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ABSTRACT

Growing interest and activity in cislunar space have highlighted the need for enhanced space domain awareness (SDA)
and space situational awareness (SSA) capabilities. Non-cooperative space objects can execute unexpected maneuvers
or reveal concealed capabilities, making conventional tracking and sensor management strategies less effective. This
paper outlines a framework designed to provide automated sensor tasking and facilitate the maintenance of tracking
data for multiple target objects in cislunar space, using existing sensor platforms and architectures. To establish this
framework, research efforts were focused on: (1) developing locally optimal sensor tasking strategies for space-based
panchromatic (VIS) sensors, (2) developing multi-target observation association techniques to detect non-cooperative
tracking events, and (3) designing a scalable and modular software architecture with open architecture concepts to
enable flexibility, adaptability, and robustness in simulating cislunar space operations.

1. INTRODUCTION

Recent interest and activity in cislunar space have highlighted the need to extend space domain awareness (SDA)
capabilities to ensure safe operations for existing and planned missions in geostationary orbit and beyond. Effective
SDA in the cislunar regime requires the ability to search for, detect, and predict the trajectories of cislunar space
objects, including those previously unknown. This challenge is further complicated by non-cooperative space objects
that may execute unanticipated maneuvers or reveal concealed capabilities, making conventional tracking and sensor
management strategies less effective. Due to these compounding challenges and increased mission complexity in the
cislunar regime, the imperative for system architectures that support automation of tactical decision making and sensor
tasking becomes increasingly clear.

In response to these challenges, the ICON (Interoperable Cislunar Observation Network) architecture was developed to
optimize sensor usage for detecting, tracking, and tasking in cislunar space. ICON utilizes existing sensors to perform
local searches, facilitate object tracking, and generate tasking recommendations for other assets. Figure 1 illustrates a
mission concept for ICON and the key capabilities required to accomplish localized search and cooperative tracking
via decentralized tasking to accomplish strategic mission objectives in cislunar space.

This paper focuses on our approach to the object tracking and sensor tasking portions of this architecture. Techniques
for optimized decentralized search and tasking are explored, specifically for an architecture with multiple sensors
tracking a single object of interest. A scenario is created to simulate accurate cislunar dynamics, realistic sensor
capabilities, and probable trajectories for objects of interest. Simplifications and assumptions are explained throughout,
in an effort to focus the simulation on local search and tasking methods. Although there are numerous scenarios in the
cislunar regime whereby non-cooperative space objects can impede tracking efforts, this paper focuses on a reference
scenario that involves tracking a space object in transit between the Earth and Moon with the capability to execute
impulsive maneuvers and deploy unknown objects.

The approach used to construct sensor tasking schedules leverages a semi-Markov Decision Process (SMDP) as the
fundamental mathematical framework. Situations are considered where target states are well-known, direct observations
are feasible, and localized searches of targets when covariance growth exceeds manageable thresholds. Over a finite
planning horizon, we are able to generate locally optimal sensor tasking strategies that aim to minimize tracking
uncertainty and improve the quality of state estimates of non-cooperative space objects. The approach enables
cooperative tracking of multiple target objects through selective information sharing and aggregation of track data
across multiple sensing platforms.
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Fig. 1: Distributed, Interoperable Cislunar Observation Network

This paper first provides a background on the problem of maintaining custody of non-cooperative objects in cislunar
space and introduces the associated challenges in Section 2. Section 3 focuses on the localized search and tracking
framework, detailing how search regions are transformed into sensor measurement space. In Section 4, we introduce
the adaptive sensor tasking approach, designed to optimize multi-sensor scheduling in dynamic tracking environments.
Section 5 presents the results of the simulation, demonstrating the framework’s effectiveness in tracking a maneuvering
target in the Earth-Moon system. Finally, Section 6 summarizes the findings and explores potential directions for future
work.

2. PROBLEM FORMULATION

Chaotic dynamics in cislunar space and the large volume of XGEO space create significant challenges for maintaining
custody of space objects. Small maneuvers can result in large trajectory changes, and present opportunities for objects
of interest to affect the near-Earth regime. Here we consider the problem of constructing tasking schedules across
multiple space-based sensing platforms to observe and estimate the state of a non-cooperative resident space object
(RSO) in cislunar space. Several simplifications and assumptions are made to enable an initial simulation.

The motion of both the target and the observer (sensor) is modeled using the circular restricted three-body problem
(CRTBP). The state of the system, consisting of position r and velocity v, evolves according to the following dynamics:

ṙ = v, v̇ = g+ηg (1)

where g is the gravitational acceleration based on the CRTBP model, and ηg represents noise or perturbations affecting
the system. Gravitational acceleration g is expressed as:

g =−2n× r−n× (n× r)− 1−µ

|r1|3
r1 −

µ

|r2|3
r2 (2)

Here, r1 and r2 represent the position vectors of the spacecraft relative to the Earth and Moon, respectively, and
µ = mMoon

mEarth+mMoon
is the mass ratio between the Earth and Moon. The term n =

[
0 0 1

]T accounts for the rotational
frame of reference. To model impulsive maneuvers of the target, we include an additional control input u∆v that
updates the velocity at discrete times. The velocity immediately after an impulsive maneuver is updated as:

v+ = v−+u∆v (3)

where v− and v+ represent the velocity before and after the maneuver, respectively, and u∆v represents the impulsive
change in velocity due to the maneuver.

This paper assumes each of the participating sensors are passive optical sensors. We assume an angles-only (az, el)
measurement model, where the azimuth, elevation, and apparent range to the target are given by [2],

ẑ0 = ĥ0(m̂) =

ĥα(m̂)

ĥε(m̂)

ĥρ(m̂)

=

α̂

ê
ρ̂

=

 tan−1
(

iy
ix

)
+ηα

sin−1(iz)+ηe∣∣r̂target − r̂obs
∣∣+ηρ

 (4)
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The vector r̂obs represents the position of the observer, and r̂target represents the position of the target in the Earth-Moon
synodic reference frame. Noise is added to each measurement (ηα , ηe, and ηρ ). The estimated relative line-of-sight
between the observer and target is defined by îρ =

[
ix iy iz

]T .

The photometric signatures of target objects are simplified by approximating that they are diffuse Lambertian spheres
reflecting light in the visible spectrum. The apparent visual magnitude is given by,

mv,app(αg,Ω,ϕ) = mv,sun −2.5log10

(
αg ·

A
r2 · f (ϕ)

)
(5)

where mv,sun = −26.74 is the apparent visual magnitude of the sun, αg is the approximate spectrally-independent
geometric albedo, Ω = A

r2 is the solid angle subtended by the cross-section of the target at the sensor, and f (ϕ) is
the phase angle dependent scattering function. For the scattering function, this analysis will utilize the function for a
diffuse reflecting sphere, derived by Vallerie [3],

f (ϕ) =
2

3π
[sin(ϕ)+(π −φ)cos(ϕ)] (6)

In the proposed scenario, a heterogenous sensing architecture has the strategic goal of tracking an unknown space
object transiting the Earth-Moon system. Each sensor is assumed to be able to contribute to the collective strategic
goal in a limited capacity due to resource allocation constraints and tasking priority. Because of this, we will be
exploring the viability of generating automated sensor tasking across the sensor architecture to optimally search for
and track the unknown space object.

The exemplar target trajectory was computed via conjugated gradient descent. The trajectory is composed of 3
maneuvers to transit from LEO to 10km perilune, from 10km perilune to the GEO belt, and a final maneuver to
enter retro-GEO. The exemplar target trajectory, shown in Figure 2, was computed via conjugated gradient descent,
consisting of three maneuvers from low Earth orbit (LEO) to retro-GEO, with a lunar assist.

Fig. 2: Visualization of LEO to retro-GEO trajectory with a lunar assist
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3. LOCALIZED SEARCH AND TRACKING

3.1 Localized Search Strategies and Sensor Pointing Schema

Missions with space situational awareness (SSA) objectives will require the ability to detect and track objects within
their operational domain. Within the context of the cislunar domain, efficient sensor resource allocation can quickly
become a complex challenge when operations teams are required to balance strategic mission objects and their
tactical execution in an uncertain environment. Some primary reasons for these challenges include imperfect sensing
conditions, limited sensor resources, and operational demands that may temporarily divert sensors away from tracking
tasks. During periods of limited availability, state uncertainty and error can grow significantly, especially when
compounded by imperfect sensing conditions or sensors being tasked with other activities. Additionally, the presence
of non-cooperative behaviors, such as unexpected maneuvers by space objects, can further contribute to growing state
uncertainty, making it more difficult to maintain an accurate estimate of the target’s position.

This paper proposes an interoperable search strategy designed to efficiently reduce uncertainty in dynamic operational
environments. Once an object is detected, a tracklet is created from a series of observations. Propagating this tracklet
enables the creation of a localized search area based on a subset of potential and likely trajectories. This search area
is broken into a grid, and the primary sensor is tasked to perform a raster scan of the area based on sensor parameters
such as field of view, availability, and occlusions. Figure 3 shows a depiction of this concept. For the purposes of this
effort, the scan pattern does not take into account probability distributions for search regions, though this is an area for
future work towards operational systems.

Construction of Search Volumes A sensor is prompted to execute a localized search by receiving a tracking tip
message from an external source. In operations, this would be a message from another satellite or ground station, but
in an effort to limit complexity, we assume that this information is transmitted on a limited basis and do not model
constraints associated with establishing inter-satellite or ground links. The tracking tip message is mathematically
defined as:

Mtrack = (tk,xk,Pk) (7)

where tk is the time of the last track update, xk is the estimated state vector of the target, and Pk is the estimated target
covariance at the specified time.

Candidate search tasks are constructed by first propagating the estimated target state and uncertainty to the expected
search window. The transformed state is then projected into the sensor’s reference frame. Next, the projected region is
mapped directly into the sensor’s measurement space (azimuth-elevation angles). The search volume is discretized into
a grid of azimuth-elevation cells, with spacing determined by the sensor’s angular resolution. The region is constrained
within the covariance ellipse and the sensor’s field-of-view (FOV) half-angle, represented by:

(ω −xo
k)

⊺P−1
k (ω −xo

k)≤ 3σ
2 and |ω −xo

k | ≤
θFOV

2
(8)

where ω is a candidate grid point in the azimuth-elevation space, xo
k is the estimated target state, and Pk is the estimated

target covariance, both expressed in azimuth-elevation coordinates. The covariance ellipse is defined such that it
encompasses points within a 3-sigma confidence interval, which represents the region where the target is most likely
to be found, based on the estimated state and uncertainty. Figure 3 shows an idealized visual depiction of a target
uncertainty volume discretized into collection opportunities.

Search Region Transformation The sensor is modeled at the center of gravity (CG) of its host spacecraft and is
assumed to be able to steer in both pitch and yaw. The transformation from the Earth-Moon synodic reference frame to
the sensor’s local frame involves translating all objects in the environment (including uncertainty volumes) inversely
from the sensor’s position to the origin and rotating the frame such that the sensor is positioned at the origin and facing
the -z axis (denoted as the w-axis here).

The position transformation is given by Ruvw
EM =

[
û v̂ ŵ

]⊺ where ŵ = ro−rt
∥ro−rt∥ , û = ŵ×n is the cross product of the

normal vector n and ŵ, and v̂ = ŵ×u.
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Fig. 3: Visualization of Localized Search

The transformation into azimuth-elevation coordinates (Line-of-Sight, LOS) for measurements is given by:

los =

θ

φ

ρ

=

 tan−1 (u/−w)

tan−1
(

v/
√

u2 +w2
)

√
u2 + v2 +w2

 (9)

where u, v, and w are the coordinates in the sensor’s local frame.

The corresponding measurement covariance transformation is given by:

Pazel = JPuvwJ⊺, (10)

where J is the Jacobian of the azimuth-elevation transformation with respect to the sensor’s local coordinates (u,v,w).

Search Task Generation The process of converting an uncertainty search region into sensor tasks involves generating
a sequence of pointing configurations and collection times based on the sensor’s capabilities. These tasks are designed
to provide a leak-proof way to search an uncertainty region and find a target. These cells are then sequenced using
a raster scan pattern. Although raster scans provide a straightforward means to structure the search, more efficient
strategies, such as prioritizing the center of the uncertainty region where the target is more likely to be, could improve
detection. For now, raster scans are employed as a simplification.

To represent a search task, we define a tuple:

Ti,search = (tstart, tend,Tc,Pc)

where tstart and tend define the time window for the search task, Tc is the set of collection times, and Pc is the set of
pointing configurations.
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4. MULTI-SENSOR ADAPTIVE TASKING FOR TRACKING NON-COOPERATIVE RSOS

As an object of interest transits the Earth-Moon corridor, it can quickly exit the area of custody generated by a
primary sensor. Once an object is identified by a primary sensor and a tracklet is created, we calculate availability
and applicability of other sensors in the region to determine which sensors could potentially gain or maintain custody
of the object. These additional sensors are autonomously tasked to point in a given direction and/or perform a local
search. Availability and applicability of additional sensors is determined by a custom reward function. Inputs to the
function include sensor position, imaging capabilities, physical occlusions, and tasking freedom.

Transferring and maintaining custody across multiple sensors further reduces position and velocity uncertainty of an
object over time. It is assumed that tasking recommendations can be shared across platforms via mission operations
connections on the ground, though it is not assumed these sensors must be identical or operated by the same organization.
This scenario enables new sensor configurations and capabilities to be imported and tasked appropriately for these
search objectives. For the purposes of this experiment, it is assumed each sensor has limited availability for search
tasks, with individual observations spaced out in time by several hours. This value is configurable to accommodate
partial tasking for multipurpose missions, and in future work this will be dependent on individual sensor capabilities,
availability, and occlusions.

4.1 MDP Formulation

In this paper, the multi-sensor scheduling problem is posed as a semi-Markov Decision Process (sMDP). Formulating
the sensor scheduling problem as an MDP has been done for a variety of mission domains and applications, [1]. With
respect to this proposed implementation, we consider a system consisting of N agents, where the i-th agent can perform
a set of feasible actions that could have a positive, negative, or neutral affect on the system’s state. Actions are chosen
based on their predicted consequences and are ultimately promoted for scheduling and converted to sensor tasking.
We define the MDP as

M= (A,S,T ,R) (11)

where A = {a0,a1, . . . ,aM} is the action space and a j is a candidate action; S = {s0,s1, . . . ,sN} is the state space;
T (si,k+1 | si,k,ai) is the state transition function; and R(si,k,a j) is the reward function, which evaluates the effectiveness
of taking action a j in state si,k for the i-th agent.

Action Space The action space A represents all feasible actions that can be performed by participating agents given
their current state. The primary actions considered are:

• Localized Search: An agent performs a search within a specified uncertainty volume by slewing between line-
of-sight (LOS) vectors, settling, and performing collections. This action is feasible when the agent is not actively
tracking a target, and when the estimated target uncertainty projected into the sensor reference frame exceeds
the size of the sensor’s field of view. Given the target’s estimated state xk and associated covariance matrix
Pk at time tk, the search area is constrained to points within the covariance region. Candidate search tasks are
enumerated for all agents and are defined mathematically as a tuple:

Ti,search = (tstart, tend,Tc,Pc) (12)

where tstart and tend define the time window for the search task, Tc is the set of collection times, and Pc is the set
of pointing configurations.

• Tracking: Once a target is detected, the agent transitions to a state where tracking tasks become feasible. In this
state, the agent can be scheduled to execute recurring observations over a specified window of opportunity. The
set of observation windows is denoted by W , where each window is associated with a set of specific observation
times defined by:

tmeas(i, j) = t0 + i ·∆twindow + j · tintegration, (13)

where ∆twindow = nconsecutive obs · tintegration + tgap represents the total duration of an observation window, i ∈
{0,1, . . . ,nwindows−1} indexes the observation windows, and j ∈{0,1, . . . ,nconsecutive obs−1} indexes the observations
within each window. The complete observation schedule is given by the set of times: {tmeas(i, j) | tmeas(i, j)≤ t f }
within each window in W . The tracking tasks are defined mathematically as a tuple:

Ti,track = (tstart, tend,W,Pc) (14)
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where tstart and tend define the time window for the tracking task, W is the set of observation windows, and Pc is
the set of pointing configurations.

State Space The state space S encompasses all possible satellite states at a given time. Each satellite state si ∈ S
includes the satellite’s current position, velocity, and attitude, tasking availability, and a track catalog that contains the
latest estimated state and covariance of targets.

Reward Function The reward function R(s,a) for a given state s and action a assigns a value to each state transition
based on its effectiveness in achieving a mission objective. This is currently defined as a weighted summation of select
performance metrics.

R(s,a) =
n

∑
i=1

wi ·mi(s,a), (15)

where wi are the weights assigned to each metric mi(s,a), and n is the total number of metrics considered.

Action Termination Search actions terminate update target detection or after searching the uncertainty volume is
finished. Tracking actions terminates when the observation window [t0, t f ] concludes or when external data necessitates
a policy change. For instance, if the target maneuvers unexpectedly or a higher-priority task arises, the tracking action
may be paused or adjusted.

4.2 Event-Driven Policy Adjustment

In the event of a significant state change, satellite behavioral policies are automatically adjusted in an effort to promote
high-quality decision making. In the context of the localized search problem, a satellite policy π is a mapping from
the state space S to the action space A, defining the behavior or decision making tendencies under different state
conditions. Given a current satellite state sk ∈ S, the policy π(sk) specified the subset of actions ak ∈ A that the
satellite should consider scheduling.

Maximum Search Time Threshold This is a event-driven mechanism designed to limit the time a satellite spends
on a localized search operation when attempting to reacquire a target within a predefined uncertainty region. Formally,
let tsearch denote the cumulative search time for a given target, and Tmax represent the maximum allowable search time
threshold. The policy adjustment is triggered when tsearch ≥ Tmax. If this condition is met, the satellite will transition
from a search state to a reallocation state where it either (1) switches to a different target or (2) requests external
assistance, such as a new tracking tip from another sensor or ground station.

Incoming State Updates via Information Sharing This process facilitates real-time adjustments to a satellite’s
tasking priorities based on state updates received from other satellites or ground stations. When a satellite receives
a tracking tip message, Mtrack = (tk,xk,Pk), the satellite must update its internal state and tasking. This event is
interpreted as an unprompted observation of the environment and the following process occurs

• State and Covariance Update: The satellite updates its own track catalog state estimate xk and covariance Pk
using the received tracking tip Mtrack.

• Recomputing the Uncertainty Search Volume: After updating the state and covariance, the satellite recalculates
the uncertainty search volume.

• Regenerating Search Tasks: With the updated search volume, the satellite regenerates its’ candidate search tasks
and scheduling promotion is reconsidered along side other satellite tasking.

Observation Association Confusion Addresses scenarios where multiple potential targets or clutter lead to ambiguous
observations. When an observation zk has a similar Mahalanobis distance to multiple tracks {zk1 ,zk2 , . . .} (e.g.
D(zk, ẑk1) ≈ D(zk, ẑk2) ≈ . . . ), it becomes challenging to associate the observation with a specific target. In such
cases, the satellite’s policy will trigger a disambiguation routine that involves increasing maximum track hypothesis
threshold, and increasing the observation cadence to gather more data points rapidly.
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Task Priority Adjustment for Sub-Optimal Uncertainty Convergence Handles situations where the uncertainty
in the estimated state of a target does not decrease as expected, despite continuous observations. Let σ2

k denote the
total state uncertainty at time tk, and assume the desired uncertainty at the end of a planning horizon is σ2

f → c
as k increases, where c is the desired maximum uncertainty. If the observed convergence rate d∆σ2

k /dt is above a
predefined threshold after the planning horizon, the satellite will:

If ∆σ
2
k ≥ εthreshold , increase priority of alternative tasking actions (16)

Actions may include altering the observation strategy (e.g., changing the sensor’s pointing direction or integration
time), initiating cooperative observations with other satellites, or adjusting the processing parameters in the state
estimation algorithm.

4.3 Performance Metrics

Time to Search Uncertainty Region The time required to complete the search region is an important metric for
evaluating the efficiency of localized search actions. This metric is defined as the cumulative time required for a sensor
to perform all scheduled search tasks until the target is detected within the sensor’s field of view. Mathematically, this
can be expressed as:

tsearch =
ntasks

∑
k=1

ttask,k subject to pc,k · rt ≤
θFOV

2
,

where ttask,k represents the time needed to execute each search task k, and the constraint ensures that the target is
detected within the field of view (FOV) of the sensor, defined by the pointing configuration pc,k and the FOV half-
angle θFOV

2 .

Expected Track Accuracy The expected track accuracy is evaluated based on the total variance σ2 of the estimated
state over time. For a given target state xk with associated covariance matrix Pk, the total variance can be quantified as:

σ
2(t) = Tr(Pk),

where Tr(Pk) is the sum of the diagonal elements of Pk, representing the uncertainty in all state components. Lower
values of σ2(t) indicate higher accuracy in tracking the target’s position and velocity. This metric is particularly
relevant when evaluating the effectiveness of the observation schedule, as the goal is to minimize σ2(t) and maintain
an accurate track of the target.
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5. RESULTS

The tools developed were used to simulate a localized target search mission in an edge case where a non-cooperative
target is detected executing a maneuver from LEO into a earth-moon transit. We’ve assumed a worst-case scenario
in which an external sensor was able to collect minimal observations of the target and reconstruct state vectors with
relatively large uncertainty. This target state and uncertainty is used as the initial tipping message to generate localized
search tasking or tracking tasking on a sensor-by-sensor basis. The scope of this work did not include the development
or implementation of cislunar IOD aglorithms; thus, the additional assumption was made that the target’s track was
initialized with a 100 km position error sigma and 0.1m/s velocity error sigma.

The simulation included six space-based sensors with distinct orbits and measurement capabilities. Table 1 provides
an overview of the sensor characteristics, including their FOV, measurement models, and the number of scheduled
observations for each sensor.

Table 1: Summary of sensor configurations used in the simulation, including their orbital
parameters, field-of-view (FOV) dimensions, measurement models, and the number of
scheduled observations during the target’s Earth-Moon transit.

Sensor Orbit Field of View Measurement Model # of Scheduled Observations

L2 Halo 1.25×1.25 (α,ε, α̇, ε̇) 0
L1 Halo 0.25×0.25 (α,ε, α̇, ε̇) 10
Butterfly 3×3 (α,ε) 0
Distant Retrograde 1×1 (α,ε) 115
3:1 RPO 4×4 (α,ε, α̇, ε̇) 20
4:1 RPO 1×1 (α,ε, α̇, ε̇) 0

Figure 4 shows the generation of uncertainty-based search regions projected onto the sensor’s reference frame. Sensors
were tasked to perform raster scans over these regions, effectively reducing the uncertainty in the target’s position and
improving the likelihood of reacquisition after periods of limited sensor availability. At each critical decision points, a
search task was selected, and scheduled. Upon target detection, the target was tracked with limited observations.

Fig. 4: Each decision point represents the selected time and search task that was chosen to be scheduled. Search regions
with the green outline indicate the selected search task and the remaining candidate search are shown to contrast the
selected tasks against the rejected tasks.
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An Extended Kalman Filter (EKF) was used for dynamic state estimation, processing the generated observations to
continuously update the target’s estimated state and manage uncertainty.

Synthetic observations were generated by each sensor at specific time windows during the target’s Earth-Moon transit.
These observations were spaced to reflect availability and operational constraints of space-based sensors in cislunar
space. Throughout the transit, the target spacecraft’s state was successfully estimated and updated, with the EKF
managing the uncertainty effectively. The use of collaborative tracking and information sharing between sensors
significantly enhanced overall tracking accuracy. Figure 5 shows the estimated track accuracy throughout the planning
horizon.

Fig. 5: Shows the state estimation performance for the various sensors tasked to search for and track the object in
transit between the Earth and Moon. For the selected scenario, the sensor in a 3:1 resonant planar orbit observed the
target object 20 times after the first decision point, the sensor in a L1 Halo orbit observed the target object 10 times
after the second decision point, and the sensor in a distant retrograde orbit observed the target object 115 times after
the third decision point. A total of 145 observations were scheduled throughout the 48 hour planning horizon.
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6. CONCLUSION

The proposed tracking and sensor scheduling framework for cislunar space demonstrated robust performance in
managing uncertainty, optimizing sensor resources, and maintaining accurate tracking of non-cooperative targets.
By leveraging localized search regions, collaborative tracking, and a semi-Markov Decision Process (sMDP) for
sensor scheduling, the framework effectively addressed the challenges inherent in tracking objects in the Earth-Moon
system. The results indicate that this approach can be a valuable tool for space situational awareness in the increasingly
complex cislunar environment.

Future work could explore the integration of more sophisticated search strategies that account for probabilistic distributions
within the uncertainty region, potentially improving search efficiency and reducing the time to reacquire targets.
Additionally, a more comprehensive analysis can be performed by incorporating an IOD solution for cislunar objects
[4]. These enhancements would further strengthen the ability of space-based systems to maintain comprehensive
situational awareness in cislunar space.
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