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ABSTRACT

Accurate Initial Orbit Determination (IOD) is crucial for Space Domain Awareness (SDA). This research introduces an IOD method
that aims to enhance the orbit prediction accuracy of the initial detection of unknown space objects with short-arc angle-only mea-
surements from electro-optical (EO) sensors. The methodology integrates a machine learning model with the principles of orbital
mechanics. The model is trained on a diverse dataset of simulated observations across various orbital regimes, including Low-Earth
Orbit (LEO), Medium-Earth Orbit (MEO), Geostationary Orbit (GEO), and Highly Elliptical Orbit (HEO). Comparative analy-
ses demonstrate that the proposed approach outperforms traditional angles-only methods, such as Laplace, Gauss, and Gooding
methods, with a median angular error reduction relative to the observer. This improvement enhances the reliability of subsequent
tracking efforts. The network architecture features two Long Short-Term Memory (LSTM) layers followed by a fully connected
(dense) layer, achieving optimal results when predicting position and velocity state vectors using a physics-based loss function.
These findings underscore the potential of machine learning in advancing SDA capabilities.

1. INTRODUCTION

Initial Orbit Determination (IOD) is a fundamental problem in Space Domain Awareness (SDA). It involves estimating
an object’s orbit using limited observational data. Traditional angles-only methods require a fairly accurate initial guess
or are often sensitive to observation errors, especially over short arcs. A critical mission for SDA sensors, particularly
autonomous ones, is to detect and track uncorrelated targets (UCTs). When a UCT is detected, a reliable IOD is crucial
for obtaining follow-up measurements. Improved orbit estimation enhances the probability of reacquiring UCTs and
provides greater flexibility for the scheduler to retask sensors due to the larger time window available.

The primary objective of this study is to develop and evaluate a machine learning framework for IOD using simulated
electro-optical (EO) observations. We aim to compare its performance against traditional methods and demonstrate
its applicability across different orbital regimes. An additional objective is to create a robust simulation test bed for
developing and evaluating IOD models.

2. RELATED WORK

2.1 Traditional IOD Methods

Traditional angles-only methods like the Gooding [8] algorithm have been widely used for years. These methods
require a fairly accurate initial guess of the slant range, while others, such as Gauss [16] and Laplace [16] algorithms,
are often sensitive to observation errors, especially over short arcs. Figure 1 shows orbits predicted by various IOD
models with random samples of observation errors from the same observation, highlighting the challenges angles-only
IOD algorithms face in estimating orbits with short arcs.
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Fig. 1: Visualization of orbits predicted by various IOD models with random observation errors. The white orbit line
represents the true orbit, while deviations in the predicted orbits illustrate the impact of observational noise on orbit
parameters.

2.2 MACHINA IOD

In addition, we introduce a new heuristic IOD algorithm we developed for MACHINA [6]. This algorithm com-
bines traditional IOD techniques with optimization methods that are particularly effective in estimating an initial orbit
suitable for follow-up observations. Below is a description of the algorithm.

The algorithm uses sensor position vectors r⃗obs and the line-of-sight (LOS) vectors s⃗ at two times to estimate the
satellite’s position r⃗. The core idea is to determine coefficients k0 and k1 that scale the LOS vectors, such that the sum
of the scaled LOS vectors and the sensor positions constrain the satellite’s position to a circular orbit.

Given:

• r⃗obs,0 and r⃗obs,1 are the positions of the observers at times t0 and t1, respectively.

• s⃗0 and s⃗1 are the LOS vectors at times t0 and t1, respectively.

• k0 and k1 are the coefficients to be determined.

• ∆t is the time of flight between observations.

The positions r⃗0 and r⃗1 of the satellite at times t0 and t1 can be expressed as:

r⃗0 = r⃗obs,0 + k0⃗s0

r⃗1 = r⃗obs,1 + k1⃗s1

An initial guess is made for k0. Then, the value of k1 is based on the requirement that the new vector r⃗1 should have the
same magnitude as r⃗0. This can be used to derive a circular orbit, simplifying the problem and ensuring consistency
in the orbit determination process.

Given:

• r0,mag: The magnitude of the original vector r⃗0.

• r⃗obs,1: The sensor position vector at the second observation.
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• s⃗1: The LOS vector at the second observation.

The equation that needs to be satisfied is:
∥⃗robs,1 + k1⃗s1∥= r0,mag

Expanding this equation:
∥⃗robs,1 + k1⃗s1∥2 = r2

0,mag

This leads to a quadratic equation in terms of k1:

ak2
1 +bk1 + c = 0

where:
a = ∥⃗s1∥2

b = 2(⃗robs,1 · s⃗1)

c = ∥⃗robs,1∥2 − r2
0,mag

Solving this quadratic equation gives the possible values for k1:

k1 =
−b±

√
b2 −4ac

2a

To determine the transfer trajectory between r⃗0 and r⃗1, the algorithm uses the Izzo algorithm to solve the Lambert
problem, which finds the velocity vectors v⃗0 and v⃗1 given the positions and the time of flight [11].

The variables formulation of the Lambert problem provides the orbital state vector based on r⃗0, r⃗1, and ∆t:

v⃗0, v⃗1 = lambert(⃗r0 ,⃗r1,∆t)

The resulting orbital state vector r⃗0, v⃗0 is two-body propagated forward by 120 seconds to compute r⃗3. The residual
rerr is used to derive a circular orbit given by:

rerr = |∥⃗r0∥− ∥⃗r3∥|

The algorithm uses the Nelder-Mead optimization method to optimize the value of k0 with an initial guess of 100
km. This widely used numerical method finds the minimum of an objective function in a multidimensional space.
It is particularly effective for non-linear optimization problems where the gradient of the objective function may not
be available [15]. In the context of the algorithm, the objective function to be minimized is the residual rerr, which
constrains the prediction to a circular orbit.

3. METHODOLOGY

3.1 Data Generation and Simulation

For this study, we generated simulated short-arc angles-only observations of satellites from Earth observatories using
two-line element set (TLE) catalogs and the simplified perturbation model (SGP4) [10]. Angles-only measurements
or LOS vectors are generated by randomly selecting an observatory and a random satellite in its field of regard at
random times no later than seven days from the TLE epoch. Five LOS vectors in sequence are generated, separated
by a random frame rate to simulate common collection modes for the Raven-class telescopes [13]. To simplify the
evaluation of the models, we do not simulate light transit time or aberration of light.

The LOS vector s⃗ is calculated by propagating the satellite and the observatory to time t to determine their Earth
Centered Inertial (ECI) positions r⃗sat and r⃗obs respectively, then computing the vector difference:

s⃗ = r⃗sat − r⃗obs
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s⃗ =
s⃗
∥⃗s∥

To inject measurement noise into s⃗, we first construct an orthogonal basis with s⃗ by finding an orthogonal vector x⃗ and
constructing the third orthogonal vector y⃗:

y⃗ = s⃗× x⃗

y⃗ =
y⃗
∥⃗y∥

These orthogonal vectors x⃗ and y⃗ are combined with s⃗ into a rotation matrix R0:

R0 =
[⃗
x y⃗ s⃗

]
Noise is applied with random rotations around the z and x axis. First, we rotate around the z-axis by a uniform random
angle θz:

Rz(θz) =

cos(θz) −sin(θz) 0
sin(θz) cos(θz) 0

0 0 1


R1 = R0 ·Rz(θz)

Then, we rotate around the x-axis by a normally distributed random angle θx:

Rx(θx) =

1 0 0
0 cos(θx) −sin(θx)
0 sin(θx) cos(θx)


R2 = R1 ·Rx(θx)

The resulting noisy vector S⃗ is obtained by applying the final rotation to the unit vector u⃗ =
[
0 0 1

]⊤:

S⃗ = R2 · u⃗

3.2 Two-Body Propagator for Loss Function and Evaluation

The two-body problem describes the motion of a satellite under the gravitational influence of a central body (e.g.,
Earth). The state vector y⃗ includes the position vector r⃗ and the velocity vector v⃗:

y⃗ =
(⃗

r
v⃗

)
The derivative of the state vector, d⃗y

dt , is given by:

d
dt

(⃗
r
v⃗

)
=

(
v⃗

− µ

|⃗r|3 r⃗

)
where µ is the standard gravitational parameter for Earth [16].

To propagate the state vector over time, we use the differentiable Dormand-Prince solver from the TensorFlow Prob-
ability module [4], an adaptive step-size numerical integrator. It implements a 5th order Runge-Kutta method with
adaptive step size control and dense output [5].

The propagation of the state vector over time intervals ∆t can be expressed as:
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y⃗(t0 +∆t) = Dormand-Prince(⃗y0,∆t)

This describes the numerical integration of the two-body differential equation using the Dormand-Prince method to
update the position and velocity vectors over the specified time intervals. We use this method to evaluate the IOD
predictions and explore its use as a physics-based loss function for training machine learning models.

3.3 Machine Learning Framework

The proposed machine learning framework leverages a neural network to learn the representation [7, 1] of mea-
surements to orbital parameters. This section outlines the input features, model architecture, training process, loss
functions, and the exploration of different output modes.

The input features to the neural network are derived from a sequence of observational data and include:

• Time (t): The time at which the observation is made in seconds relative to the initial observation t0.

• Observer’s Position (⃗robs): The ECI position of the observer at time t.

• Line of Sight Vector (⃗s): The ECI unit vector from the observer to the satellite at time t.

The neural network model is designed to predict the satellite’s orbital elements at the initial observation time t0. The
architecture includes:

• Input Layer: Takes in the concatenated input features for each observation.

• Hidden Layers: A series of hidden layers with non-linear activation functions. We explore different architec-
tures for the hidden layers, including fully connected (dense) layers and Long Short-Term Memory (LSTM)
layers [9].

• Output Layer: Outputs the predicted orbital elements at time t0.

We explore different output modes for the neural network:

• Position and Velocity: Outputting the ECI position and ECI velocity vectors of the satellite, providing a direct
representation of its state.

• Slant Range and Velocity: Outputting the range to the satellite and its ECI velocity components, constraining
the predicted position vector to the ECI LOS vector.

• Modified Equinoctial Elements: Outputting the satellite’s predicted orbital elements in modified equinoctial
form [17].

The training process involves supervised learning, where the neural network learns to minimize the difference between
the predicted and true orbital elements. The steps include:

• Dataset Preparation: The dataset is split into training and validation sets, ensuring that the same satellite does
not appear in both sets to avoid data leakage.

• Dataset Normalization: Input features are normalized to improve training stability and performance. Specifi-
cally:

– Position Normalization: Each component of both the observer’s position vector r⃗obs and the satellite’s
position vector r⃗ is scaled by the standard deviation σpos of all position components:

r⃗obs, norm =
r⃗obs

σpos

r⃗sat, norm =
r⃗

σpos
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– Velocity Normalization: Each component of the velocity vector v⃗ is scaled by the standard deviation σvel
of all velocity components:

v⃗norm =
v⃗

σvel

– Time Normalization: The observation time t is scaled by the standard deviation σt of all time values:

tnorm =
t

σt

• Batch Training: The model is trained in mini-batches for efficiency and stability.

• Optimization: The Adam optimizer is used with scheduled learning rate decay [14].

• Early Stopping: Training is monitored to avoid overfitting, with early stopping implemented based on valida-
tion performance.

We explore Euclidean-based loss and physics-based loss. The loss functions are described below.

The Euclidean loss measures the distance between the true and predicted vectors. For position vectors r⃗ and velocity
vectors v⃗, the loss functions are defined as:

Lposition =

√
3

∑
i=1

(rtrue,i − rpred,i)2

Lvelocity =

√
3

∑
i=1

(vtrue,i − vpred,i)2

The combined loss function is the sum of the position and velocity losses:

Lcombined = Lposition +Lvelocity

The physics-based loss function incorporates the dynamics of satellite motion by evaluating the error both at the initial
time t0 and after propagating the state vectors forward to a later time t1. This approach ensures that the predicted states
adhere to physical laws of motion.

The true and predicted state vectors y⃗true,0 and y⃗pred,0 are propagated forward using the Dormand-Prince solver to
obtain y⃗true,1 and y⃗pred,1, respectively.

The combined loss at both t0 and t1 is calculated as:

L0 = Lcombined(⃗ytrue,0, y⃗pred,0)

L1 = Lcombined(⃗ytrue,1, y⃗pred,1)

The final physics-based loss is the average of these two losses:

Lpropagated =
L0 +L1

2

This loss function ensures that the predictions fit the observed data and respect the physical constraints of orbital
dynamics.
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3.4 Evaluation Metrics

The performance of IOD models is primarily evaluated using the included angle between the predicted and true orbital
elements from the observer’s initial position r⃗obs. This metric assesses the accuracy of the orbital elements from the
observer’s perspective, which is crucial for a follow-up observation. The evaluation metrics are defined as follows:

To evaluate the propagation accuracy from the perspective of the observer, we propagate the state vectors forward by
a time interval ∆t using the Dormand-Prince method:

y⃗true,∆t = Dormand-Prince(⃗ytrue,∆t)

y⃗pred,∆t = Dormand-Prince(⃗ypred,∆t)

To calculate the included angle between the true and predicted position vectors, we define the position vectors relative
to the observer’s position r⃗obs at t0:

r⃗true, rel = r⃗true − r⃗obs

r⃗pred, rel = r⃗pred − r⃗obs

The position vectors after propagation relative to the observer are:

r⃗true, rel,∆t = r⃗true,∆t − r⃗obs

r⃗pred, rel,∆t = r⃗pred,∆t − r⃗obs

The included angles between the true and predicted position vectors at the initial and propagated times are calculated
as follows. The dot product gives the cosine of the angle, and the norm of the cross product gives the sine:

cos(α) =
r⃗true · r⃗pred

|⃗rtrue||⃗rpred|

sin(α) =
|⃗rtrue × r⃗pred|
|⃗rtrue||⃗rpred|

The included angle α can be computed using the arc-tangent function:

α = arctan2(sin(α),cos(α))

To ensure a successful follow-up observation, α must be smaller than the sensor’s field of view; otherwise, a search
pattern is required, complicating operations and reducing available sensor time.

4. EXPERIMENTAL SETUP

4.1 Simulation Environment

The simulation environment for our study was implemented using the open-source SatSimJS library [3]. SatSimJS can
simulate EO observations of satellites and has a visualization component, as shown in Figure 2 based on CesiumJS
[2].
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Fig. 2: Simulation environment is based on the open-source SatSimJS library. Observation datasets are generated from
specified TLE catalog and user specified observatories.

Below is a description of the simulation setup and process:

1. Loading Observatories and Satellites:

• Load observatories from an input file with parameters: name and location (latitude, longitude, altitude).

• Load satellites from an input file containing TLE data and categorize them into orbital regimes. The criteria
for each orbital regime are as follows:

– GEO: Satellites with a mean motion close to 1 revolution per day (0.95 to 1.05) and low eccentricity
(less than 0.02).

– MEO: Satellites with orbital periods between 128 and 1000 minutes and eccentricity less than 0.25.
– LEO: Satellites with a mean motion greater than 11.25 revolutions per day and eccentricity below

0.25.
– HEO: Satellites with an eccentricity greater than 0.25.

2. Simulation Execution:

• Run the simulation in a loop from start time to end time, with each iteration representing a time step
defined by the delta step parameter.

• Update the universe to the current simulation time at each iteration.

• Select a random observatory to track a random satellite in its field of regard. The next satellite picked is
based on the orbital regime to balance the dataset between GEO, MEO, LEO, and HEO.

• For each satellite, collect five sequential observational data separated by a random frame rate. Data col-
lected includes satellite name, time, observer ECI position, ECI line-of-sight vector, satellite ECI position
and velocity, classical orbital elements [16], and modified equinoctial orbital elements [17].

4.2 Training and Testing Data Description

Table 1 summarizes the parameters for the training dataset. The TLE catalogs were sourced from CelesTrak, a web-
based service that provides orbital data and analytical tools for the space community [12].
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Source Start (Date Pulled) Sim End Time Obs Sites LOS Err Frame Time (s)
CelesTrak 2023-10-04T00:00 2023-10-10T00:00 3,000,000 3 None X ∼ U (1.0,5.0)
CelesTrak 2023-10-26T00:00 2023-11-01T00:00 3,000,000 3 None X ∼ U (1.0,5.0)
CelesTrak 2024-01-24T00:00 2024-01-30T00:00 3,000,000 3 None X ∼ U (1.0,5.0)
CelesTrak 2024-04-30T00:00 2024-05-06T00:00 3,000,000 3 None X ∼ U (1.0,5.0)
CelesTrak 2024-06-03T00:00 2024-06-09T00:00 3,000,000 3 None X ∼ U (1.0,5.0)

Table 1: Data Sources for Training and Validation Datasets. These data sources were combined to create a training
dataset of 15,000,000 observations or 5,000,000 sequential collections.

The training data is split into training and validation sets based on satellite name to ensure unique satellites in each
set. This facilitates an unbiased evaluation of the model’s performance on unseen data. This is achieved by dividing
the unique satellite names into training (95%) and validation (5%) sets.

The testing dataset is generated using the parameters outlined below in Table 2.

Source Start (Date Pulled) Sim End Time Obs Sites LOS Err Frame Time (s)
CelesTrak 2024-08-01T00:00 2024-08-08T00:00 500,000 3 5 arcsec X ∈ {1.0,1.5, . . . ,5.0}

Table 2: Data Sources for Testing Datasets. The TLE catalog used for testing is at least 60 days newer than the ones
used for the training dataset. Random normal noise with a standard deviation of 5 arc seconds is added to simulate
observational errors, providing a basis for evaluating all IOD methods. The test dataset contained a total of 100,000
sequential collections.

5. RESULTS AND DISCUSSION

5.1 Model Performance and Comparison with Traditional Methods

We experimented with multiple hidden layer configurations to explore various neural network architectures. We tested
combinations of fully connected (dense) and Long Short-Term Memory (LSTM) layers to capture temporal and spatial
dependencies in the observational data. Our trials included architectures with up to six hidden layers, varying the
number of units in each layer to find the optimal configuration. We experimented with shallow networks, using only
dense layers and deeper networks incorporating LSTM layers, to determine the best balance between model complexity
and performance.

After experimentation, we found that a network architecture comprising two LSTM layers followed by a dense layer
yielded effective performance. Specifically, the architecture was as follows:

• Input Layer: 5x7 matrix representing concatenated input features from each observation

• First Hidden Layer: LSTM layer with 320 units

• Second Hidden Layer: LSTM layer with 320 units

• Third Hidden Layer: Dense layer with 320 units

• Output Layer: Outputs 6 numbers representing the predicted position and velocity vectors

In addition to exploring various hidden layer configurations, we also investigated different output modes for the neural
network. Specifically, we tested models that output modified equinoctial orbital elements, slant range/velocity compo-
nents (SV), and position/velocity components (RV). Our findings indicated that the models could not effectively learn
modified equinoctial orbital elements. However, both SV and RV outputs showed the capacity to learn when trained
with Euclidean loss and physics-based loss functions.

We processed the test dataset with the trained neural network. For comparison, we also processed the test dataset
with the Gauss, Gooding, and Laplace methods using the first, middle, and last observations out of the five available.
The MACHINA method utilized only the first and last observations. Gooding requires an initial range guess for the
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first and last measurements, for which we used the arbitrary guess of two times the sum of the observer positions, as
suggested in the algorithm [8].

Tables 3, 4, 5, 6, and 7 summarize the performance metrics across various orbital regimes (GEO, MEO, LEO, HEO).
These tables present the included angle between the two-body propagated positions of the true and predicted orbits
from the observer after 5 minutes. The detailed description of this metric can be found in the Evaluation Metric section.
Each model’s performance is evaluated using three statistical measures: the first quartile (Q1), the median (Q2), and
the third quartile (Q3) of their error distributions. Additionally, models are ranked based on their Q3 performance.
Figures 3, 4, 5, 6, and 7 illustrate the distribution of angle errors for each model, highlighting performance differences
across all samples.

Model Q1 Median (Q2) Q3 Rank
machina 0.000799 0.004567 0.058257 1
learned (rv, physics) 0.045739 0.181420 0.547207 2
learned (rv, euclidean) 0.071523 0.325306 0.870854 3
learned (sv, euclidean) 0.016073 0.153507 0.890841 4
gooding 0.009783 0.696497 19.842115 5
gauss 0.075602 0.342840 179.351078 6
laplace 0.078146 0.342934 179.351149 7

Table 3: Overall performance metrics for different models. Included angle error in degrees after 5 minutes.

Model Q1 Median (Q2) Q3 Rank
machina 0.000385 0.000695 0.001221 1
gooding 0.001862 0.003357 0.006167 2
learned (sv, euclidean) 0.001133 0.002136 0.008994 3
learned (rv, physics) 0.012104 0.020711 0.036554 4
learned (rv, euclidean) 0.012804 0.023343 0.048938 5
gauss 0.223191 2.804440 179.568528 6
laplace 0.223192 2.804468 179.568528 7

Table 4: Performance metrics for GEO orbital regime. Included angle error in degrees after 5 minutes.

Model Q1 Median (Q2) Q3 Rank
machina 0.000496 0.000930 0.001671 1
learned (sv, euclidean) 0.034978 0.075256 0.164281 2
learned (rv, physics) 0.078219 0.141061 0.239033 3
learned (rv, euclidean) 0.151083 0.265737 0.448652 4
gooding 0.789348 1.059728 1.445280 5
gauss 0.120187 0.562585 179.315648 6
laplace 0.120188 0.562586 179.315650 7

Table 5: Performance metrics for MEO orbital regime. Included angle error in degrees after 5 minutes.
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Model Q1 Median (Q2) Q3 Rank
gauss 0.015138 0.037917 0.119823 1
machina 0.040313 0.068614 0.121968 2
laplace 0.022152 0.045638 0.122667 3
learned (rv, physics) 0.306464 0.525788 0.896561 4
learned (rv, euclidean) 0.456110 0.793672 1.372615 5
learned (sv, euclidean) 0.612527 1.193540 2.257056 6
gooding 40.507565 62.112801 91.875814 7

Table 6: Performance metrics for LEO orbital regime. Included angle error in degrees after 5 minutes.

Model Q1 Median (Q2) Q3 Rank
machina 0.021589 0.048561 0.072504 1
gooding 0.015884 0.060793 0.127504 2
learned (rv, physics) 0.144544 0.453800 1.102110 3
learned (sv, euclidean) 0.151433 0.577001 1.103708 4
learned (rv, euclidean) 0.279987 0.780580 1.542498 5
gauss 0.234966 2.515207 179.512860 6
laplace 0.234966 2.515623 179.512974 7

Table 7: Performance metrics for HEO orbital regime. Included angle error in degrees after 5 minutes.

Fig. 3: Scatter plot of angle error after 5 minutes for all observations. The plot shows the included angle error in
degrees, sorted by error for each sample index.

Fig. 4: Scatter plot of angle error after 5 minutes for GEO observations. The plot shows the included angle error in
degrees, sorted by error for each sample index.
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Fig. 5: Scatter plot of angle error after 5 minutes for MEO observations. The plot shows the included angle error in
degrees, sorted by error for each sample index.

Fig. 6: Scatter plot of angle error after 5 minutes for LEO observations. The plot shows the included angle error in
degrees, sorted by error for each sample index.

Fig. 7: Scatter plot of angle error after 5 minutes for HEO observations. The plot shows the included angle error in
degrees, sorted by error for each sample index.

5.2 Discussion

Our experiments reveal key insights into using neural networks for IOD. A major insight is the demonstrated capability
and feasibility of neural networks to learn and model this domain effectively.

When evaluated against the Gauss and Laplace methods, our neural network models showed significant improvements
for observations with the shortest angular separation. The Gooding method, while effective, requires an accurate initial
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guess of the slant range. Using an arbitrary guess of two times the sum of the observer positions [8], as suggested in
Gooding’s algorithm, performs well for GEO but poorly for LEO.

The MACHINA method, however, outperformed all models evaluated in this study. This suggests that while neural
network approaches hold promise, the MACHINA method remains the most effective solution for short-arc angles-
only IOD tasks.

6. CONCLUSION

In this study, we investigated the application of neural networks for Initial Orbit Determination (IOD) using short-arc
angles-only observational data. Through experimentation with various neural network architectures and output modes,
we identified a configuration comprising two Long Short-Term Memory (LSTM) layers followed by a dense layer. We
found that models trained to output Earth-centered inertial (ECI) orbital state vectors could learn effectively, with
better results, when using a physics-based loss function for predicting position and velocity vectors. Importantly, our
findings reveal that learned methods are not as constrained by data quality as traditional methods are. This highlights
the potential of neural network-based approaches to achieve more robust and accurate orbit determinations.
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