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ABSTRACT

The field of Space Domain Awareness (SDA) is becoming increasingly important, particularly amidst the growing
population of space debris in low Earth orbit (LEO). Previous research has explored the classification of various types
of attitudes exhibited by both defunct and operational satellites and rocket bodies, yet there is a noticeable gap in the
literature concerning the analysis of attitude complexities exhibited by smaller orbital debris, such as fragments and
detached satellite components, specifically. This lack of focus on debris sub-classification could be attributed to the
scarcity of labeled debris data.

To address this challenge, a light curve simulation framework was created, which combined the capabilities of both
Orekit for numerical orbit propagation, and Blender for physical environment modelling and image rendering. Using
this simulator, light curves of different debris shapes were generated based on initial conditions defined by LEO Two-
Line Elements (TLEs), and a series of physical object parameters. While there is an infinite number of shapes that
orbital debris can assume following a breakup event, this study focused on photometric signatures produced by five
shape classes in particular: rods, panels, cuboids, dishes, and cones.

The first task aimed to classify the light curve attitude complexity as either tumbling or stable, where tumbling objects
are characterized by a rotation about two or more body axes, and stable objects are either nonrotational or rotating about
a single axis. Data pre-processing for this step involved the extraction of frequency information using the Wavelet
Scattering Transform (WST). Running an Extreme Gradient Boosting (XGBoost) algorithm on the extracted features
for this binary classification task produced an accuracy of 90%. The second task involved the shape classification of
tumbling debris using a set of deep learning models, namely a Convolutional Neural Network (CNN), a Long Short-
Term Memory network (LSTM), and a fully convolutional LSTM (LSTM-FCN). The highest performer among these
networks was the LSTM-FCN, achieving a test accuracy of 95%.

This study employed novel approaches to the attitude and shape classification of debris light curves, producing promis-
ing results when using a unique dataset of LEO debris. Extensions of this work will involve the implementation of
attention mechanisms to further improve the performance of the deep learning models, as well as the application of
more sophisticated light curve inversion techniques to extract precise attitude rates from the light curves.

1. INTRODUCTION

In recent years, the risks that the growing population of Earth-orbiting debris pose on operational satellites have
increased. This has called for a significant need to study and understand the complex behaviour of space debris.
Statistical models developed by the European Space Agency (ESA) estimate upwards of 40,500 debris pieces greater
than 10cm orbiting Earth as of 2024 [1], with Low Earth Orbit (LEO) containing the highest concentration of debris
[2]. In order to accurately assess collision risks, it is critical to collect as much information about surrounding objects
as possible.

A common approach to space object characterization is to perform light curve inversion, where a light curve refers to an
object’s observed brightness over time, and inversion is the process of recovering information based on this photomet-
ric signature. One publicly available light curve dataset is the Mini-MegaTORTORA (MMT) catalogue maintained by
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the Kazan Federal University [3], which tracks light curves in both low Earth orbit (LEO) and geosynchronous Earth
orbit (GEO). This catalogue consists of over 500,000 light curves of satellites (operational and nonoperational), rocket
bodies, and debris. The Space Debris Light Curve Database (SDLCD) also contains both LEO and GEO objects, but
is a smaller publicly available catalogue consisting of only 1,900 light curves [4]. Some drawbacks to both of these
datasets are their lack of information on the objects’ attitudes, as well as the absence of shape information specifically
on the debris pieces being tracked.

This lack of information in existing publicly available databases has been addressed by creating simulation pipelines to
generate the light curve data required to train machine learning and deep learning models. Previous works have chosen
mathematical implementations of the Ashikhmin-Shirley and Beard-Maxwell bidirectional reflectance distribution
function (BRDF) models to simulate light curves of rocket bodies and satellites [5, 6]. Badura et al. [6] perform an
intensive light curve study using empirically-collected material data to physically derive inputs to their mathematical
model. An alternative approach uses Blender, an open-source 3D modelling, animation, and rendering software [7],
which has previously been employed for light curve simulation by Allworth et al. and Kanzler et al. [8, 9]. These
studies utilize rendered images to create light curves and have shown, through comparisons with empirical light curves,
that Blender-generated data capture the necessary detail for the analysis of simple shapes performed in this study. This,
along with its flexibility in manipulating object dimensions and parameters, such as spin rates, surface properties, and
environment settings, make Blender a more compelling option for our study than mathematical implementations.

The debris, rocket body, and satellite light curves simulated by Linares et al. [5] were classified based on shape using
a convolutional neural network (CNN), achieving an accuracy of 98%. With the growing popularity and success of
CNNs in the Space Domain Awareness (SDA) community, they have also been applied to attitude classification [6],
alongside long short-term memory (LSTM) networks [10, 11, 12]. In the majority of cases, deep learning models have
shown to outperform traditional machine learning models on time series classification tasks because of their ability to
learn features and model nonlinear relationships within the data.

To aid the classification models, [13, 11, 10] use variations of the Wavelet Transform to extract features from light
curves for classification tasks. Wavelet-based frequency analysis methods preserve time information, unlike the Fast
Fourier Transform, which assumes a signal is infinite and does not capture temporal details. Dao et al. apply the
Wavelet Transform to obtain frequency information from GEO light curves, and use this information to distinguish
between satellites and rocket bodies [13]. Alternatively, [11, 10] apply the Discrete Wavelet Transform (DWT) and
the Wavelet Scattering Transform (WST), respectively, to LEO light curves for feature extraction. While the DWT
and WST both feed the signal through a series of low pass filters for frequency component analysis, the wavelet
convolutions and modulus operations applied in the WST produce features that are both translation and deformation
invariant [14]. Consequently, Qashoa and Lee argue that the latter technique outputs richer features without the need
for additional tests for periodicity and aliasing [10].

Upon distinguishing a fragmented space debris from satellites and rocket bodies, further classifying the debris based
on rotational and shape characteristics, in addition to considering orbital perturbations, would facilitate more accurate
trajectory propagations. This debris sub-classification has yet to be explored via light curve data. Deriving this addi-
tional information would enhance our understanding of potentially uncatalogued objects, allowing for more informed
collision risk assessments.

This study aimed to combine the methodologies from previous works for both data simulation and light curve clas-
sification. The first step involved the generation of a unique dataset of labelled debris light curves. The shape and
spin rate labels in the synthetic data offered an advantage over existing publicly available datasets by allowing for the
classification based on these characteristics. As such, the second step in this work involved the attitude classification
of the light curves using an Extreme Gradient Boosting (XGBoost) model in conjunction with the WST, followed by
the shape classification of tumbling debris using a series of deep learning models.

Section 2 outlines our data simulation framework, followed by a description of the employed classification methods in
Section 3. Results and a discussion of the findings from this research are summarized in Sections 4 and 5, respectively.

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



2. DATA SIMULATION

2.1 Object Initialization

The simulator used to generate the light curve data was written entirely in Python and combines the capabilities of
both Orekit for numerical orbit propagation and Blender for the space environment set up and image rendering. Figure
1 shows an overview of the simulation process, which is repeated for each light curve. It should be noted that this
process is similar to that used by Allworth et al. [15], which also involves an orbit propagator in conjunction with a
physical environment setup in Blender to create rendered images of a space object from a ground station.

Fig. 1: Light curve simulation framework involving the integration of Orekit, Blender, and a combination of apparent
magnitude calculations from [5, 16].

Prior to the data simulation process, 3D models representing various shapes of space debris were created. Our shape
bank consisted of truncated cones (frustums), dishes, plates, cuboids, and rods. These were designed to represent
pieces of satellites that may break off during breakup events, which might include thruster nozzles, antennas, and solar
panels. As such, realistic dimensions were sourced from publicly available data on existing satellites and dimension
specifications of their components [17, 18, 19]. To create a more comprehensive dataset, three differently proportioned
variations of each shape were created, resulting in a total set of 15 unique objects. Each object was assigned a cross
sectional area, mass, and drag coefficient [20], which are used when calculating the atmospheric drag in the orbit
propagation step of the simulator.

A list of 20 Two-Line Elements (TLEs), corresponding to existing LEO debris, was sourced from spacetrack.org [21].
Table 1 summarizes orbit information extracted from five of the 20 TLEs used to generate the light curves in this study.

Table 1: Sample LEO TLE information sourced from spacetrack.org used for orbit initialization. Orbital character-
istics shown from left to right are the semimajor axis, inclination, eccentricity, right ascension of ascending node,
argument of perigee, and mean anomaly.

Object NORAD ID a [km] i [°] e Ω [°] ω [°] M [°]
Oscar 23 DEB 33395 7527.97 90.31 0.0186 354.41 324.20 99.95
NOAA 11 DEB 37241 7182.58 98.91 0.0021 252.34 351.79 8.29
Falcon 9 DEB 52893 6878.90 52.99 0.0008 89.72 140.84 219.32
Ariane 1 DEB 17129 7185.22 98.37 0.0033 137.52 21.67 150.36

Iridium 33 DEB 33850 7139.97 86.34 0.0012 269.57 202.67 226.95

Apart from the shape of the object, this work also aims to classify the object’s attitude complexity. As such, the
initialization step also sets the object’s attitude regime as either tumbling or stable. A tumbling object corresponds to
a rotation about 2 or 3 of its body axes, and a stable object is considered either nonrotating or rotating about a single
body axis. This is followed by the randomization of which axes will be rotating depending on the attitude regime. The
period of rotation about a given axis is randomly sampled between 2 and 30 seconds.

2.2 Numerical Orbit Propagation: Orekit

Orekit is a comprehensive Java library for space flight dynamics and astronomy, offering tools for satellite orbit
propagation and space mission analysis [22]. To facilitate its use in this research, the Python wrapper for Orekit
was used, allowing for integration with our Python-based framework. This API served as the orbit propagator for
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each object, where the sampled TLE determined the initial conditions for the numerical orbit propagation process. To
incorporate the effects of atmospheric drag, solar radiation pressure, and third body attractions from the sun and moon,
the propagator also accounts for the object’s mass, cross sectional area, drag coefficient, and reflectivity coefficient.

A ground field of view detector is used alongside the orbit propagator in order to detect the region of the orbit in which
the object is visible from the ground station, which was set to have the same longitude, latitude, and elevation as the
MMT telescope [3]. The visibility detector checks a circular field of view directly above the ground station with a 60
degree radius, and considers factors such as sun elevation and eclipses. Figure 2 shows the orbit propagation of an
object using the Ariane 1 DEB TLE from Table 1.

Fig. 2: Numerical orbit propagation results generated by Orekit using an Ariane 1 debris TLE and object parameters
corresponding to a rod. Visible range and light curve region are also shown along the orbit in pink and red, respectively.

The plot illustrates the orbit of an object around Earth, with markers positioned at Earth’s center (red) as well as at
the location of the ground station (blue). The axes correspond to the Earth-Centered Inertial (ECI) frame, where the
x-axis aligns with the direction of the vernal equinox, the y-axis lies within the equatorial plane, perpendicular to the
x-axis, and the z-axis points along Earth’s north pole. Figure 2 also shows the object’s full orbit (green), the region of
visibility (pink), as well as the region during which the light curve for this object was recorded (red); this corresponds
to a 60 second long track. The object in this track is located at an altitude of approximately 1,400km.

2.3 Light Curve Simulation: Blender

Among the object’s positional information, Orekit outputs other necessary data for setting up the physical environment
in Blender, a powerful open-source 3D graphics and animation software previously used for light curve simulation [15,
23]. Blender plays a critical role in this light curve simulation pipeline by modeling the physical space environment
and rendering the required images.

The positions of the ground station and the Sun are fixed for the duration of the light curve track. These positions
are derived from historical data corresponding to the time of the light curve observations to ensure that the simulation
accurately reflects the observational conditions during the epochs of interest. The distances provided by Orekit in
meters are scaled appropriately to fit in the Blender scene, and are accounted for in the light curve extraction step.

The solar irradiance is set to 1062 W/m², aligning with the standard solar constant. This value represents the average
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solar energy received per unit area at the Earth’s surface, which is essential for simulating realistic lighting conditions
and accurate reflections in the rendered images. The Earth is also modelled and centered at the scene’s origin to
account for earthshine effects.

The 3D model of the object is then imported into the environment and placed at the position corresponding to a
randomized start index within the list of visible positions. This is followed by the assignment of physical parameters,
which are associated with one of three possible materials that an object can assume in this study: diffuse, specular,
and solar. Although the former two finishes are not completely diffuse or specular, they were modeled to resemble the
surface finishes of brushed aluminum and aluminum foil reflectors, respectively. The solar material was designed to
simulate the colour and finish of a solar panel. Figure 3 shows renderings of these materials in Blender.

(a) (b) (c)

Fig. 3: Three types of material finishes used in the light curve simulator: (a) Diffuse, (b) Specular, and (c) Solar.

Each object is assigned a uniform material composition, where dishes can only be specular (to model satellite reflec-
tors), panels can be assigned any of the three materials, and all other objects (cuboids, rods, and cones) can only be
diffuse. Table 2 summarizes the parameter settings that were used to configure the materials shown in Figure 3.

Table 2: Blender parameters corresponding to the three types of surface finishes shown in Figure 3.

Finish R G B Roughness Metallic Diffusivity Reflectivity IOR
DIFFUSE 0.6 0.6 0.6 0.4 1.0 0.6 1.2 1.5

SPECULAR 0.6 0.6 0.6 0.05 0.8 0.1 1.7 2.0
SOLAR 0.002 0.001 0.012 0.1 0.8 0.6 0.5 1.5

The object is then given a random set of Euler angles about its body axes to define its initial orientation. From there,
the object is spun according to the spin rates assigned to the object during the initialization step. The Nyquist theorem
states that to capture a signal without aliasing, the sampling frequency must be at least 2x the maximum frequency of
the signal [24]. In this study, the maximum possible spin frequency about a given axis is 0.5Hz, indicating that the
sampling frequency would need to be at least 1Hz to accurately capture the rotation of the fastest spinning object. The
chosen sampling frequency was 5Hz, corresponding to one image taken every 0.2 seconds.

To speed up rendering times, the camera at the ground station location tracks the object of interest and zooms in by
80%, which allows the software to focus only on the required information to be rendered, and limits the amount of
empty space in the aperture. Each light curve in the dataset was set to record 300 measurements, which is equivalent
to 60 seconds.

2.4 Light Curve Extraction
The method used to construct a light curve using the pixel counts derived from the rendered images was taken from
[15], which involved techniques for extracting both the apparent magnitudes via the flat facet model defined in [5] and
the object’s instrument magnitudes at each time step [16].

The apparent magnitude of a target object can be determined by a relationship that considers the photon flux of that
object ( ftarget ) along with the photon flux ( fre f ) and known magnitude (mre f ) of a distant reference star [15],
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mtarget = mre f +2.5log10( fre f )−2.5log10( ftarget). (1)

In scenarios where the reference object is not a star and its apparent magnitude (mre f ) is unknown, the flat facet model
derived from the Ashikhmin-Shirley BRDF in [5] describes a method based on the apparent magnitude of the sun
(-26.7) and the discretization of the reference object’s visible surfaces into a series of flat facets. The contribution of a
single flat facet, j, to the reference object’s overall apparent magnitude is defined by:

mre f , j =−26.7−2.5log10

[
(ûn, j · ûs, j)ρtot, j

d2
re f , j

]
, (2)

where ρtot, j is the total diffuse reflectance of the facet’s material and dre f , j is the distance between the camera and the
facet. The dot product between the facet’s normal vector and the vector from the facet to the sun, (ûn, j · ûs, j), quantifies
how much facet j is rotated in the sun’s direction, away from the observer. This value is inversely proportional to the
amount of sunlight reflected towards the observer.

The simulation in this study creates one reference object for each light curve. This 1m by 1m flat plate is placed
10,000km above the ground station and oriented such that the camera is normal to the plate’s surface. The contribution
of each facet j given by Equation 2 is typically summed over all J facets, but in this case, the reference object’s 1m2

surface area represents the only visible facet required to calculate the reference apparent magnitude, mre f .

In certain cases, the exact photon flux is also unknown, but brightness information is available via images taken by a
telescope. The instrument magnitude described in [16] can be applied in this scenario, which provides an alternative
means of quantifying the magnitude using the image pixel count, B, instead of the photon flux of any object:

I =−2.5log10

(
B−ASsky

texp

)
, (3)

where A is the aperture area (in pixels), Ssky is the sky signal per pixel, and texp is the exposure time of the image,
in seconds. Since Ssky in Blender is 0 [15], the logarithm in Equation 3 simplifies to B

texp
. The logarithm terms in

Equation 1 can be replaced with the corresponding instrumental magnitudes, yielding the following general equation
for the apparent magnitude of the target object at each time step, i

mtarget,i = Itarget,i +mre f − Ire f . (4)

To account for the scaled distances and in Blender, a correction factor is applied to the instrumental magnitude of the
target object, which gives the following

Itarget,i =−2.5log10

 Bi

texp

(
di

dre f
· scale

)2

 . (5)

In this equation, di is the real world distance between the observer and the target object and dre f is the distance between
the observer and the reference object. Plugging all variables into Equation 5 and simplifying, we obtain,

mtarget,i =−26.7−2.5log10

[
(ûn · ûs)ρtot,i

d2
i scale2

Bi

Bre f

]
. (6)

It is worth noting that both texp and dre f cancelled out during the simplification of Equation 5, suggesting that the
exposure time of each image and the distance at which the reference object is placed with respect to the observer do
not affect the final apparent magnitude at any given time step. Applying this overall equation using pixel counts from
the 300 rendered images of each track produces a time series consisting of apparent magnitude values. The light curve
generated from the orbit information displayed in Figure 2 is shown in Figure 4.
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Fig. 4: Generated light curve of a rod rotating about two axes, corresponding to the red light curve region shown in
Figure 2. Inverted y-axis for intuitive visualization of brightness variations, reflecting the inverse relationship with
apparent magnitude values.

The generation of a light curve in our simulation pipeline takes, on average, 16.6 minutes. In this plot, the y-axis has
been inverted to reflect the inverse relationship between brightness and apparent magnitude, making the data easier to
interpret. The generated light curve is of a rod tumbling with a rotation about two axes. While this object was assigned
a primarily diffuse surface finish, some specular behaviour is still present. Sharp dips in the object’s brightness may
be due to the object’s rotation and how certain orientations are associated with a lower visibility of these specular
areas from the point of view of the observer. Figure 5 provides a visual for simulated light curves of different attitude
regimes with color coded object shapes.

(a) (b)

Fig. 5: Plots of tumbling (a) and stable (b) light curves with shape labels, showing four different representative light
curves for each shape. The tumbling objects exhibit chaotic and highly variable brightness, with frequent and signifi-
cant fluctuations in apparent magnitude. In contrast, the stable objects demonstrate smoother and more consistent light
curves, reflecting steadier brightness and less erratic behavior.

A total of 6,500 labelled debris light curves were generated for this classification study, where both the attitude
regime and shape of each light curve were chosen from a uniform distribution to ensure that the classes would be well
balanced for the investigated classification tasks. As expected upon visual inspection, stable objects (either nonrotating
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or rotating about a single axis) exhibit less variability in fluctuations than tumbling objects due to a steadier orientation
relative to the point of observation.

Light curves of dish objects are, in general, noticeably dimmer than the other light curves based on Figure 5. This
can be attributed to both the concave shape of satellite dishes and the fact that this object class was simulated only
using the specular material type. Sunlight hitting the dish will only reach the observer if the angle between the sun
and the surface normal equals the angle between the observer and the surface normal. In other words, the visibility
of a specular object is highly dependent on its rotation relative to both the position of the sun and the observer. The
concavity also makes the dish’s visibility more selective and dependent on precise geometrical alignment. In contrast,
diffuse material types reflect light in all directions, making a diffuse object’s geometry less restrictive for visibility
from the point of observation.

3. CLASSIFICATION MODELS

3.1 Extreme Gradient Boosting

XGBoost is a machine learning ensemble method, which combines the capabilities of a series of decision trees. The
model leverages regularization, pruning, shrinkage, as well as column and row subsampling to iteratively improve
performance. Each subsequent tree aims to correct the residuals or errors made by the previous trees, and they are also
penalized based on tree complexity. Several hyperparameters can be tuned to optimize performance, making XGBoost
a highly scalable model for any regression or classification task. For a comprehensive overview of the model, readers
are encouraged to consult [25].

The first classification task used XGBoost to distinguish between tumbling and stable light curves, where tumbling
objects are defined by a rotation about two or three body axes, and stable objects are either nonrotating or rotating
about a single axis. The model is trained over 2000 epochs, with an early stopping criterion set to terminate training
if there is no improvement in the negative log likelihood loss for 50 consecutive epochs. During each epoch, the
model randomly selects a subsample comprising 80% of the entire dataset to grow each tree. To mitigate overfitting,
the maximum tree depth is limited to 10 levels, and at each level, 80% of the features are randomly chosen for
consideration. From these, 50% are randomly selected for splitting at each node. This randomness in feature selection
helps increase the diversity of trees and enhances the model’s robustness. XGBoost has shown promising results in
other related time series classification tasks [26, 27], making it a compelling method to apply as a novel approach to
light curve classification.

3.2 Convolutional Neural Network

A CNN is a type of neural network that learns hierarchies of features in the input data using convolutional filters.
Otherwise referred to as kernels, these filters are able to scan across one-dimensional data in a 1D-CNN to detect local
patterns, periodicity, and temporal dependencies, among other characteristics. This hierarchical feature extraction is
followed by pooling layers, which reduce the spatial dimensions of the data, thereby lowering computational require-
ments and promoting feature invariance. The extracted features are then fed into fully connected (FC) layers that act
as a classifier, making predictions based on the learned features. The training of a CNN uses backpropagation, which
adjusts the filters and weights in response to the error between its predictions and the actual labels.

Since the classification of object shapes focused only on tumbling objects, the dataset was limited to the 3,200 tum-
bling light curves, where the training, validation, and test sets represented 80%, 10%, and 10% of the tumbling light
curve data.The 1D-CNN architecture utilized in this study was similar to that employed by Furfaro et al. [5], which
has been proven to perform well on their simulated GEO light curve data for the classification of fragments, rocket
bodies, regular polygon prisms, and rectangular cuboids.

This architecture consists of three convolutional layers with 64, 32, and 64 filters of sizes 32, 12, and 6, respectively.
Each layer is followed by rectified linear unit (ReLU) activation, dropout regularization of 0.2, and max pooling with
a kernel size of 1x4. This is followed by a FC layer containing 100 neurons, 0.5 dropout regularization and a final
FC layer to align the model’s output with the number of shape classes. This differs slightly from the two FC layers
with 500 and 100 neurons, and softmax function used by Furfaro et al. [5]. The model is trained for 2000 epochs,
with early stopping criteria set to 100 epochs without improvement. The network processed the data in batch sizes of
128, applying cross-entropy loss for classification and stochastic gradient descent with a learning rate of 0.01 and a
momentum of 0.9.
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3.3 Long Short-Term Memory Network

LSTM networks are a specialized form of recurrent neural networks (RNNs) designed to capture temporal dependen-
cies in sequential data. Traditional RNNs suffer from the vanishing gradient problem, where gradients of the loss
function shrink exponentially over time. The recursive nature of RNNs also requires the recomputation of the internal
state for every input, making it difficult for these networks to track and learn long-range dependencies [28]. LSTM
networks address these issues through their unique architecture that includes memory cells and gating mechanisms.

An LSTM consists of a series of connected LSTM units, each containing a cell state that is modulated by three
primary gates: the input gate, the forget gate, and the output gate. The cell state serves as the network’s long-term
memory, allowing for the preservation of relevant information across many time steps. The gates regulate the flow of
information into and out of the cell state, ensuring that relevant information is added or retained, and that nonessential
information is discarded. This structure allows LSTMs to effectively learn and remember context over long sequences,
making them powerful for a variety of sequential data tasks.

The LSTM model in this study consisted of four stacked LSTM layers, each with 64 hidden units. The dropout rate
was set to 0.1 and the learning rate was 0.006. The model was trained over 2,000 epochs with early stopping after 100
rounds without improvement, using batches of 128 samples and cross-entropy loss.

3.4 Fully Convolutional Long Short-Term Memory Network

A fully convolutional LSTM (LSTM-FCN) is an advanced neural network architecture designed to handle sequential
data by combining the strengths of convolutional layers and LSTM units. This hybrid approach is particularly effective
for time-series analysis, where the goal is to capture both local patterns and long-term dependencies in the data [29].
This network architecture is shown in Figure 6.

Fig. 6: A hybrid model architecture combining an LSTM and a CNN, for time series classification. The input data
is processed along two parallel paths: the top path involves reshaping the input data and feeding it into an LSTM
followed by a dropout layer, and the bottom path employs a three-layer CNN and global average pooling. The outputs
from both paths are concatenated and fed into an FC layer to produce the final class predictions.

A dimension shuffle is performed on the input data to transform it into a multivariate time series with a single time
step, which was shown in [29] to enhance the architecture’s performance. The LSTM block used for this study was the
same as the LSTM network described in Section 3.3. A dropout rate of 60% was applied to the LSTM block output to
reduce overfitting.

The three convolutional layers use 128, 256, and 128 filters, of sizes 8, 5, and 3, respectively. Each layer is followed
by batch normalization and ReLU activation. Global average pooling is then applied to the output of the final con-
volutional layer to reduce the number of parameters prior to concatenation with the LSTM results. Following the
concatenation step, an FC layer to produce the final classification results.
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4. RESULTS

4.1 Attitude Classification

To classify the light curves based on attitude with XGBoost, we first employ the WST for feature extraction. The
primary advantage of this method lies is its ability to extract prominent frequency components while preserving valu-
able time-domain information. This is particularly useful in the context of light curve analysis, where each light curve
exhibits signatures that reflect the object’s rotation profile. The transformation from apparent magnitude values to
scattering coefficients is achieved by iterating over three main steps [14].

The first step of each layer (or iteration), is to convolve the input signal with wavelets of different scales defined
by inputs J and Q. J determines the number of scales used in the transform, where the maximum scale is 2J . This
parameter is inversely proportional to the temporal resolution of the resulting scattering coefficients. The Q parameter
is the number of wavelets per octave, which is proportional the frequency resolution of the coefficients. The second
step applied a modulus operator to the resulting signals, containing both complex and real components, to obtain the
absolute value. Finally, low-pass filtering is applied to perform local averaging over a window of points in the signal
and extract the first order coefficients. Convolving the signals from step two with the wavelets in the subsequent filter
bank, followed by modulus and low-pass filtering, extracts the second order coefficients. The coefficients produced
at each level of the transform are invariant to both time-warping and translations to a certain degree dictated by the
scaling factor J.

Scattering coefficients are commonly expressed in the form of spectrograms, where the x-axis represents the time
resolution, and the y-axis is the log frequency. Each coefficient is an amplitude value associated with a certain time
and frequency window. Examples of the wavelet scattering transform, as applied to a tumbling cone and a stable cone
respectively, are shown in Figure 7.

(a) (b)

Fig. 7: Light curves and corresponding wavelet coefficient spectrograms of cones for tumbling (a) and stable (b)
attitude profiles. The top row shows the z-normalized raw light curves, followed by the first and second order WST
coefficient spectrograms in the middle and bottoms rows, respectively.

The spectrograms in Figure 7 were created from WST coefficients corresponding to a scale index of 4 and 16 wavelets
per octave for the first order coefficients. By default, the second order coefficients are generated using a filter bank
with one wavelet per octave. These parameters corresponded to the shown frequency and time resolutions, which
summarize the strength of frequency components present in different time windows within the light curves.

Figure 7a represents a cone rotating about three axes, showing a more erratic and complex behavior than Figure 7b,
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which is a cone rotating about only one axis. In the first order coefficients given by the middle row, the spectrogram
of the tumbling cone shows a wide range of coefficient amplitudes across all frequencies, while also capturing how
the strength of the frequency components vary with time. The stable object shows more uniform patterns with fewer
variations over time and across the frequencies. This suggests that the WST was able to capture the difference in
rotational complexity between the two signals. The second order coefficients in the bottom row quantify interactions
between different frequency components that were not captured by the first filter bank, further characterizing the
modulations in object rotation.

Transforming the raw light curve data into wavelet coefficients augmented the feature space for this classification task
from the original 300 apparent magnitude measurements (equivalent to a 60 second light curve track) to a total of
1,387 coefficients. Beyond extracting features using the WST, the XGBoost classifier was also tested on a different
number of the extracted coefficients. The final classification results are shown in Table 3.

Table 3: XGBoost binary attitude classification results on raw light curves and WST coefficients.

Model Features Test Validation Precision Recall F1
Accuracy Accuracy

XGBoost 300 0.778 0.758 0.78 0.78 0.78
WST-XGBoost (All Coeff.) 1387 0.900 0.897 0.90 0.90 0.90
WST-XGBoost (Order 1 Coeff.) 570 0.876 0.897 0.88 0.88 0.88

The highest performing model was the XGBoost classifier that used all 1,387 scattering coefficients, producing a test
accuracy of 90%. This represented a 12% higher accuracy than the same XGBoost model’s performance using raw
light curves. Although the WST coefficients offered an effective set of frequency features for this task, it was important
to assess whether all 1,387 features were necessary to achieve meaningful results. By eliminating the second order
wavelet coefficients, the feature space was reduced to 570, keeping only the coefficients produced by the first set of
wavelet convolutions. Doing so produced a test accuracy of 88%, demonstrating that they alone were sufficient for a
meaningful improvement over raw light curve data.

4.2 Shape Classification

The three deep learning models described in Section 3 were applied to the generated light curves, where each light
curve consisted of 300 apparent magnitude measurements. The objective of this task was to classify tumbling objects
based on their shapes, which included rods, truncated cones, panels, dishes, and cuboids. A total of 3,200 light curves
were available for this task, with 80% of the data allocated for training, 10% for validation, and 10% for testing. The
results obtained from these models are shown in Table 4.

Table 4: Shape classification results of the deep learning models explored in this study based on raw light curve data.

Model Test Accuracy Validation Accuracy Precision Recall F1
1D-CNN 0.788 0.785 0.79 0.79 0.79
LSTM 0.886 0.905 0.89 0.89 0.89
LSTM-FCN 0.946 0.880 0.95 0.95 0.95

The CNN architecture proposed by Linares et al. produced a 79% accuracy when applied to the data generated for this
study. The LSTM produced a 89% test accuracy on the generated dataset, which was higher than that produced by the
1D-CNN by 10%. Leveraging a CNN’s ability to detect local patterns along with the temporal patterns extracted by
this LSTM network, the LSTM-FCN model achieved a test accuracy of 95%.

5. DISCUSSION

This study aimed to classify the synthetic debris light curve data based on attitude complexity and shape. A number of
classification methods were implemented, namely, an XGBoost classifier for attitude classification, as well as a CNN,
an LSTM and an LSTM-FCN for shape classification.
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The XGBoost classifier’s higher performance on the WST coefficients compared to raw light curve data can be at-
tributed to the ability for the WST to extract detailed time-frequency features related to the rotation of the objects.
Consequently, this extracted set of features was shown to be advantageous to a classification task involving the ob-
ject’s attitude complexity. Increasing the number of features per sample from 300 to 1,387 might also be a contributing
factor to the higher accuracy, as this provides the model with more information for making predictions. Reducing the
feature set to the 570 first order coefficients produced results that were still 10% higher than the model’s performance
on the raw light curves. This indicated that the coefficients extracted in the first level of the WST contained enough
discriminating information on the light curves to offer a meaningful improvement over time series of apparent magni-
tudes.

A similar data pre-processing approach was taken by Qashoa and Lee [10], which used t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) on WST coefficients as a non-linear dimensionality reduction technique. XGBoost’s results
using all WST coefficients achieved a 3% higher accuracy than the Support Vector Machine (SVM) employed for the
classification of their embedded wavelet coefficients. The results obtained by the XGBoost model were also only 2%
lower than their LSTM accuracy on the same task. This shows that XGBoost, which is based on decision trees, can
produce comparable results (on light curve classification tasks) to deep learning models built to learn hierarchies of
features that are often missed by classical machine learning models.

Linares et al. [5] applied a similar CNN architecture used in this study to their simulated GEO light curves for the
classification of fragments, rocket bodies, regular polygon prisms, and rectangular cuboids, obtaining a 98% accuracy.
The 13% lower accuracy obtained by the same model on the dataset simulated in this study can be attributed to a
limited amount of training data. Linares et al. trained on 5,500 more light curves compared to this model, making
for a more robust model that is less likely to overfit. It should also be noted that their simulated training data were
near geosynchronous orbit, whereas the data it this study used LEO initial conditions, making it difficult to make
direct comparisons due to the nature of the data itself. Employing an LSTM to the simulated data produced a notable
improvement over the CNN, which could be an indication that the data exhibit important discriminating temporal
patterns that the CNN was unable to capture, but the long-term memory of the LSTM was able to identify.

Although the test accuracy produced by the LSTM-FCN was high, the 7% difference between test and validation
accuracies suggests that the model’s weights generalized more effectively to the test dataset. This indicated that the
test data more closely resembled the training data compared to the validation data. A method to combat this bias in
future investigations would be to perform cross validation and to average the test accuracies across several folds.

6. CONCLUSION

Given the growing population of space debris, it is increasingly likely for a space asset to encounter new or uncat-
alogued debris. Additionally, when debris pieces are identified and distinguished from satellites or rocket bodies, it
is critical to further characterize the object being observed for collision avoidance. As such, it was of interest to in-
vestigate and sub-classify light curves of LEO debris, specifically, by employing machine learning and deep learning
models for the first time. This was done using a dataset of 6,500 labelled light curves, generated using the combined
capabilities of Orekit and Blender.

First, the light curves were categorized based on attitude complexity, as either tumbling or stable, based on extracted
wavelet scattering coefficients. The highest classification accuracy achieved by the XGBoost model on this task was
90%. This study was the first to employ XGBoost for the classification of resident space object (RSO) light curves,
and results using this model were improved by 12% when combined with WST features instead of raw light curve
data.

A novel approach was also taken for the second classification task, which employed an LSTM-FCN to light curve
classification for the first time. A CNN and an LSTM were tested separately for the same task. These models classified
the tumbling objects into five different shape categories (rods, truncated cones, panels, dishes, and cuboids), where the
highest performer was the LSTM-FCN achieving a 95% accuracy.

Due to time constraints, the size of the generated dataset was limited. Future work will involve a larger dataset, with
a wider range of shapes that the debris pieces can assume. For example, it would be beneficial to involve shapes with
imperfections to model light curves of debris that more closely represent fragmented or damaged objects. Likewise,
incorporating objects that have facets of different materials instead of one type of material per object would help in
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diversifying the dataset and making it more realistic.

Extensions of this work might include a study to reconstruct the assigned spin rates, similarly to methods described
in [30]. Regarding the classification models, improvements will be made by (1) optimizing the XGBoost and LSTM
hyperparameters using Bayesian Optimization and (2) introducing an attention mechanism as described in [29] to help
improve the LSTM-FCN shape classification results.
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