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ABSTRACT 

DebriSat is a collaborative effort between NASA, The Space Force Space Systems Command (SSC), the Aerospace 
Corporation, and the University of Florida aimed at updating the satellite breakup model by conducting a catastrophic 
collision using a 56 kg representative satellite constructed with modern techniques and materials. The project involves the 
collection of the resulting debris, termed fragments, and their characterization based on physical properties such as shape 
and material, and size measurements which include dimensional lengths, characteristic length, average cross-sectional area, 
volume, density, and area to mass ratio. A specialized imaging system, referred to as the 3D Imager, was developed for the 
purpose of producing these size measurements. The system produces 3D models of the fragments and has been employed to 
characterize over 3,000 debris pieces with at least one physical dimension larger than 3 mm. Previous estimations of volume 
error were obtained using a limited selection of well-defined calibration objects. Under ideal conditions, the error 
distribution would remain consistent across different fragment shapes. However, the algorithm generating the 3D geometry 
introduces a systematic bias in volume computation. Given that the calibration objects do not accurately represent the 
physical characteristics of the fragments in the dataset, it becomes necessary to accurately characterize these errors. In this 
study, we provide an overview of the identified sources of error within the system and leverage the known densities of the 
materials for aluminum and stainless-steel fragments to provide a more accurate characterization of the errors in volume and 
density measurements produced by the 3D imager system. 

1. INTRODUCTION

The DebriSat project was established to design and build a modern satellite mock-up representative of current low Earth 
orbit (LEO) satellites, and to conduct a hypervelocity impact test to simulate a catastrophic breakup event. The objective 
was to collect, measure, and characterize the resulting fragments, of size 2 mm and larger, to improve existing satellite 
breakup models used by NASA and the Department of Defense (DOD) [1-5]. Initially, it was predicted that the 
hypervelocity impact test performed on DebriSat would produce 85,000 fragments; however, as of July 2024, 294,501 
fragments have been collected and 217,648 fragments have been recorded [1-3]. This drastic underestimation further 
illustrates the importance of updating satellite breakup models representative of modern materials.  

Characterizing DebriSat fragments and recording the volume and density is crucial for the accuracy of breakup model 
simulations. Specifically, this data enables calculations such as the dynamics of debris, various aerodynamic and ballistic 
properties, and accurate area-to-mass (A/M) ratios [4]. These calculations are essential for predicting and simulating debris 
trajectories and the lifespan of fragments as they decay due to atmospheric drag. This paper’s statistical analysis can enhance 
the understanding of debris cloud distributions and their respective fragments’ volumes and densities resulting from 
catastrophic breakups in low Earth orbit. This is crucial for predicting the spatial and temporal evolution of debris fields 
following a breakup event, which directly impacts collision avoidance strategies, debris mitigation efforts, and the design of 
future satellites.  

This paper aims to analyze the errors in bulk-density measurements of metal-type fragments produced by the DebriSat 
project. It aims to identify and characterize the sources of error in the 3D imaging system used for fragment analysis, 
particularly focusing on how these errors affect volume and density calculations. The 3D imaging system is comprised of 
six cameras and a platform that rotates, capturing images of all angles of the desired fragment [1-3, 5]. The captured images 
create a 3D model through a subtractive space carving algorithm. The study provides insight, through statistical analysis, 
into the systematic biases introduced by the 3D imaging system. 

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



 

Prior work on error analysis of the 3D imaging system focused on using calibration objects with known dimensions to 
establish error bounds; however, these objects are not representative of the various geometries and surface features found in 
DebriSat fragments. For instance, calibration objects are convex and easily distinguishable from their backgrounds, 
facilitating accurate image segmentation. Real-world observations suggest that factors like surface specularity, geometry, 
cast shadows, presence of dust, and calibration inaccuracies influence the resulting 3D models of imaged fragments — 
potentially overshadowing the well-known limitations of the space-carving algorithm, which is assumed to be the dominant 
source of error. This document aims to illustrate how these sources of errors propagate through the system by characterizing 
the density bias introduced when modeling metal fragments, specifically focusing on aluminum (AL), and stainless steel 
(SS). 

Hereafter, unless otherwise specified, any references to an increase or decrease in each quantity refers to the change between 
the value computed from the 3D model and that quantity's actual value. For example, a “3% increase in volume” implies 
that the volume calculated from the 3D model is 3% greater than the true volume of the object being imaged. 

2. DEBRISAT 3D IMAGING SYSTEM 

The DebriSat 3D imaging system uses a subtractive space-carving algorithm to create 3D models of fragments (i.e., the 
object is assumed to occupy a predefined volumetric grid, then voxels are removed iteratively to achieve consistency with 
input images). The principal drawback of the algorithm is that it does not always reproduce concavities and curved surfaces 
accurately [6]. Consequently, the process incorrectly estimates the true volume of concave objects systematically. If an 
object is solid and has a homogeneous composition, its true volume can be computed using its density and mass. 
Alternatively, the density computed from the 3D model can be considered an estimate of the object's true density. By 
examining the distribution of these density estimates, we can gain insights into how this systematic bias affects the results. 
For these investigations, metal-type fragments are particularly suitable because there are sufficient samples as single-
material fragments, and their uniform composition makes their volume readily computable. 

2.1 Error sources 
 
The system follows a sequential workflow that encompasses multiple phases: camera calibration, image acquisition, image 
segmentation, space-carving, and meshing. Errors introduced in the early stages of the process compound, leading to 
inaccuracies in the final 3D model. These errors can be classified into three main types: calibration errors, segmentation 
errors, and algorithmic errors.  

2.1.1 Calibration errors 

Calibration is the determination of the spatial position, orientation, and internal camera parameters that influence how a 3D 
scene is mapped onto a 2D image. This process dictates the trajectory of the carving rays during space carving. Deviations 
in calibration alter the model's boundaries (Fig. 1) and typically decrease the volume due to the removal of occupied voxels 
(Fig. 2). 

 

 
Fig. 1: Illustration showing the effects of a hypothetical deviation in the camera pose 
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Fig. 2: Effects of different calibrations on the same fragment 

2.1.2 Segmentation errors 

Segmentation refers to the act of partitioning images into foreground and background pixels. These classifications are used 
as predicates to determine consistency between voxels and images.  

Misclassified background pixels cause the removal of genuine object volume (false-negative voxels), while misclassified 
foreground pixels (e.g.: shadows, foam) can lead to an increase in volume (false-positive voxels). Segmentation is heavily 
dependent on the surface appearance of the fragment and illumination conditions in the scene. Reflective surfaces may 
blend into the background when viewed at certain angles, causing perforations that reduce the volume. Shadows can closely 
resemble green-tinted areas on a smaller scale, causing the addition of volume that does not belong to the fragment or 
removal of true-positive voxels. Examples of both types of misclassified pixels can be seen in Fig. 3. 

 
Fig. 3: Effect of specular surfaces on segmented image (top); effect of shadows on space-carved object (bottom) 

2.1.3 Algorithmic errors 

The space-carving process reconstructs a shape, known as the visual hull, from a set of silhouettes captured at known 
locations [7]. However, this reconstruction process has several limitations. Certain concavities cannot be reproduced [6]. 
Previous studies have shown that when the object imaged is convex and non-specular, the volume error is less than 1% [8, 
9], however, most metal-type fragments exhibit concavities that are not reproducible. Additionally, the discretized selection 
of observation viewpoints impedes the ability to capture smooth, curved surfaces and flat surfaces not parallel to carving 
rays (Fig. 4). Voxels that are not carved are assumed to be occupied by the fragment and used to generate the mesh that 
becomes the 3D model. Assuming correctly segmented silhouettes and accurate camera positioning, the actual volume 
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occupied by the object is fully contained within the visual hull. Consequently, since the volume is derived from the visual 
hull, the true volume tends to be overestimated. 
 

 
Fig. 4: Illustration showing the limitation of space-carving a hexagonal screw 

3. METHODOLOGY 

DebriSat fragments imaged with the 3D imaging system were analyzed, focusing specifically on those with primary 
materials categorized as METAL, AL, or SS. Titanium (TI) data has been excluded from this study due to all TI fragments 
having been found and insufficient data to make any statistical conclusions.  Data attributes such as mass, density, and 
volume were extracted from the most recent revision for each fragment. Fragments composed of multiple materials, 
indicated by having a secondary material other than ‘NONE,’ were omitted from the study. The selected fragments were 
then grouped based on their primary material for further analysis. Outliers from each group were identified and removed by 
using the scaled median absolute deviation method implemented in MATLAB. Statistical tests for normality and graphical 
techniques were employed to assess the distribution of density values for AL and SS fragments. A subset of AL fragments, 
selected randomly (but exhibiting underestimated volumes), were manually inspected and categorized based on the most 
probable causes for the underestimation. 

To streamline the analysis, the assumption that errors in mass measurements are negligible is accepted. The relative volume 
error is computed using the following formula: 

𝑉௧௨ =  𝑉௨௧ௗ ∗
ఘೠ

ఘೝೠ
     (1) 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
ೠିೝೠ

ೝೠ
=

ೠ

ೝೠ
− 1 =

ఘೝೠ

ఘೠ
− 1   (2) 

The histograms of the relative errors are presented together with the 90% and 95% coverage intervals. The results are shown 
in Tables 1-3. 

3.1 Fragment Shape Characterization 

Through the DebriSat assessment process, fragments are characterized based on their shapes [1-5]. The process and various 
characterizations are shown in Fig. 5 and Fig. 6.  
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Fig. 5: Diagram of shape characterizations [1]. 

 

Fig. 6: Process map of characterizing fragments [1]. 

3.2 Statistical Analysis Background Research 

For this study, thorough background research in normality assessment was conducted. Outlined below is a summary of the 
information collected that guided the normality assessment procedure. 

As concluded in [10], the power rankings of statistical tests for data sets of our size are as follows: the Shapiro-Wilk test, the 
Kolmogorov-Smirnov test, the Lilliefors test, and lastly the Anderson-Darling test. The Cramer-Von Mises test was not 
discussed as more or less powerful than any given test in [10]. The Anderson-Darling and Kolmogorov-Smirnov tests differ 
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slightly from the Cramer-Von Mises test, each emphasizing distinct aspects of a distribution.  The Anderson-Darling test 
gives more weight to the tails of a distribution, while the Kolmogorov-Smirnov test gives more weight to the central part of 
the distribution, and the Cramer-Von Mises test lies in between the two [10, 11]. Finally, it is important to note that sample 
size significantly affects the accuracy of normality tests. As per [10], no normality test is reliable for sample sizes smaller 
than 30. 

When statistically analyzing a given data set for normality, normality tests are useful, but graphical analysis methods can 
further support or disprove a conclusion. Not only can Q-Q plots aid in the conclusion of a distribution, but [11] places more 
significance on Q-Q plots than classic normality tests. Q-Q plots and histograms can help visualize distributions and 
demonstrate kurtosis and skewness of data. Comparing and contrasting the results of normality tests with graphical analysis 
methods and the coefficients of kurtosis and skewness provides a solid foundation for determining a data set’s distribution 
[10, 11]. 

4. RESULTS AND DISCUSSION 

Table 1 shows the breakdown of the sample based on the fragment shape and material classification. The primary 
shape seen on the fragments corresponds to the ‘Nugget’ category, which makes up over 66% of the composition in 
all the metal categories. The “Count” column refers to the number of fragments belonging to a shape category and 
the “Percentage” column refers to the relative composition of each shape category within a fixed metal category. 
Table 2 shows the summary statistics of the density estimates, with the mean and median density of AL fragments 
being slightly under the density range of the AL alloys present in the satellite while in the case of SS, only the mean 
falls outside its corresponding range. The density ranges are based on the known densities of the different alloys 
classified under each metal category. It is worth noting that SS fragments exhibit a variation that is significantly 
higher than that of AL fragments. Finally, Table 3 shows summary statistics of the relative error in volume, with the 
median relative error of AL fragments being 7% while the median error of SS fragments is -8%. 

Table 1: Shape Composition of Metal Fragments.  

 

Table 2: Statistics of AL, SS, and TI Density Distributions.  

Primary 
Material Count 

Mean 
density 
(g/cm3) 

Median 
density 
(g/cm3) 

Min 
density 
(g/cm3) 

Max 
density 
(g/cm3) 

St Dev. 
density 
(g/cm3) 

Density 
range 

(g/cm3) 

99% CI of 
mean 

(g/cm3) 

AL 399 2.57 2.53 0.69 4.28 0.60 (2.68, 2.78) (2.49, 2.64) 
SS 338 7.77 7.97 1.08 15.10 2.52 (7.90, 8.00) — 
TI 23 4.98 4.87 4.10 6.23 0.58 (4.50, 4.50) — 
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Table 3: Statistics of Percentage Error in Volume 

Primary 
Material 

Count 

Mean 
absolute 

percentage 
error volume 

Median 
percentage 

error volume 

Median 
absolute 

percentage 
error volume 

Min 
percentage 

error volume 

Max 
percentage 

error volume 

AL 399 23% 7% 15% -37% 290% 
SS 338 36% -2% 19% -48% 624% 
TI 23 11% -8% 9% -28% 10% 

 

The unclassified metal distribution loosely mirrors the overlaid distributions for AL, SS, and TI, particularly around the 
known metal densities as shown in Fig. 7. This discussion assumes that the error in mass measurements is negligible given 
that the balances on-site are correctly calibrated and used.  

 

Fig. 7: Histograms of Metal densities 

4.1 Statistical Analysis for Concluding a Normal Distribution 

For simplification, we assume that the various density measurements follow a normal distribution. This assumption is 
validated by applying several normality tests, examining Q-Q plots, and visually inspecting histograms, apart from TI-
labelled density measurements whose small sample size is unsuitable for analysis. 

4.1.1 Assessment of Normality 

Both distributions fail the Anderson-Darling and Cramer-Von Mises tests while passing the Kolmogorov-Smirnov and 
Shapiro-Wilk tests. First and foremost, passing the Shapiro-Wilk test provides a strong basis for concluding normality, as it 
is the most powerful test available [10]. The failure of the Cramer-Von Mises test implies that the Anderson-Darling test 
would be least applicable to AL and SS distributions, as it is a modification of the Cramer-Von Mises test. Additionally, 
because the Anderson-Darling test places more weight on the tails of a distribution, its results are less significant in this 
analysis [10, 11]. Considering that the Kolmogorov-Smirnov test places the least emphasis on the tails of a distribution, its 
passing results are expected. Despite being regarded as the least powerful test, these results highlight the relationship 
between tail weight in normality assessments and reinforce the significance of graphical analysis. The normality tests 
initially indicate a normal distribution for AL and SS samples. To further confirm a normal distribution, graphical methods 
of analysis are employed. 
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Fig. 8: Plots evaluating the normality of the density distributions 

A visual inspection of the quantile-quantile (Q-Q) plot for the AL distribution in Fig. 8 suggests that the data is 
approximately normal. However, it is noteworthy that the actual count of fragments with densities near the sample mean 
significantly exceeds the expected count based on a normal distribution.  

For SS fragments, Fig. 8 shows how the Q-Q plot deviates significantly at the tail ends of the distribution. After this 
observation, it is evident why some normality tests failed. The histogram appears to show two modes but still outlines a 
normal distribution.  

4.1.2 Distribution Analysis 

The density distribution of SS fragments appears to demonstrate a bimodal pattern, with peaks observed at approximately 
5.5 g/cm3 and 8.5 g/cm3. This bimodal trend is also apparent in the density histogram for unclassified metals. The observed 
variability in density cannot be explained by the different types of SS metals (i.e., 304, 316) as they have density ranges of 
7.8 g/cm3 to 8.0 g/cm3. Instead, several SS-labeled fragments with densities between 4.9 g/cm3 and 6.1 g/cm3 are multi-
material fragments with SS as the primary material, attached to another metal. This is a consequence of the assessment 
procedure, which allows for only a single METAL label per fragment, an assumption carried forward by subsequent 
operators when adding a new revision. Additionally, some of the fragments had foam attached or they were thin, bent plates 
containing gaps which artificially increased volume. The mode at 8.5 g/cm3 is notably higher than the maximum feasible 
density of SS metals. A minor subset of SS fragments with densities exceeding 8.0 g/cm3 revealed that the underestimation 
in volume can be traced back to segmentation errors due to specularities. 

The mean and median density values for AL fragments are less than the minimum density observed across all AL alloys 
used in the composition of the satellite. This suggests a systematic overestimation of the actual volume of most AL 
fragments. Assuming a normal distribution, the real density of AL fragments falls outside the 99% confidence interval of the 
sample mean, further corroborating the bias towards overestimation of volume.  
 
Nonetheless, 38% of AL fragments showed underestimated volume (i.e., density greater than 2.7 g/cm3). Of these 
fragments, calibration errors accounted for 33.3% of the discrepancies, while segmentation issues, such as green foam 
attached or specularities, affected 21.1% of samples. Misclassifications during assessment, meaning samples composed of 
multiple materials or entirely different metals, make up 12.1% of the cases. In 9.1% of instances, the fragments seemed 
devoid of cavities, and their models closely resembled their actual shape, with the calculated density deviating by no more 
than 2% from the closest feasible density. For the remainder 24.4% of cases, the reason could not be pinpointed due to a 
lack of adequate data, including absent silhouettes, 3D models, or calibration files.  
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Fig. 9: Histogram showing the distribution of relative errors in volume 

The maximum underestimation of volume is no larger than 50%. For AL fragments, the mean absolute percentage error in 
volume stands at 23%, while it is 36% for SS fragments. The 90% coverage intervals for these volume percentage error 
distributions are (-26%, 66%) for AL and (-35%, 113%) for SS. For the 95% coverage intervals, these widen to (-29%, 
95%) for AL and (-39%, 232%) for SS. 

5. CONCLUSION 

The present investigation has detailed the various ways in which different error sources influence volume measurements, 
and consequently, bulk density estimations of actual DebriSat fragments. It has been demonstrated that the well-known 
overestimation of volume due to silhouette-based shape reconstruction from space carving - assuming accurate silhouettes 
and well-calibrated cameras - is not the overwhelmingly dominant source of error. Instead, calibration and segmentation 
errors are sufficiently significant, leading to noticeable effects on the reconstructed volume.   

The density distributions of AL and SS fragments demonstrate the tendency of volume overestimations in AL fragments and 
the apparent density discrepancies with SS densities due to multi-material compositions and fragment specularity. Although 
the density distribution of AL fragments implies normality through the passing of statistical tests and graphical analysis, the 
density distribution of SS fragments may not perfectly fit a normal distribution, as the observed data suggests a more 
complex distribution. Nonetheless, new estimates have been provided that more accurately describe errors in volume and 
density. 

The current study establishes a foundation and highlights the need for more refined error analysis of the DebriSat 3D 
imaging system. We have demonstrated that calibration errors cannot be overlooked and that significant improvements in 
overall volume accuracy could be achieved through enhancements in the calibration and segmentation processes. Although 
this preliminary analysis briefly addressed the shape of fragments, it was not included in the statistical analysis. Future 
studies could focus on error characterization that accounts for fragment shape. Additionally, further work is required to 
mitigate algorithmic errors identified in the present study. 
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