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ABSTRACT 

The goal of this research was to demonstrate a novel approach that uses a neural network, trained on recent history, 

to substantially improve the performance of the base propagator (either numerical or semi-analytical).  The neural 

enhanced propagation (NEP) described in this paper can be run on a fast platform and used by customers such as US 

Space Force’s Joint Commercial Operations (JCO) cell.  Automated neural network training and retraining can take 

place as often as necessary to ensure the neural network enhanced propagation is as accurate as possible.  This 

capability should contribute to more accurate detection of maneuvers, proximity analyses, and computation of 

collision probabilities. 

In astrodynamics, propagation refers to the process of predicting the future position and velocity (state) of an object 

in space, such as a satellite, spacecraft, or celestial body, based on its current state and the physical forces acting 

upon it.  The future state can be estimated using two basic methodologies, numerical propagation and semi-

analytical propagation. 

A numerical propagator integrates the forces acting on the spacecraft over time. The accuracy of such a propagator 

depends heavily on the modeled physical forces it considers. The primary forces modeled in a numerical propagator 

are gravitational forces. The primary force model is the central body gravity of the Earth. This force is modeled 

using spherical harmonics including high order terms to account for irregularities in earth gravitational field. Third 

body gravity force models have also been produced for the influences of other celestial bodies, such as the Moon, 

the Sun, and planets, which perturb the satellite's orbit.  

There are other factors that influence the motion of the spacecraft, including the atmospheric drag, solar radiation 

pressure (space weather), Earth's albedo and Earth’s infrared radiation, the Earth's magnetic field, tidal forces and 

relativistic corrections. There may be additional factors not covered in this list. While estimates can be made for 

some of these factors, many change with time. Modeling these forces for a numerical propagator would require a 

model for all points in space which can be extremely difficult to produce. Also, modeling these forces can be 

dependent on the characteristics of the spacecraft that may not be known such as its shape, orientation, mass, and 

magnetic properties.  As one attempts to improve the performance of numerical propagation, the computational load 

continues to increase. 

The second methodology is semi-analytical propagation.  These use a combination of analytical techniques and 

some numerical methods to provide a balance between accuracy and computational efficiency. Simplified General 

Perturbations 4 (SGP4) falls into this category because it uses analytical expressions derived from perturbation 

theory, with simplifications that make it computationally efficient. SGP4 is widely used for orbit determination of 

Earth-orbiting objects, particularly with Two-Line Element sets (TLEs). It provides a practical and computationally 

efficient way to predict satellite positions with reasonable accuracy.   

The goal of this research was to demonstrate a novel approach that uses a neural network, trained on recent history, 

to substantially improve the performance of the base propagator (either numerical or semi-analytical). Regardless of 

the force models used in the base propagator, recent history for a specific satellite can be used to produce a “local” 

model of the forces on that specific satellite that were not available to the base propagator. Since the recent history 

of observations available for a specific satellite is limited, the machine learning methodology applied requires 

making the neural network as small as possible to achieve the desired result. This learning is specific to the object 

from which the observations are being made. The goal of the learning is to correct the output of the base propagator 

in order to improve the accuracy of the propagated position and velocity.  
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The Neural Enhanced Propagation (NEP) described in this paper can be run on a fast platform, such as DF&NN’s 

Alert Management System (AMS), used by customers such as the Air Force Research Laboratory’s DRAGON 

Army, automated neural network training and retraining can take place as often as necessary to ensure the neural 

network enhanced propagation is as accurate as possible. A custom spacecraft-specific propagator approach 

simplifies what the neural network must learn. DF&NN has implemented this approach on the whole catalog of 

satellites it monitors in AMS.  

The outcome expected from using the neural enhanced propagation is to lower the uncertainty of where the 

spacecraft is at a future point in time. Because the neural enhanced propagation is applied as a learned correction to 

the base propagator, its performance should always be better than the base propagator it is correcting. The 

importance of this capability for the SSA and SDA communities should be more accurate detection of maneuvers, 

proximity analyses, and computation of collision probabilities. 

1. Background

Many papers have been written about using neural networks / machine learning for orbital prediction. The goals of 

various papers vary from learning a constellation of satellites using differentiable programming [1] to using LSTM 

and Deep Learning for long term prediction [2].  For the most part, papers are discussing large nets that require 

substantial numbers of training examples to achieve the targeted performance.  In the differentiable dSGP4 paper, 

the net had 3,454 learnable parameters and the training set contained 6,563,599 examples from 1,519 Starlink 

satellites.  For the number of learnable parameters, using a constellation gives a high quantity of real observations to 

support the training.   

The deep learning paper used 100 days of data from a single satellite sampled at a 1-minute interval.  This suggests 

that the data may have been generated using a propagator and not from real observations.   

A great deal of experience has been gained from the development of the currently used autoencoder neural networks 

in DF&NN’s AMS system. This experience shows that using a trained neural network specific to a single space 

object is a viable approach that can be run for a large number of space objects and a variety of data sources on a 

single server. 

The goal of this paper is to suggest a methodology that can be implemented on a large catalog of real observations. 

It assumes that each object will be trained independently from available real observations.  Since this limits the 

amount of data available for training, the net used must contain a small number of learnable parameters.    

2. Methodology

There are several key points to neural enhanced propagation.  The design and training are tailored to the way the 

trained nets will be used in a real-world system. In the case considered for this paper, the goal is to improve the 

accuracy of the predicted parameters at the time of the next TLE.  This is typically how these nets would be used for 

a maneuver detection use case.  For the purposes of this paper the term “residual” refers to the difference between 

either the NEP output or the SGP4 Propagated output, and the value based of the current observation.  In neural 

network terms, this is the difference between the net output and the desired output, often called error or loss. Here, 

residual will be plotted in the CDF plots as an absolute value and in other plots as a signed value. Distance residuals 

are always absolute value. A large residual between the target parameter and the propagated parameter would be the 

indicator of a maneuver.  Improving the prediction at the next TLE makes the residuals lower for non-maneuvers 

and therefore improves the performance of the maneuver detector.   

Below are the top-level steps in the training and use of the NEP nets. Remember that a separate neural network is 

created for each space object and target output.  Fig. 1 below shows the flow of information from a prior and current 

TLE to a training/test propagated record.  A key point is that the NEP is not trying to learn the complex orbital 

mechanics of each space object.  In this case the SGP4 propagator provides the initial estimate of the orbital 

parameters at the current observation based on the prior observation.  With that information available, the NEP uses 

the information from the propagator and additional derived variables to improve the estimate from the propagator.  If 
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derived variables are found that correlate with the residuals from the SGP4 then NEP will be able to reduce the 

magnitude of the residuals.   

1. Collect TLE data for the Variable Selection process.  This can be up to a year of data.  Build the training set 

using the SGP4 propagator to produce the derived variables to be used (sections 2.3-2.5) 

2. Ignore training points that are likely maneuvers or data errors (high SGP4 residual values). 

3. Perform variable selection to find the best combination of derived variables to use in the training on a 

reasonable size set of data (section 2.6). 

4. Using the selected variables from step 3, run the NEP processing on a small recent sample for the current 

estimate (section 2.7). 

5. Monitor the performance of each object’s neural network and retrain when needed.    

A key point is a change of mindset from traditional orbit propagation.  Think from the perspective of a neural 

network, how it works, and what it is good at.  In the end, it is the inputs to training a network that determine its 

performance.  The rest of this section will focus on why a small number of inputs used for training that have been 

derived from the available variables is the optimum choice.  Note that the derived variables may vary for different 

space objects.  Finally, for production, the process of variable selection must be automated. 

 

Fig. 1. Block diagram of information flow for propagated training or testing records. 

2.1 Training Size Required for Generalization 

In the neural network world, the basis for a processing element is a weighted sum of the inputs plus a bias factor.  

The output of a processing element is some function of the weighted sum.  Neural networks typically have multiple 

layers of processing elements.  Their claim to fame is that they represent a universal approximator of any mapping 

from inputs to desired outputs.   

In this discussion we will start by looking at the Taylor series and the Fourier series in terms of their ability to 

approximate a function of a single variable.  A cubic equation is an example of a simple Taylor series represented by 

equation 1: 

Y = a + b·X + c·X2 + d·X3                                                                           (1). 

This equation could be rewritten as the equation of a single processing element in a neural network with three 

inputs.  Those inputs would be X, the original variable, and two additional (derived inputs) X2 and X3.   The 

parameters a, b, c, and d are the weights of that processing element that are learnable from the data.    

The Taylor series is a good example for illustrating overfitting.  There is an exact solution to the parameters for our 

cubic equation if we have 4 data samples (X, Y pairs).  As the order n of the Taylor series increases, it takes (n + 1) 

examples to get an exact (0.0 residual) fit.  If the data had no noise, this exact fit would be the perfect solution.  

However, with any noise, this becomes an easily understood example of overfitting.  The more noise that is present, 

the more examples are needed to produce accurate values for the fit parameters.  This is as true for neural networks 

as it is for the Taylor series expansion of a function.   

The better series to consider, since we are looking at orbital mechanics, is the Fourier series.  The sin and cos 

function can be used as a perfect fit for the X and Y position of an object in a perfect circular orbit around a planet.  

Assumptions include no drag, even gravity, no other accelerations from other sources.  The equation for the Fourier 

series in one variable (t) is represented by equation 2: 
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Y = a + b·sin(t) + c·cos(t) + d·sin(2·t) + e·cos(2·t) + …  (2). 

This equation can be implemented as a neural network provided that the inputs to the net become the derived 

functions sin(n·t) and cos(n·t) [3].  Again, a perfect fit can be achieved if the number of examples in the data set 

equal the number of free parameters in the function.  For the neural network representation, that is the number of 

weights in the network.  Noise, as seen in the Taylor series example, has the same effect on the number of examples 

to achieve a good fit.   

Tests on real data for space objects in GEO orbits (low eccentricity) show very good fits for a Fourier estimation of 

X and Y position data using just the first and second harmonics of the orbital period.  This sounds like it has promise 

to represent the orbit of a satellite to a high degree of accuracy.  However, the number of terms needed depends on 

the cycles of the forces acting on the satellite.  There are different periods for the effects of the Sun, Moon, tidal 

effects, and nonuniform gravity.  The number of samples needed to get good generalization exceeds the number of 

available observations.   

For either of the above examples, it is the number of weights (learnable parameters) in the neural network that 

determine the lower limit on the number of examples needed to train a network that generalizes well.  Added noise 

in the observations increases the number of samples needed.  

An important aspect of the Taylor series and the Fourier series above is that the output “Y” in both cases did not use 

a transfer function that is normally seen in a neural network. Transfer functions that are often used are Sigmoid, 

RELU, Tanh, Gaussian, etc.  Because the derived inputs, Xi for the Taylor series and sin(i·t) cos(i·t) for the Fourier 

series are already non-linear in nature, a linear combination of these terms can approximate any function Y=f(x).  

This leads to the question of what a transfer function really does in a neural network?  The answer is that transfer 

functions provide the means to smoothly transition between the features in a layer of processing elements.  Take the 

example of the Sigmoid function.  It has a clear “active” region near 0.0 and asymptotically goes to 0.0 or 1.0 as the 

input to the Sigmoid moves away from 0.0.  In the active region the magnitude of the derivative of the Sigmoid is 

significant but quickly goes to 0.0 as you move away from 0.0 input. The KAN net [4] actually trains a custom 

spline transfer function for each processing element in the net.  The KAN net significantly reduces the number of 

processing elements needed to learn a mapping but does so at the expense of many free parameters (weights) needed 

to define the learned transfer function.   

When we look at the derived variables, we are using for the NEP net (2.3 below), they are all already cyclic in 

nature.  Thus, these derived variables act in the net as predefined features that do not contain learnable parameters.  

Yet many derived variables still lead to a large number of learnable parameters for the trained net.  To reduce the 

size of the net, variable selection (2.6 below) is used to minimize the number of derived features used in the trained 

net.   

2.2 Variables Available 

The analysis for this paper was focused on the use of the Astrodynamics Standards Libraries that provide a validated 

method to utilize the TLEs to obtain a satellite position and velocity at a particular point in time.   The routines used 

take TLE data available from SpaceTrack and perform the SGP4 propagations.  Thes records will be referred to as 

“Prop” records and are used in the variable selection training and in the NEP TLE processing. 

At a specified point in time, there are four groups of information that are available either direct from the library or 

through standard transformation (Keplerian to Equinoctial).  The groups are: 

1. Osculating Elements, “o”

a. X(KM), Y(KM), Z(KM) position variables

b. XDOT(KM/S), YDOT(KM/S), ZDOT(KM/S) velocity variables

c. VelNorm(KM/S) derived from velocities (VelNorm = sqrt(XDOT2 + YDOT2 + ZDOT2))

d. LAT(DEG), LON(DEG), HT(KM) position variable
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e. SMAo(KM), ECCo(-), INCo(DEG), RAANo(DEG), AOPo(DEG), TRUEANOMo(DEG) Keplerian

variables

2. Mean Elements, “m”

a. N(REVS/DAY), ECCm(-), INCm(DEG), RAANm(DEG), AOPm(DEG), MAm(DEG) Keplerian

variables

3. Equinoctial Elements (derived from Osculating Elements)

a. h, k, p, q, L

4. Nodal Variables

a. NODAL PER(MIN), NODAL(REVS/DAY), ANOM PER(MIN), APOGEE(KM), PERIGEE(KM)

5. Sin/Cos transforms from degrees to avoid discontinuity at 360 degrees

a. RAANo(sin), RAANo(cos), AOPo(sin), AOPo(cos), TRUEANOMo(sin), TRUEANOMo(cos) from

Osculating Elements

b. RAANm(sin), RAANm(cos), AOPm(sin), AOPm(cos), MAm(sin), MAm(cos)  from Mean Elements

6. Time Related variables

a. TIMEA time of the current TLE record

b. TIMEP time of the prior TLE record

c. TSINCE time from the prior TLE to the current TLE record

The above variables were determined for three cases. 

1. Variables associated with the prior record in a sequence of TLE records.

2. Variables associated with the prior record propagated to the time of the current record “P”.

3. Variables associated with the current record in the sequence of TLE records “A”.

2.3 Input Variables 

From the above available variables, only the variable associated with the propagated prior record were allowed as 

inputs to the neural networks. Also allowed as inputs to the NEP were the TIMEA and the TSINCE variables. When 

referred to in the paper these variables will be prepended with a “P”. 

2.4 Desired Output Variables 

Network output variables were selected only from the variables associated with the current TLE record.  For this 

paper the following nets were trained for these desired outputs (prepended with “A”). 

1. AX(KM),

2. AY(KM),

3. AZ(KM),

4. AINCo(DEG),

5. ASMAo(KM),

6. ALON(DEG),

7. AVelNorm(MK/S)

2.5 Variable Selection Methodology for Neural Network Training 

The variable selection process assumes it is working on data that does not contain maneuvers.  The residual 

encountered, because there was a maneuver between the prior record and the current record, is likely to be 

substantially higher than if no maneuver occurred.  With mean squared error loss function, the residuals related to 

maneuvers should be eliminated from the training data.  The simplest way to accomplish this is to look at the 

propagated residual values for the desired output and eliminate records where the absolute value of the residual is 

above a percentile threshold. The threshold used as in training for this paper was 98%.  Records with SPG4 

propagated residual value above this “maneuver threshold” will be considered maneuvers and will not be used in 

training or in the results statistics.  

The most common way to do variable selection is to use correlation to pick the variables.  In the case of doing a 

single variable linear regression, the highest correlating variable would be the reasonable choice. However, if 
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picking two variables, using the highest two correlating variables will likely not yield the best selection of two 

variables.  This is due to the fact that the cross correlations between variables will affect the outcome.  To find the 

best two variables to be used in a regression (linear or neural net), one would have to run all pairs of variables.  

The method used here uses the loss from a linear regression over the variable selection training data.  A sorted list of 

single variables is generated for variables taken one at a time.  Then the top n items on this list are evaluated further.  

The top n selections are then evaluated by each of the remaining variables, one at a time.  These results are sorted, 

and the process is repeated for the top n selections. 

This process stops based on one of the following criteria:  

1. The percentage of improvement in the loss is below a threshold for the next added variable.

2. The performance of the current selection has fallen below a threshold and there are at least m variables.

3. The process has reached the max variables limit.

The variables selection process was run for the seven desired output variable for all 20 satellites.  The variables 

selected for each NEP net are listed in Appendix 1. 

2.6 NEP TLE Processing 

Once the variable selection has been performed for a given object and the selected output variable, training on data 

recent to the current and prior TLEs must be performed.  This involves selecting recent TLEs prior to the current 

record for the training.  The size of the training set chosen should be at least twice the numbers of variables selected 

in the variable selection process. The selections of variable used in the NEP nets trained ranged from 3 to 7 

(Appendix 1).  For this analysis the size used was 16 samples.  If any propagated residual was larger than the 

threshold used in variable selection training, then that training record should be excluded.  The NEP net is then 

trained on this small training set to determine the current estimated learnable parameters.  Fig. 2 shows the 

processing flow.  Prop Records are generated from the TLEs using the SGP4 propagation.  Current estimates of 

outputs are generated by the NEP net. NEP net learnable parameters are updated based on the Prop records prior to 

the current Prop Record. 

Fig 2. Training process for the NEP estimation in forward mode on test data. 

The whole process for generating a current NEP output estimate for a parameter is approximately 1.9ms on the i9 

laptop in Python in a single thread.   

Once trained the NEP net is run in forward mode to generate the NEP Residual (the current observation value minus 

the NEP net output.  The NEP net output is the estimate of the value of the target variable at the time of the current 

record based on the SGP4 propagated information from the prior record. 
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2.7 Satellite/Data Selection 

Data used for this analysis are TLEs, for the space objects in Table 1, downloaded from SpaceTrack.org.  Data for 

this analysis was taken from 2022-01-01 until 2024-07-31.  In the case of object 58573 there was no data available 

prior to 2023-12-14. 

Table 1 shows the selection of space objects used for this paper.  The goal of the selection process was to show a 

good mix of space objects from the standpoint of orbital type (LEO, MEO, GEO) and ability to maneuver 

(ROCKET BODY vs PAYLOAD).  Several were selected because they had been the subject of QC analysis for the 

DF&NN AMS system. 

Table 1. Space objects selected for this analysis. Dates are formatted “YYdoy” 

2.8 Training 

Training for each space object shown in Table 1 was performed on the data from 2022-01-01 through 2023-01-01 

except object 58573 where all available was used for training.  The training process used the variables selection 

methodology to a subset of the available variables for each of the NEP nets to be produced for the desired output 

variables in section 2.5. With 20 selected space objects and 7 desired output variables, a total of 140 variables 

selection runs were performed.   

Appendix 1 contains the table of the space object, the desired output variable for the NEP output, the SGP4 

propagated variable used for the performance evaluation and the selection of inputs variables found in the variable 

selection process.  It was expected that the SGP4 propagated variable should have the highest correlation with the 

desired output and therefore would always be one of the selected variables in the variable selection process.  

However, in 17 of the 140 runs, the SGP4 propagated variables were not used as one of the NEP net inputs.  The 

number of variables selected ranged from the 3 to 7 based on the criteria used in the processing. 

The average training time for the variable selection process was 11 seconds in a single thread in Python on an i9 

laptop.  Since this training process can be run infrequently, this represents a reasonable processing load for a server 

running a large catalog of space objects. 

Records NORAD ID StartDate EndDate SatName Type Country Period Decay
1683 14114 22001 24212 SL-12 R/B(2) ROCKET BODY CIS 1436.63

582 23645 22005 24210 SL-6 R/B(2) ROCKET BODY CIS 722.77
2349 29236 22001 24212 GALAXY 16 PAYLOAD US 1436.12
4807 35951 22001 24212 DMSP 5D-3 F18 PAYLOAD US 101.83

825 37140 22001 24209 SL-12 R/B(2) ROCKET BODY CIS 674.62
2380 37834 22001 24212 INTELSAT 18 PAYLOAD ITSO 1436.09
2062 41021 22001 24212 CHINASAT 2C PAYLOAD PRC 1436.07
2287 41911 22001 24212 TJS-2 PAYLOAD PRC 1436.13
1636 43602 22001 24212 BEIDOU 3M11 PAYLOAD PRC 773.23
1916 43867 22001 24212 COSMOS 2533 PAYLOAD CIS 1436.06
3325 45250 22001 24156 XJS D PAYLOAD PRC 87.30 6/4/2024
1434 45254 22001 24212 MERIDIAN 9 PAYLOAD CIS 717.86
2275 45344 22001 24212 BEIDOU 3 G2 PAYLOAD PRC 1436.09
3689 45460 22001 24212 YAOGAN-30 R PAYLOAD PRC 96.28
3581 45611 22001 24212 XJS G PAYLOAD PRC 93.69
1923 45863 22001 24212 APSTAR 6D PAYLOAD PRC 1436.09
2438 48444 22001 24212 STARLINK-2645 PAYLOAD US 95.59
2437 49330 22001 24212 SJ-21 PAYLOAD PRC 1435.70
2203 49818 22001 24212 LDPE-1 PAYLOAD US 1441.57

660 58573 23348 24213 PRC TEST PAYLOAD PRC 91.36
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Appendix 2 contains the histograms of the time between observations (TSINCE) for all available data used in the 

training and testing process.  This is of interest as it shows that the observation rates for space object can vary 

substantially.  An interesting observation is that the NEP net variable selection process chose TSINCE as an input in 

59 of the 140 nets trained (42%).   

Histograms of TSINCE are of interest because they can be used to QC the detections.  This can be done by 

comparing the TSINCE for the current detection to the histogram to determine a “trust” score.  If there is an unusual 

gap in the observations, then a detection by the NEP net should not be trusted.  This will be discussed further in 

section 3.2 Maneuver Results. 

3. Testing of NEP and Comparison with Traditional Propagation 

Testing was performed on all data after 2023-01-01.  The one exception is 58573 where all available was used for 

testing.  Results are provided for both position estimation and maneuver detection.  Evaluating test data is performed 

as described in the NEP TLE Processing section 2.6 above.  In this report for each test TLE, the prior TLEs SGP4 

propagated values will be the inputs to the NEP net to generate the NEP estimate for the current test TLE.   

The question of how to visualize the relative performance of the NEP net vs just the SGP4 Prop results is an issue.  

As explained above, in the variable selection training and in the NEP TLE Processing, it is necessary to segregate 

maneuvers (and data errors) from the training data.  Therefore, in reporting results, on test data, we must also do the 

same partitioning of the data.   

Fig. 3 shows a plot of the NEP residuals and the SGP4 Prop residuals.  The plot is generating by taking the absolute 

value of the residual values (even above the training threshold) and sorting them independently.  Then the points are 

plotted low to high in log scale. This type of plot is commonly referred to as a Cumulative Distribution Function 

(CDF) Plot.  Note that at the low values of residual on the left side of the plot the difference between the two curves 

is about 1.5 orders of magnitude less than at the higher values. This doesn’t mean that NEP test examples had a 

lower residual than SPG4 on every example, but just that NEP is more likely to produce a lower residual. The CDF 

plot is also useful in visualizing the effect of setting a threshold on the residual value for the purpose of maneuver 

detection.  A horizontal line drawn on the plot at a selected residual value will always have fewer examples above 

the line for the NEP residuals then for the SGP4 Prop residuals.  This suggests that the NEP residuals are less likely 

to contain false positives as the SGP4 Prop residuals. 

 

Fig 3. CDF plot given clear visual representation of performance improvement using NEP. 

3.1 Position Results 

Table 2 gives the summary of the results for the position analysis using Prop (SGP4) and NEP.  Statistics are related 

to the estimates of X(KM), Y(KM) and Z(KM) for the SGP4 propagator (Prop) and the NEP. Position residuals are 

calculated as the vector difference between the Prop or NEP position and the current record position.   
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PosResAvg is the average improvement of NEP vs Prop in km. for records with Prop residuals below the maneuver 

threshold. NEPAvg is the average position residual between the NEP calculated position vector and the current 

record position vector.  PropAvg is the average position residual between the SGP4 propagated position and the 

current record position. %Imp is the (PropAvg – NEPAvg)/PropAvg as a percentage. 

These plots for position residuals for all trained space objects are included in Appendix 3.  It should be noted that 5 

out of the 20 CDF plots showed portions of the plots, specifically at the lower residual values where the SGP4 

propagated values had lower residuals than the NEP net values.  Since the plots are log scaled, the differences 

between the two curves at the lower values (left side of the CDF) are less significant than the difference at the higher 

values (right side of the curve.  Because of this, the average improvement for the NEP was still positive. 

Table 2. Summary test statistics comparing NEP to SGP4 propagated position. 

3.2 Maneuver Results 

Performance assessment for maneuvers is more difficult than for position estimation.  For maneuvers one must have 

ground truth as to where the maneuvers occurred.  Then based on residuals on the parameters that NEP nets were 

trained, thresholds must be set to determine when a residual should be considered a maneuver.   

Looking at a rocket body, a space object that should not be capable of maneuvers, can illustrate certain aspects of 

using propagated residual estimated to determine a maneuver.  Fig. 5 shows the inclination residuals for MEO space 

object 23645 which is classified as a rocket body.  Plots for both the NEP and SGP4 propagated residuals are shown 

for comparison.  Both show elevated residual values at the same points in time for osculating inclination.  The time 

between observations (TSINCE) is larger where the magnitude of the residual is high. The size of the residual is 

likely to increase as the time one propagates to increases, but that does not mean the object maneuvered.   

NORAD ID PosResAvg NEPAvg PropAvg % Imp TestCnt
14114 0.130211 0.118523 0.248733 52.349478 894
23645 1.384227 0.147334 1.531561 90.380172 210
29236 0.167136 2.386580 2.553715 6.544805 1206
35951 0.035599 0.005222 0.040821 87.207276 2266
37140 0.052723 0.090220 0.142943 36.883883 353
37834 0.478958 2.856357 3.335316 14.360204 1236
41021 0.280057 2.709035 2.989093 9.369302 1214
41911 0.175079 0.099012 0.274091 63.876221 1269
43602 0.083787 0.095512 0.179299 46.730361 644
43867 0.963513 2.603442 3.566955 27.012205 931
45250 0.525158 0.150394 0.675552 77.737570 1435
45254 0.775884 0.295071 1.070955 72.447863 593
45344 0.343727 0.220011 0.563738 60.972880 1237
45460 0.103089 0.077887 0.180976 56.962943 1889
45611 0.222047 0.116786 0.338834 65.532860 1652
45863 1.189307 2.227331 3.416638 34.809275 904
48444 4.652600 0.153432 4.806031 96.807519 1123
49330 0.076335 0.120159 0.196495 38.848640 1299
49818 0.092199 0.135329 0.227529 40.522048 1169
58573 0.240838 0.037678 0.278516 86.471922 578
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Under normal baseline conditions, the detection threshold for the NEP could be set around 0.0025 and the Prop 

threshold could be set at around 0.0065.  Lower non-maneuver residuals indicate that, NEP did a better job 

estimating inclination for baseline conditions.     

Fig. 5.  Residual plots for osculating inclination “INCo” residuals. 

Fig. 6 shows the VelNorm residuals for the same space object.  It also shows large residual values at the right of the 

plot for both NEP and SGP4 Prop which are possibly due to large TSINCE values.  However, the Fig. 7 plot of the 

observed values shows multiple observations during that period that appear abnormal.  Both plots are scaled to show 

velocity residuals from -2.0 m/sec to 2.0 m/sec.  A reasonable maneuver detection threshold for NEP would be at 1 

m/sec magnitude.  SGP4 Prop residuals would have had many false positive detections at that same threshold. 

Fig. 6. 23645 VelNorm residual for both NEP and SGP4 Prop. 

Fig. 7. 23645 VelNorm observed values. 
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Fig. 8 NEP residuals for 41911 over the test data. 

 

Fig. 9 SMA values form the observations for 41911 over the test data 

The next example is that of a clear sequence of maneuvers over the test period.  This is the 41911 GEO Satellite 

showing the semi-major axis (SMA) residual as calculated from the NEP net.  This represents East-West Station 

Keeping pattern of life.  Fig. 8 shows the residuals and Fig. 9 shows the corresponding SMA values from the 

observations over the test data.  The steps in SMA in Fig. 9 clearly match the detected SMA maneuvers assuming a 

0.5km magnitude threshold on the SMA residual. 

3.3 Potential Data Error 

An important consideration in NEP is identification of errors in the propagated data.  What would a data error look 

like?  The example in Fig.10 at the center of the plot is a likely inclination data error.  A step followed immediately 

by a step in the opposite direction suggests a potential data error. The corresponding plot of osculating inclination 

(Fig. 11) shows no visible step at the time of the detection.   

 

Fig. 10. Possible Data Error seen by symmetric steps in inclination. 

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



Fig. 11. Actual Inclination plot.  No visible change. 

It is important to note that Fig. 10 plots were scaled the same on the y axis to show that NEP nets produce less 

variation in the baseline residuals.  This allows for lower detection thresholds and greater sensitivity and lower 

chance of false positives. 

4. Potential Improvements

Training thresholds could be optimized on a per satellite basis to better eliminate maneuvers and data errors from 

effecting the training process.  The current implementation is using a fixed percentile threshold on the SGP4 

propagated residual value to eliminate records from the training data.   

In this paper the number of non-maneuver samples for the NEP secondary training was set to 16 for all space 

objects.  Because observation rates vary between space objects, the number of observations used could be all 

samples within a time window prior to the current TLE epoch. Optimization of the thresholds used will improve the 

overall performance of the methodology. 

In this paper NEP nets were trained on seven target parameters.  The number of parameters for NEP training could 

be increased to do all PV Coordinates and all Keplerian parameters.  Data Fusion of the NEP outputs could be used 

to increase the confidence of the detected maneuvers and aid in the classification of the type of pattern of life 

maneuver that was detected. 

This methodology is dependent on the quality of the derived features used in the training process.  While the derived 

features used here were readily available from the outputs that could be generated from SGP4 and some simple 

features derived from the SGP4 output, other cyclic features that could be synced to the epoch of the observation 

could improve the NEP net performance. Fig. 11 shows the ASMAo(KM) variable over the test data for space object 

23645.  This variable shows an oscillation at a period of about 72.5 days at an amplitude of 2.55km.  Adding a 

derived feature that correlates with this oscillation could improve the performance of the NEP net where longer 

propagation times are of interest. 

Fig 11.  Plot of semi-major axis for 23645 potential for an additional derived feature. 
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5. Lessons Learned 

Training in this paper consisted of propagating only to the next observation.  The training data preprocessing can be 

modified to provide training data for propagation times greater than seen in the TSINCE histograms.   For this or 

any methodology, the characteristics of the training set should match the way the nets will be run in testing or 

production.     

While this paper focused on the use of SGP4 as the propagator to be enhanced, the methodology can be applied with 

SGP4 being replaced by any propagator.   

6. Summary 

This paper reviews recent research aimed toward evaluating the value of neural network enhanced orbit propagation 

(NEP).  The results show that NEP is practical.  NEP runs faster than numerical propagation and there is improved 

predicted positional accuracy and velocity versus actual observed space object position and velocity. 

Based on indications summarized in this paper, DF&NN will continue investigating this capability on a broader set 

of objects and will likely result in real-time implementation of NEP across the unclassified catalog.  Over time we 

will be able to quantify where NEP provides the most value over traditional propagators.     

REFERENCES 

[1] Giacomo Acciarini, Atılım Günes Baydin, and Dario Izzo.  Closing the Gap between SGP4 and High-Precision 

Propagation via Differentiable Programming. arXiv:2402.04830v3 [cs.LG] 27 Feb 2024 

[2] Hai-tao Yang, Jun-peng Zhu, and Jian Zhang. The Research of Low Earth Orbit Prediction of Satellite Based on 

Deep Neural Network. 2017 2nd International Conference on Computer, Mechatronics and Electronic Engineering 

(CMEE 2017) ISBN: 978-1-60595-532-2 

[3] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, 

Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier Features Let Networks Learn 

High Frequency Functions in Low Dimensional Domains. arXiv:2006.10739v1 [cs.CV] 18 Jun 2020 

 

[4] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Solja, Thomas Y. Hou, and 

Max Tegmark. KAN: Kolmogorov–Arnold Networks. arXiv:2404.19756v2 [cs.LG] 2 May 2024 

  

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



 

Appendix 1- Variable Selection Results 

Below is the list of the most significant variables (fourth column) for each output variable selected for neural 

networks to learn the behavior of the seven output variables for the 20 space objects in this work.  There are 17 out 

of 140 cases where the Prop output from SGP4 was not selected as an input to the NEP neural network (shown in 

red).   One would might expect that the Prop output would always be used, but that was not always the case. 

 

SAT ID NEP Output Prop Output Variables Selection Used
14114 AX(KM) PX(KM) ('PAOPm(sin)', 'PINCm(DEG)', 'PPERIGEE(KM)', 'PRAANm(cos)', 'PX(KM)', 'PY(KM)', 'Ph')
14114 AY(KM) PY(KM) ('PHT(KM)', 'PMAm(cos)', 'PMAm(sin)', 'PRAANm(sin)', 'PY(KM)', 'Ph', 'Pp')
14114 AZ(KM) PZ(KM) ('PANOM_PER(MIN)', 'PAOPo(sin)', 'PAPOGEE(KM)', 'PPERIGEE(KM)', 'PSMAo(KM)', 'PZ(KM)', 'TIMEA')
14114 ASMAo(KM) PSMAo(KM) ('PAOPo(DEG)', 'PAOPo(cos)', 'PECCo(-)', 'PSMAo(KM)', 'TSINCE(MIN)')
14114 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PLON(DEG)', 'PRAANm(DEG)', 'TIMEA', 'TSINCE(MIN)')
14114 ALON(DEG) PLON(DEG) ('PLON(DEG)', 'PMAm(sin)', 'PVelNorm(KM/S)', 'PX(KM)', 'TSINCE(MIN)')
14114 AVelNorm(KM/S)PVelNorm(KM/S)('PL', 'PTRUEANOMo(sin)', 'PVelNorm(KM/S)', 'PX(KM)', 'TSINCE(MIN)')
23645 AX(KM) PX(KM) ('PAPOGEE(KM)', 'PHT(KM)', 'PINCm(DEG)', 'PLAT(DEG)', 'PX(KM)', 'PXDOT(KM/S)', 'PYDOT(KM/S)')
23645 AY(KM) PY(KM) ('PANOM_PER(MIN)', 'PINCo(DEG)', 'PLAT(DEG)', 'PNODAL_PER(MIN)', 'PY(KM)', 'PZ(KM)', 'TSINCE(MIN)')
23645 AZ(KM) PZ(KM) ('PAOPm(DEG)', 'PAOPo(cos)', 'PINCo(DEG)', 'PMAm(sin)', 'PNODAL(REVS/DAY)')
23645 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PAOPm(cos)', 'PLAT(DEG)', 'PSMAo(KM)', 'TIMEA')
23645 AINCo(DEG) PINCo(DEG) ('PAOPm(DEG)', 'PECCo(-)', 'PINCo(DEG)', 'PRAANo(DEG)', 'PX(KM)')
23645 ALON(DEG) PLON(DEG) ('PINCm(DEG)', 'PINCo(DEG)', 'PLAT(DEG)', 'PLON(DEG)', 'TSINCE(MIN)')
23645 AVelNorm(KM/S)PVelNorm(KM/S)('PAOPm(cos)', 'PHT(KM)', 'PLAT(DEG)', 'PRAANo(DEG)', 'TSINCE(MIN)')
29236 AX(KM) PX(KM) ('PANOM_PER(MIN)', 'PINCm(DEG)', 'PN(REVS/DAY)', 'PSMAo(KM)', 'PX(KM)', 'Pk')
29236 AY(KM) PY(KM) ('PANOM_PER(MIN)', 'PAOPm(sin)', 'PL', 'PSMAo(KM)', 'PX(KM)', 'PY(KM)')
29236 AZ(KM) PZ(KM) ('PLAT(DEG)', 'PTRUEANOMo(cos)', 'PX(KM)')
29236 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PECCo(-)', 'PLON(DEG)', 'PNODAL_PER(MIN)', 'PTRUEANOMo(sin)')
29236 AINCo(DEG) PINCo(DEG) ('PAOPo(sin)', 'PECCo(-)', 'PINCo(DEG)', 'PRAANm(sin)', 'TIMEA')
29236 ALON(DEG) PLON(DEG) ('PLON(DEG)', 'PMAm(sin)', 'PN(REVS/DAY)', 'PNODAL_PER(MIN)', 'PRAANm(cos)')
29236 AVelNorm(KM/S)PVelNorm(KM/S)('PANOM_PER(MIN)', 'PHT(KM)', 'PLON(DEG)', 'PSMAo(KM)', 'PTRUEANOMo(sin)')
35951 AX(KM) PX(KM) ('PRAANm(cos)', 'PRAANo(cos)', 'PX(KM)', 'PXDOT(KM/S)', 'Ph')
35951 AY(KM) PY(KM) ('PX(KM)', 'PY(KM)', 'PZ(KM)', 'Pk', 'TSINCE(MIN)')
35951 AZ(KM) PZ(KM) ('PX(KM)', 'Ph', 'Pq')
35951 ASMAo(KM) PSMAo(KM) ('PLAT(DEG)', 'PLON(DEG)', 'PSMAo(KM)', 'TSINCE(MIN)')
35951 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PRAANm(sin)', 'PRAANo(sin)', 'Ph', 'TSINCE(MIN)')
35951 ALON(DEG) PLON(DEG) ('PLAT(DEG)', 'PLON(DEG)', 'PRAANo(sin)', 'PYDOT(KM/S)', 'TSINCE(MIN)')
35951 AVelNorm(KM/S)PVelNorm(KM/S)('PLON(DEG)', 'PRAANm(sin)', 'PVelNorm(KM/S)', 'PYDOT(KM/S)', 'TSINCE(MIN)')
37140 AX(KM) PX(KM) ('PL', 'PRAANo(DEG)', 'PRAANo(sin)', 'PTRUEANOMo(sin)', 'PX(KM)', 'Pq', 'TSINCE(MIN)')
37140 AY(KM) PY(KM) ('PMAm(DEG)', 'PNODAL_PER(MIN)', 'PY(KM)', 'PZ(KM)', 'Ph', 'Pp', 'TIMEA')
37140 AZ(KM) PZ(KM) ('PAOPo(sin)', 'PL', 'PLON(DEG)', 'PYDOT(KM/S)', 'PZ(KM)', 'Pp', 'TIMEA')
37140 ASMAo(KM) PSMAo(KM) ('PAOPo(cos)', 'PN(REVS/DAY)', 'PSMAo(KM)', 'PTRUEANOMo(DEG)', 'TSINCE(MIN)')
37140 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PN(REVS/DAY)', 'PRAANo(sin)', 'Pp', 'TSINCE(MIN)')
37140 ALON(DEG) PLON(DEG) ('PINCm(DEG)', 'PLON(DEG)', 'PNODAL(REVS/DAY)', 'Pq', 'TSINCE(MIN)')
37140 AVelNorm(KM/S)PVelNorm(KM/S)('PVelNorm(KM/S)', 'PYDOT(KM/S)', 'PZ(KM)', 'Ph', 'TSINCE(MIN)')
37834 AX(KM) PX(KM) ('PLON(DEG)', 'PRAANo(sin)', 'PSMAo(KM)', 'PX(KM)', 'PXDOT(KM/S)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
37834 AY(KM) PY(KM) ('PANOM_PER(MIN)', 'PMAm(cos)', 'PRAANm(cos)', 'PSMAo(KM)', 'PVelNorm(KM/S)', 'PX(KM)', 'PY(KM)')
37834 AZ(KM) PZ(KM) ('PAOPo(cos)', 'PINCm(DEG)', 'PMAm(DEG)', 'PTRUEANOMo(DEG)', 'PZ(KM)', 'Pq', 'TSINCE(MIN)')
37834 ASMAo(KM) PSMAo(KM) ('PAOPm(DEG)', 'PECCm(-)', 'PLON(DEG)', 'PMAm(sin)', 'PN(REVS/DAY)', 'Ph', 'TSINCE(MIN)')
37834 AINCo(DEG) PINCo(DEG) ('PECCo(-)', 'PINCo(DEG)', 'PRAANm(sin)', 'PRAANo(cos)', 'Pq')
37834 ALON(DEG) PLON(DEG) ('PAOPm(cos)', 'PLON(DEG)', 'PSMAo(KM)', 'PTRUEANOMo(sin)', 'Pk')
37834 AVelNorm(KM/S)PVelNorm(KM/S)('PHT(KM)', 'PRAANm(cos)', 'PRAANm(sin)', 'PTRUEANOMo(sin)', 'PVelNorm(KM/S)')
41021 AX(KM) PX(KM) ('PLAT(DEG)', 'PX(KM)', 'PXDOT(KM/S)', 'Pk', 'Pq')
41021 AY(KM) PY(KM) ('PAOPm(DEG)', 'PRAANm(sin)', 'PRAANo(DEG)', 'PX(KM)', 'PY(KM)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
41021 AZ(KM) PZ(KM) ('PAOPo(DEG)', 'PAOPo(sin)', 'PRAANm(cos)', 'PRAANo(cos)', 'PZ(KM)', 'PZDOT(KM/S)', 'Pq')
41021 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PECCo(-)', 'PLON(DEG)', 'PSMAo(KM)', 'PTRUEANOMo(sin)', 'Ph', 'TSINCE(MIN)')
41021 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PRAANm(sin)', 'PRAANo(cos)', 'PRAANo(sin)', 'Pp')
41021 ALON(DEG) PLON(DEG) ('PAPOGEE(KM)', 'PECCo(-)', 'PLON(DEG)', 'PTRUEANOMo(sin)', 'TSINCE(MIN)')
41021 AVelNorm(KM/S)PVelNorm(KM/S)('PANOM_PER(MIN)', 'PHT(KM)', 'PMAm(sin)', 'Pp', 'TSINCE(MIN)')
41911 AX(KM) PX(KM) ('PANOM_PER(MIN)', 'PL', 'PMAm(DEG)', 'PRAANm(DEG)', 'PX(KM)', 'PXDOT(KM/S)')
41911 AY(KM) PY(KM) ('PECCo(-)', 'PL', 'PLON(DEG)', 'PPERIGEE(KM)', 'PRAANm(DEG)', 'PY(KM)')
41911 AZ(KM) PZ(KM) ('PHT(KM)', 'PMAm(sin)', 'PRAANm(cos)', 'PXDOT(KM/S)', 'PYDOT(KM/S)', 'PZ(KM)', 'TSINCE(MIN)')
41911 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PLON(DEG)', 'PTRUEANOMo(DEG)', 'Pq', 'TSINCE(MIN)')
41911 AINCo(DEG) PINCo(DEG) ('PECCm(-)', 'PHT(KM)', 'PINCo(DEG)', 'Pk', 'TIMEA')
41911 ALON(DEG) PLON(DEG) ('PANOM_PER(MIN)', 'PLON(DEG)', 'PSMAo(KM)', 'PTRUEANOMo(DEG)', 'TSINCE(MIN)')
41911 AVelNorm(KM/S)PVelNorm(KM/S)('PTRUEANOMo(sin)', 'PVelNorm(KM/S)', 'PXDOT(KM/S)', 'PZ(KM)', 'PZDOT(KM/S)')
43602 AX(KM) PX(KM) ('PAPOGEE(KM)', 'PINCm(DEG)', 'PPERIGEE(KM)', 'PTRUEANOMo(sin)', 'PX(KM)', 'Pp', 'TSINCE(MIN)')
43602 AY(KM) PY(KM) ('PANOM_PER(MIN)', 'PAOPm(sin)', 'PMAm(cos)', 'PY(KM)')
43602 AZ(KM) PZ(KM) ('PMAm(cos)', 'PPERIGEE(KM)', 'PY(KM)', 'PZ(KM)', 'Ph')
43602 ASMAo(KM) PSMAo(KM) ('PN(REVS/DAY)', 'PSMAo(KM)', 'Pp', 'Pq', 'TIMEA')
43602 AINCo(DEG) PINCo(DEG) ('PINCm(DEG)', 'PINCo(DEG)', 'PRAANm(DEG)', 'PRAANo(DEG)', 'Pp')
43602 ALON(DEG) PLON(DEG) ('PANOM_PER(MIN)', 'PAOPo(cos)', 'PINCm(DEG)', 'PLON(DEG)', 'PRAANo(sin)')
43602 AVelNorm(KM/S)PVelNorm(KM/S)('PINCm(DEG)', 'PTRUEANOMo(sin)', 'PVelNorm(KM/S)', 'PYDOT(KM/S)', 'TIMEA')
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43867 AX(KM) PX(KM) ('PINCo(DEG)', 'PRAANo(DEG)', 'PX(KM)', 'PXDOT(KM/S)', 'PY(KM)', 'Ph', 'Pk')
43867 AY(KM) PY(KM) ('PLON(DEG)', 'PX(KM)', 'PXDOT(KM/S)', 'PY(KM)', 'PYDOT(KM/S)', 'Pk', 'TSINCE(MIN)')
43867 AZ(KM) PZ(KM) ('PAOPo(cos)', 'PL', 'PMAm(DEG)', 'PYDOT(KM/S)', 'PZ(KM)', 'TIMEA')
43867 ASMAo(KM) PSMAo(KM) ('PAPOGEE(KM)', 'PLON(DEG)', 'PN(REVS/DAY)', 'PRAANm(DEG)')
43867 AINCo(DEG) PINCo(DEG) ('PAOPo(cos)', 'PINCm(DEG)', 'PINCo(DEG)', 'Pq', 'TSINCE(MIN)')
43867 ALON(DEG) PLON(DEG) ('PAOPo(cos)', 'PLON(DEG)', 'PN(REVS/DAY)', 'PRAANm(DEG)', 'PTRUEANOMo(sin)')
43867 AVelNorm(KM/S)PVelNorm(KM/S)('PINCo(DEG)', 'PMAm(DEG)', 'PNODAL(REVS/DAY)', 'PVelNorm(KM/S)')
45250 AX(KM) PX(KM) ('PAOPo(DEG)', 'PHT(KM)', 'PINCm(DEG)', 'PRAANm(sin)', 'PRAANo(sin)', 'PX(KM)', 'PYDOT(KM/S)')
45250 AY(KM) PY(KM) ('PAOPm(sin)', 'PECCo(-)', 'PMAm(sin)', 'PRAANo(sin)', 'PY(KM)', 'PZDOT(KM/S)', 'Pp')
45250 AZ(KM) PZ(KM) ('PECCo(-)', 'PINCm(DEG)', 'PPERIGEE(KM)', 'PZ(KM)', 'PZDOT(KM/S)', 'Pk', 'Pq')
45250 ASMAo(KM) PSMAo(KM) ('PAOPm(DEG)', 'PINCo(DEG)', 'PMAm(DEG)', 'PSMAo(KM)', 'TSINCE(MIN)')
45250 AINCo(DEG) PINCo(DEG) ('PHT(KM)', 'PINCm(DEG)', 'PINCo(DEG)', 'PYDOT(KM/S)', 'PZDOT(KM/S)')
45250 ALON(DEG) PLON(DEG) ('PAOPm(DEG)', 'PLON(DEG)', 'PMAm(DEG)', 'TIMEA', 'TSINCE(MIN)')
45250 AVelNorm(KM/S)PVelNorm(KM/S)('PRAANm(DEG)', 'PRAANo(DEG)', 'PVelNorm(KM/S)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
45254 AX(KM) PX(KM) ('PAOPm(DEG)', 'PINCm(DEG)', 'PMAm(DEG)', 'PTRUEANOMo(sin)', 'PX(KM)', 'PY(KM)', 'TSINCE(MIN)')
45254 AY(KM) PY(KM) ('PMAm(DEG)', 'PMAm(cos)', 'PSMAo(KM)', 'PTRUEANOMo(DEG)', 'PY(KM)', 'PYDOT(KM/S)', 'TSINCE(MIN)')
45254 AZ(KM) PZ(KM) ('PANOM_PER(MIN)', 'PN(REVS/DAY)', 'PTRUEANOMo(cos)', 'PTRUEANOMo(sin)', 'PXDOT(KM/S)', 'PZ(KM)', 'PZDOT(KM/S)')
45254 ASMAo(KM) PSMAo(KM) ('PRAANo(DEG)', 'PSMAo(KM)', 'Pp', 'Pq', 'TSINCE(MIN)')
45254 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PLON(DEG)', 'PMAm(sin)', 'PVelNorm(KM/S)', 'PY(KM)')
45254 ALON(DEG) PLON(DEG) ('PLON(DEG)', 'PPERIGEE(KM)', 'PTRUEANOMo(DEG)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
45254 AVelNorm(KM/S)PVelNorm(KM/S)('PAOPo(sin)', 'PTRUEANOMo(DEG)', 'PVelNorm(KM/S)', 'PXDOT(KM/S)', 'TIMEA')
45344 AX(KM) PX(KM) ('PINCo(DEG)', 'PRAANm(sin)', 'PX(KM)', 'TIMEA', 'TSINCE(MIN)')
45344 AY(KM) PY(KM) ('PAOPm(sin)', 'PN(REVS/DAY)', 'PX(KM)', 'PY(KM)', 'PYDOT(KM/S)')
45344 AZ(KM) PZ(KM) ('PECCo(-)', 'PL', 'PMAm(DEG)', 'PRAANo(DEG)', 'PZ(KM)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
45344 ASMAo(KM) PSMAo(KM) ('PAOPm(sin)', 'PAOPo(cos)', 'PECCo(-)', 'PLON(DEG)', 'PRAANo(DEG)', 'PSMAo(KM)', 'TSINCE(MIN)')
45344 AINCo(DEG) PINCo(DEG) ('PANOM_PER(MIN)', 'PECCm(-)', 'PINCo(DEG)', 'PRAANo(sin)', 'PSMAo(KM)')
45344 ALON(DEG) PLON(DEG) ('PHT(KM)', 'PLON(DEG)', 'PNODAL_PER(MIN)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
45344 AVelNorm(KM/S)PVelNorm(KM/S)('PMAm(sin)', 'PVelNorm(KM/S)', 'PXDOT(KM/S)', 'PZ(KM)', 'TSINCE(MIN)')
45460 AX(KM) PX(KM) ('PECCm(-)', 'PECCo(-)', 'PMAm(cos)', 'PRAANo(sin)', 'PTRUEANOMo(cos)', 'PX(KM)', 'Pp')
45460 AY(KM) PY(KM) ('PECCm(-)', 'PINCm(DEG)', 'PTRUEANOMo(DEG)', 'PY(KM)', 'Ph')
45460 AZ(KM) PZ(KM) ('PAOPo(cos)', 'PNODAL_PER(MIN)', 'PPERIGEE(KM)', 'PSMAo(KM)', 'PTRUEANOMo(cos)', 'TIMEA', 'TSINCE(MIN)')
45460 ASMAo(KM) PSMAo(KM) ('PLAT(DEG)', 'PRAANm(sin)', 'PRAANo(sin)', 'PSMAo(KM)', 'PZ(KM)')
45460 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PX(KM)', 'PYDOT(KM/S)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
45460 ALON(DEG) PLON(DEG) ('PINCm(DEG)', 'PLAT(DEG)', 'PLON(DEG)', 'PZ(KM)', 'TSINCE(MIN)')
45460 AVelNorm(KM/S)PVelNorm(KM/S)('PLON(DEG)', 'PVelNorm(KM/S)', 'TSINCE(MIN)')
45611 AX(KM) PX(KM) ('PANOM_PER(MIN)', 'PINCm(DEG)', 'PNODAL_PER(MIN)', 'PRAANo(cos)', 'PX(KM)', 'Pq', 'TSINCE(MIN)')
45611 AY(KM) PY(KM) ('PECCm(-)', 'PINCm(DEG)', 'PMAm(DEG)', 'PMAm(cos)', 'PY(KM)', 'TSINCE(MIN)')
45611 AZ(KM) PZ(KM) ('PANOM_PER(MIN)', 'PNODAL_PER(MIN)', 'PRAANm(DEG)', 'PRAANo(DEG)', 'PYDOT(KM/S)', 'PZ(KM)', 'PZDOT(KM/S)')
45611 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PINCm(DEG)', 'PNODAL_PER(MIN)', 'PSMAo(KM)', 'PX(KM)')
45611 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PLAT(DEG)', 'PN(REVS/DAY)', 'PX(KM)', 'PZ(KM)')
45611 ALON(DEG) PLON(DEG) ('PINCo(DEG)', 'PLON(DEG)', 'PN(REVS/DAY)', 'PNODAL(REVS/DAY)', 'TSINCE(MIN)')
45611 AVelNorm(KM/S)PVelNorm(KM/S)('PAOPm(cos)', 'PLAT(DEG)', 'PMAm(cos)', 'PVelNorm(KM/S)', 'TSINCE(MIN)')
45863 AX(KM) PX(KM) ('PLON(DEG)', 'PRAANm(DEG)', 'PRAANm(sin)', 'PRAANo(DEG)', 'PX(KM)', 'PXDOT(KM/S)', 'Pq')
45863 AY(KM) PY(KM) ('PAOPm(cos)', 'PRAANm(sin)', 'PRAANo(DEG)', 'PRAANo(cos)', 'PX(KM)', 'PY(KM)', 'TSINCE(MIN)')
45863 AZ(KM) PZ(KM) ('PAOPo(sin)', 'PECCo(-)', 'PRAANo(DEG)', 'PRAANo(cos)', 'PRAANo(sin)', 'PZ(KM)', 'Pk')
45863 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PHT(KM)', 'PLON(DEG)', 'PRAANo(cos)', 'PSMAo(KM)', 'PX(KM)', 'PYDOT(KM/S)')
45863 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PRAANo(sin)', 'Pp', 'Pq', 'TSINCE(MIN)')
45863 ALON(DEG) PLON(DEG) ('PLON(DEG)', 'PN(REVS/DAY)', 'PYDOT(KM/S)', 'Pp', 'TSINCE(MIN)')
45863 AVelNorm(KM/S)PVelNorm(KM/S)('PHT(KM)', 'PRAANm(cos)', 'PRAANm(sin)', 'PRAANo(cos)', 'PSMAo(KM)')
48444 AX(KM) PX(KM) ('PANOM_PER(MIN)', 'PRAANm(cos)', 'PRAANo(cos)', 'PX(KM)', 'PXDOT(KM/S)', 'PY(KM)', 'PZ(KM)')
48444 AY(KM) PY(KM) ('PMAm(sin)', 'PRAANm(sin)', 'PRAANo(sin)', 'PVelNorm(KM/S)', 'PX(KM)', 'PY(KM)', 'PYDOT(KM/S)')
48444 AZ(KM) PZ(KM) ('PNODAL(REVS/DAY)', 'PRAANm(DEG)', 'TIMEA')
48444 ASMAo(KM) PSMAo(KM) ('PINCm(DEG)', 'PINCo(DEG)', 'PLAT(DEG)', 'PSMAo(KM)', 'PZ(KM)')
48444 AINCo(DEG) PINCo(DEG) ('PINCm(DEG)', 'PINCo(DEG)', 'PMAm(cos)', 'Ph', 'TIMEA')
48444 ALON(DEG) PLON(DEG) ('PAOPm(cos)', 'PLAT(DEG)', 'PLON(DEG)', 'PMAm(DEG)', 'TSINCE(MIN)')
48444 AVelNorm(KM/S)PVelNorm(KM/S)('PHT(KM)', 'PINCo(DEG)', 'PMAm(DEG)', 'PZDOT(KM/S)', 'TIMEA')
49330 AX(KM) PX(KM) ('PINCm(DEG)', 'PX(KM)', 'TIMEA')
49330 AY(KM) PY(KM) ('PLAT(DEG)', 'PY(KM)', 'PZDOT(KM/S)')
49330 AZ(KM) PZ(KM) ('PAOPo(sin)', 'PAPOGEE(KM)', 'PINCm(DEG)', 'PRAANo(sin)', 'PZ(KM)', 'Ph', 'TIMEA')
49330 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PAOPm(DEG)', 'PAOPm(cos)', 'PAOPo(cos)', 'PECCm(-)', 'PPERIGEE(KM)', 'Pp')
49330 AINCo(DEG) PINCo(DEG) ('PAPOGEE(KM)', 'PINCo(DEG)', 'PLON(DEG)', 'PRAANm(DEG)', 'TSINCE(MIN)')
49330 ALON(DEG) PLON(DEG) ('PINCm(DEG)', 'PLON(DEG)', 'PRAANm(DEG)', 'PRAANm(cos)', 'Pq')
49330 AVelNorm(KM/S)PVelNorm(KM/S)('PMAm(sin)', 'PPERIGEE(KM)', 'PVelNorm(KM/S)', 'PZDOT(KM/S)', 'TSINCE(MIN)')
49818 AX(KM) PX(KM) ('PAOPo(DEG)', 'PLON(DEG)', 'PN(REVS/DAY)', 'PNODAL_PER(MIN)', 'PX(KM)', 'TSINCE(MIN)')
49818 AY(KM) PY(KM) ('PVelNorm(KM/S)', 'PY(KM)', 'Pq')
49818 AZ(KM) PZ(KM) ('PHT(KM)', 'PMAm(sin)', 'PRAANo(sin)', 'PSMAo(KM)', 'PVelNorm(KM/S)', 'PXDOT(KM/S)', 'PZ(KM)')
49818 ASMAo(KM) PSMAo(KM) ('PANOM_PER(MIN)', 'PAOPm(DEG)', 'PAOPo(DEG)', 'PAOPo(cos)', 'PAOPo(sin)', 'PSMAo(KM)', 'TSINCE(MIN)')
49818 AINCo(DEG) PINCo(DEG) ('PECCo(-)', 'PINCo(DEG)', 'PRAANo(DEG)', 'PRAANo(cos)', 'PRAANo(sin)')
49818 ALON(DEG) PLON(DEG) ('PLON(DEG)', 'PMAm(sin)', 'Ph', 'TSINCE(MIN)')
49818 AVelNorm(KM/S)PVelNorm(KM/S)('PMAm(sin)', 'PVelNorm(KM/S)', 'PXDOT(KM/S)', 'PYDOT(KM/S)', 'PZDOT(KM/S)')
58573 AX(KM) PX(KM) ('PLAT(DEG)', 'PRAANm(cos)', 'PRAANo(cos)', 'PVelNorm(KM/S)', 'PX(KM)', 'PZ(KM)', 'PZDOT(KM/S)')
58573 AY(KM) PY(KM) ('PAOPo(cos)', 'PLAT(DEG)', 'PRAANm(sin)', 'PRAANo(sin)', 'PTRUEANOMo(cos)', 'PY(KM)', 'PZ(KM)')
58573 AZ(KM) PZ(KM) ('PLAT(DEG)', 'PRAANm(cos)', 'PRAANm(sin)', 'PRAANo(sin)', 'PYDOT(KM/S)', 'PZ(KM)', 'PZDOT(KM/S)')
58573 ASMAo(KM) PSMAo(KM) ('PECCo(-)', 'PLAT(DEG)', 'PN(REVS/DAY)', 'PRAANm(sin)', 'PRAANo(sin)', 'PZ(KM)', 'PZDOT(KM/S)')
58573 AINCo(DEG) PINCo(DEG) ('PINCo(DEG)', 'PRAANm(cos)', 'PRAANo(cos)', 'PVelNorm(KM/S)', 'PX(KM)')
58573 ALON(DEG) PLON(DEG) ('PAOPo(sin)', 'PLAT(DEG)', 'PLON(DEG)', 'PTRUEANOMo(sin)', 'PZ(KM)', 'Ph')
58573 AVelNorm(KM/S)PVelNorm(KM/S)('PAOPm(sin)', 'PLAT(DEG)', 'PMAm(sin)', 'PNODAL(REVS/DAY)', 'PVelNorm(KM/S)')
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Appendix 2 - Histograms of Time Between Observations 

The x-axis shows the bin size in fractions of a day.  The bin size for 14414 is 0.1 of a day and extends from 0 to 4.0 

days.  The y axis is the number of observations in each bin.  The x and y axis are not normalized for each space 

object.  The plots illustrate the variability between the rates of observations for the space objects analyzed. 

 

 

 

 

 

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



 

 

 

 

 

 

 

  

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



Appendix 3 - Cumulative Distribution Function (CDF) of Residuals 

The Cumulative Distribution Function Plots for all the 20 selected space objects analyzed in this study.  The x and y 

axis are not normalized for each space object.  The y axis is a log scale to help illustrate the differences between 

residuals from NEP and traditional propagation. 
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