we can write the similarity metric as the L> norm between either the global or the
local rewards:

8¢ =1IRG ~ Ryl ©
’] =||R} — R£|| for i, j € [1,m]

where S represents a matrix of collected similarity metrics and i and j denote the anomalous satellites with their asso-
ciated global (R) and local (Ry) reward representations. We have found in practice that combining reward structures
prior to computing similarity is not as effective as combining the regularized similarity matrices. The left side of Fig. 5
shows an example similarity matrix for a set of satellites, using the benchmark problem that will be defined in the next
section. It is useful in some contexts to consider this similarity matrix as a network diagram (right side of Fig. 5)
where the nodes represent the individual entities and the edges represent strong similarity between entities.

ﬂ@ﬂﬁ@ |

Satellite ID

0.00

Satelllte ID

Fig. 5: An example similarity matrix and its graph representation. Edges were defined based on a threshold of the
similarity between entities.
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3.4 Detecting Anomalous Satellites

The final component required for detecting distinct or anomalous satellites is to develop scoring algorithms that are able
to generate outlier scores given similarity matrices. Anomaly detection can be considered an unsupervised learning
problem where data is unlabelled. Under this framework, common algorithms like HDBScan [18] and Local Outlier
Factor (LOF) [19] will attempt to cluster and partition the feature dataset such that anomalous entities can be identified
when they are unable to associate with a cluster. Under the hood, many of these outlier cluster detection techniques
build a similarity matrix that is then used to identify which entities are the most distinct. In our situation, we already
have the similarity matrix and are able to bypass the initial clustering and similarity matrix generation step.

All outlier scoring algorithms have their own unique capabilities, but for simplicity of presentation in this paper we
will make use of the LOF for determining which satellites are the most anomalous. The LOF creates a scoring factor
that is dependent on the local neighborhood of similar entities. It is important to note that this method creates a
continuous value (referred to here as the interest factor, or I) of how different an outlier is, as opposed to a binary
property. This enables entities to be ranked by the size of their interest factors, and the continuous scoring mechanism
is also useful for cases where one might want to combine scores from multiple algorithms and/or feature sets into a
weighted ensemble.

4. SIMULATION

To validate the effectiveness of AFIRLS for assessing satellite similarity, we created a validation dataset with known
anomalous behaviors present in a constellation. Slingshot Aerospace’s PHASE (Physically High-accuracy Astrody-
namics Simulation Engine)[20] was employed to create said validation dataset. PHASE is a simulation tool that is
able to generate large quantities of astrodynamic data at varying levels of fidelity. Additionally, PHASE can simulate
sparse and imperfect information using realistic sensor observation processing as well as modelling downstream Orbit
Determination (OD) processes. PHASE was critical in creating this benchmark dataset so that we could test known
constructed characteristic/behavior differences in a realistic setting.

The benchmark problem chosen to validate this technique involved a constellation of satellites operating in low Earth
Orbit, wherein a small subset of satellites (less than 5%) had varying masses that were different from the remainder of
the constellation. This scenario was contrived but alludes to a feasible reality in which a satellite with an extra payload
is attempting to hide in a larger constellation. To thoroughly test this benchmark, we created an experimental design
with 10 different variations that included multiple parameter permutations. Table 1 shows a sample of some of the
parameters that were varied to generate the data necessary for this experiment.

Table 1: Design of experiments parameters for scenarios to serve as a benchmark for assessing the performance of
AFIRLS at detecting anomalous satellites within a constellation. All resultant data was simulated with underlying
control parameters and realism assumptions using the PHASE simulation tool.

Experiment Orbital Shells | Orbital Planes | Unique Bus types | Scaled Mass Difference

1 (Least Difficult) 1 10 1 5
2 1 10 1 5
3 1 10 2 4.5
4 1 10 2 4
5 2 10 2 35
6 2 12 2 3
7 2 12 3 2.5
8 2 10 3 2
9 2 12 3 1.5

10 (Most Difficult) 2 12 3 1.25

To illustrate the different mass difference configurations Fig. 6 shows the differences in mass between the anomalous
satellites and the nominal satellites for the most/least difficult scenarios. The most challenging scenario presented
numerous challenges that increased the complexity of detecting anomalous satellites.
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Fig. 6: The mass differences between the least/most difficult scenarios.

In addition to the parameters presented in Table 1, a few underlying characteristics of the simulation were controlled
to increase realism, such as the number and geo-location of the ground sensors and the noise levels for associated
state vectors. Satellite attitude and online station-keeping maneuver controllers were also included in the simulation to
account for realistic maneuvers that would be needed to maintain a mission. More broadly, this simulated constellation
was intended to mimic a LEO internet or communications provider over a two year time period.

4.1 ML features

Given the data generated using the PHASE simulation engine, it is worth describing some of the features that will
be used for assessing the performance of the AFIRLS algorithm. One straightforward approach to detecting mass
differences amongst satellites would be to detect how frequently maneuvers occur based on an external maneuver
detection algorithm. As the mass of a satellite increases, the number of maneuvers required to maintain the object’s
station will decrease. All else being equal, this is due to the inertial force of said object relative to to its less-massive
companions. It is important to note that the thrust required to maneuver the larger satellites will be greater but the
overall frequency of maneuvers will decrease. Fig. 7 shows the differences in the total number of maneuvers that a
satellite in the simulated constellation makes over the two year time period.
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Fig. 7: The total number of maneuvers performed over the entire simulated two year period. The least and most
difficult scenarios are presented with the anomalous satellites indicated in red.

From Fig. 7 we can see that the total number of maneuvers (and corresponding maneuver frequency) will not be
sufficient in detecting all anomalous satellites. For example, the maneuver frequency of some anomalous satellites in
the most difficult scenario fell within the distribution of maneuver frequencies of the nominal satellites. This is due to
other underlying simulation parameters including the orbital shell/plane the satellite is operating in. Thus in order to
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capture all relevant anomalies, we include orbital features (such as semi-major axis, inclination, and eccentricity) into
our time dependent feature set, too. The feature processing component of Agatha is able to ingest a large heterogeneous
set of features including (but not limited to): astrodynamic, photometric, and contextual data.

4.2 Metrics

To evaluate the performance of AFIRLS to detect anomalous spacecraft we define a set of metrics that will be used
to validate the accuracy and precision of our approach. Prior to defining the metrics, it is important to note that the
AFIRLS outlier scoring algorithm is not a classification scheme. This means that instead of providing results in the
form of classes (anomalous vs nominal), we provide a scored ranking, or interest factor (denoted I), based on how
anomalous a given entity is. An entity’s interest factor provides a numerical ranking for how different that entity is in
relation to all other entities considered. The two performance metrics that will be employed are the top-5 and top-10
recall.

The top k recall can be defined as the number of successfully identified anomalies within the top k ranked entities
divided by the total number of true anomalous entities. Or in equation form:

correct anomalies identified in top-k ranked list

(7

Frecalt = t0p-k Recall = total anomalous entities

This metric is useful in that it is operationally relevant. If an SSA operator were to be tasked with investigating potential
anomalous satellites, there would be a finite number of satellites that they could conceivably profile in a reasonable
time frame. Ensuring that the anomalous satellites are included in the list would be critical. For our purposes, we
consider two values for k: 5 and 10. For all experiments, the number of anomalous satellites is constrained to be less
than or equal to 5 which is why we limit the lower bound to k = 5.

5. RESULTS

Now that we have defined our methodology, described our simulated benchmark data, and proposed some metrics to
evaluate the performance, we present some results. Recall, our objective is to show that using the reward function
generated via an action-free IRL methodology, produces sufficient information to assess satellite similarity. To that
end, we will compare our Action-Free Inverse Reinforcement Learning for Satellite-similarity (AFIRLS) performance
results and relate them to a common time-series comparison technique: Dynamic Time Warping (DTW).
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Fig. 8: The AFIRLS interest factor for most/least difficult experiments in the benchmark problem.

Prior to sharing the performance metrics, it is useful to understand how well our technique applies across the space
of benchmark experiments. Fig. 8 illustrates the interest factors for each satellite ID, where the red markers indicate
the true anomalous satellites. As we can see, the AFIRLS method for comparing satellites is very accurate in iden-
tifying the distinct satellites for the least difficult scenario. Performance expectedly degrades as the scenarios under
consideration become more difficult. Additional interest factor charts for the remaining set of experiments as well as
the interest factors when using dynamic time warping can be found in appendix 8.
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Recall, DTW is perhaps one of the most prevalent methods used for time series similarity. For that reason, we compare
our AFIRLS approach to an efficient implementation of DTW [7]. For both methods, we parallelize the individual
satellite similarity computations in order to reduce the cost of computing the entire similarity matrix. Performance
metric comparisons across the space of benchmark experiments are provided in Fig. 9. The top-10 and top-5 recall
metrics are provided as a function of the scaled mass difference for each experiment described in table 1. From this
chart it is clear that AFIRLS exhibits similar performance in identifying anomalous satellites compared to DTW.

Both AFIRLS and DTW are able to capture the large mass differences between anomalous and standard satellites. In
a few cases (scaled mass differences between 2.5 and 3.5) a combination of simulation noise and a smaller number
of anomalous satellites, contributed to a small performance dip for both algorithms. Understandably, the performance

drops off as the differences become more subtle. This is arguably a good result that indicates that both models are not
producing spurious predictions of anomalies.

Top-10 Recall for all Experiments Top-5 Recall for all Experiments
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Fig. 9: The top-10 and top-5 recall metrics for AFIRL and DTW as a function of the mass differences between the
anomalous satellites and the regular satellites.

It is important to note that although AFIRLS and DTW exhibit similar performance across the space of benchmark
scenarios, there is a significant difference in the computational complexity for each method. Since DTW’s complexity
is quadratically dependent on the sequence length of a time-series, it can be somewhat costly for long sequences and
many satellites. Both local and global forms of AFIRLS are dependent linearly on the size of the discrete feature
space. This can be costly in cases where the feature space and associated discrete space are highly discretized, but in
practice, we have found that coarser discretizations work quite well in capturing the most important components of the
underlying feature space. The dimensionality for the AFIRLS results presented here use only 20 total bins allowing it
to compare even very large trajectories very quickly.

Fig. 10 shows timing results indicating the speed difference between AFIRLS and DTW. The results are normalized
with respect to the mean of the AFIRLS inference time. It is important to highlight this difference if we consider the
need to assess many additional feature sets and even larger constellations.
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Fig. 10: Comparison of scaled time differences in compute cost between AFIRLS and DTW. Times are regularized
with respect to the mean cost of AFIRLS. Importantly, computing a similarity matrix scales quadratically with respect
to the total number of satellites. Therefore any minor cost savings in computing the individual similarity metrics can
become significant as the size of a constellation grows.

6. CONCLUSION

This work presented Action Free Inverse Reinforcement Learning for Satellite-similarity (AFIRLS) as a new option
for better understanding differences between satellite behaviors and characteristics. We also presented a benchmark
problem where a small number of satellites had larger masses than the remainder of their constituent constellation.
Finally results for both AFIRLS and Dynamic Time Warping (DTW) were presented on how well they are able to
detect the anomalous satellites within the constellation. AFIRLS showed similar performance to DTW in detecting
the anomalous satellites but exhibited superior computational complexity.

The objective of this paper is not to pose AFIRLS as a replacement of DTW, but instead to show it is worth considering
as a complement to other time-series comparison methods. In fact, many different time-series comparison methods
should be considered when approaching this problem operationally in a weighted ensemble. Ensemble approaches
will be able to capture the entirety of the feature spaces and weigh the strengths/weaknesses of constituent algorithms.
The larger Agatha pipeline, of which both AFIRLS and DTW are components, considers many different feature and
algorithm representations to identify anomalies.
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