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ABSTRACT

In furtherance of IARPAs SINTRA debris detection and tracking program, this work examines alternative strategies for incorporat-
ing parameter uncertainty in the Constrained Admissible Region (CAR) generation algorithm to address practical issues encoun-
tered in large scale Multi-Hypothesis Filter applications. This work first reproduces and expands upon the differential inflation
approach developed by Worthy et al. to include both prevalent CAR constraint bounds on orbital eccentricity and semi-major
axis. Strategies are developed to reduce intrinsic numerical ill-conditioning of this approach under these constraints, addressing
key shortcomings reported in the original literature. To examine the higher order moments of the parameter-uncertainty inflated
CAR, this work also adapts the Unscented Transform (UT) to measure nonlinear distortions in the CAR boundary using synchro-
nized parametrizations of the solution contours. The accuracy and numerical efficiency of the above approaches are then compared
against Monte-Carlo simulations in both the LEO and GEO orbital regimes. This comparison yields the following key conclusions:
(1) the size and shape of the CAR is non-negligibly affected by the inclusion of parameter error in both LEO and GEO regimes,
(2) the UT approach reproduces the nonlinear inflation of the CAR more accurately than the differential approach, but is more
computationally intensive, and (3) results from these two approaches mainly diverge near saddle points in the constraint functions.
These results highlight the importance of parameter error in admissible region generation and present multiple approaches to com-
bine the respective robustness and computational efficiency benefits of the Probabilistic Admissible Region and CAR approaches
in practical applications.!

1. INTRODUCTION

A fundamental first step for any Kalman filter based Initial Orbit Determination (IOD) strategy is the generation of
an initial orbit estimate used for Kalman Filter initialization: a hypothesis necessarily based on sparse and imprecise
information. Unlike the IOD approaches which batch-fit large quantities of pre-associated measurements [8], a Multi-
Hypothesis Filter (MHF) refines the orbital estimate continuously, using the initial detection to generate a family of
initial orbit hypotheses that sample the measurement uncertainty space [5]. This set of initial hypotheses must be
carefully chosen, sampling the state space both finely and comprehensively enough to guarantee that the true state
lies within at least one hypotheses convergence radius (as governed by the underlying Kalman filter). However,
the computational impact of these hypotheses is also considerable: each must be propagated and compared against
subsequent observations and new hypotheses must be generated whenever the MHF encounters a new unassociated
observation. Thus, the MHFs hypothesis set must simultaneously be large enough to contain the true solution, but
small enough to remain computationally tractable and scalable while processing thousands of Resident Space Objects
(RSO:s).

Initializing the MHF hypothesis set becomes particularly challenging when considering Electro-Optical (EO) mea-
surements. Such observations are extracted from short arcs (streaks) in the image plane and nominally provide Right-
Ascension/Declination angle pairings, with angle-rates either measured natively or inferred by differencing successive
measurements. However, angles and angle-rates only encompass 4 of the 6 Degrees of Freedom (DOF) necessary to
compute a full position/velocity orbital state. That is, the range and range-rate space is entirely unobservable over
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these arcs. To capture the remaining 2 DOF using a finite MHF hypothesis set, the feasible range/range-rate space
must be refined to a finite subset or Admissible Region (AR). Two major approaches for defining an AR currently
exist in the literature. The first approach is called the Constrained AR (CAR) and uses a-priori orbital constraints
to include only the orbital families of interest: for example, orbits within an assumed semi-major axis range [2, 5].
This approach rapidly converts a set of observation parameters and orbital constraints into a compact region that can
be easily subsampled to return hypotheses for the MHF. The second approach is called the Probabilistic AR (PAR)
and is constructed using Gaussian particle clouds to directly estimate the measurement uncertainty distribution in the
range/range-rate space [3]. Critically, this inclusion of measurement uncertainty in the construction of the PAR makes
it notably larger and more accurate than the equivalent CAR, with the associated distribution also enabling users to
sample the PAR more strategically. However, the large number of samples required to directly and accurately estimate
the PAR distribution make it extremely computationally intensive. As a result, practical selection between these two
approaches often simplifies to the applications prioritization of computational efficiency and robustness.

In furtherance of IARPAs SINTRA debris detection and tracking program, this work examines alternative strategies
for incorporating parameter uncertainty in the CAR generation algorithm to address practical issues encountered in
large scale MHF applications. Specifically, this work first reproduces and expands upon the Differential Inflation (DI)
approach developed by [9] to include both prevalent CAR constraint bounds on orbital eccentricity and semi-major
axis. Strategies are developed to reduce intrinsic numerical ill-conditioning of this approach under these constraints,
addressing key shortcomings reported in [9]. To examine the higher order moments of the parameter-uncertainty
inflated CAR, this work also adapts the Unscented Transform (UT) to measure nonlinear distortions in the CAR
boundary using synchronized parameterizations of the solution contours. The accuracy and numerical efficiency of
the above approaches are then compared against Monte-Carlo simulations in both the LEO and GEO orbital regimes.
This comparison yields the following key conclusions:

1. The size and shape of the CAR is massively expanded by the inclusion of standard EO observation error in both
the GEO and LEO regimes (3-10x),

2. In most cases, both the DI and UT approaches accurately model the CARs inflation (< 0.25% relative error),

3. Both approaches become unreliable near saddle points in the constraint surfaces (where the CAR boundary is
more bimodal than Gaussian. In this case, the UT method better estimates the CAR’s (discontinuous) expansion.

These results highlight the importance of including observation parameter error when generating the admissible region
and present multiple approaches to combine the respective robustness and computational efficiency benefits of the PAR
and CAR approaches in practical applications.

The paper is organized as follows: Section 2 introduces the EO Constrained Admissible Region, including observation
parameters and prevalent orbital constraints, Section 3 presents existing (differential), novel (unscented), and reference
truth (Monte-Carlo) approaches for modeling and mapping observation parameter errors into a CAR boundary con-
tour distribution, Section 4 presents numerical comparisons of the efficiency and accuracy of these approaches for
representative RSO observations at GEO and LEO, and Section 5 summarizes the paper with concluding remarks.

2. PRELIMINARIES

This section reviews fundamental definitions and existing approaches for constructing the CAR for EO measurements.
Additionally, this section reviews definitions for the two prevalent CAR constraints bounding the feasible orbit Semi-
Major Axis (SMA) and eccentricity.

2.1 Fundamentals of Electro-Optical Sensors

As discussed above, EO Sensors represent a critical source for detections of RSO’s and form a key component of the
U.S. Space Surveillance Network [0]. Fundamentally, EO sensors passively capture and process images to determine
the position and velocity of a detected RSO streak in the sensor’s pixel space. Using the sensor’s orientation and
coordinate frame, the position and velocity in pixel space are then projected onto the celestial sphere to yield the
Right Ascension a and Declination &, as well as the respective angular rates ¢, 5. The remaining degrees of freedom
orthogonal to the image plane, the range p and range-rate p, are unobservable within a single detection.
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Without loss of generality, let the observing station and RSO positions in the ECI frame be given by the vectors
gq.r € R? respectively, with the relative (observed) position of the RSO given by the relative vector p = r —q. The
celestial observation frame for the sensor is then given by the basis” vectors

cos(a)cos(0) —sin(a) —cos (a)sin(6)
p=|sin(a)cos(®)|, &:=cos(d)| cos(a) |, 6 :=|-sin (a)sin(9) |. (1)
sin (6) 0 cos (0)

The observation coordinates are then related to the RSO’s relative ECI position and velocity as follows

p=pp, 5
p=pp+p(ad+85), @

where, as noted above, an estimate (or hypothesis) of the RSO’s range p and range-rate p are required to fully determine
it’s orbital state.

2.2 The Constrained Admissible Region

Originally presented in [4], the Constrained Admissible Region (CAR) is a generalized approach to constrain the
unobservable degrees of freedom x, € R* in a nonlinear observation model using a-priori feasibility constraints on the

complete system state x " := [x, x,;] € R". Specifically, under the nonlinear observation model

y=o0(xq,k), 3)

we obtain observations y € R which depend only on the observable (or determined) component of the state x; € R”
and the observation parameters k € R’. Reasonably assuming that o is bijective and continuously differentiable, the
determined state component is uniquely determined by the inverse mapping

xq=0"'(y,k). 4)

While the unobservable state component x,, cannot be determined directly via o, one can constrain the potential values
of x, to a finite subset of R* via feasibility constraints on the complete state vector x. Specifically, a continuously
differentiable nonlinear constraint of the form

g(xu’xd’k) S 05 (5)
can be combined with (4) to yield the CAR constraint
K(x4,2) = g0~ (x4, y, k), KO, (6)

where the vector z7 :=[y", k'] € R™*¢ combines the observation and observation parameters. Under the constraint
(6) and observation z, the CAR @ (z) is then defined by

®(Z) ={x, : k(xy,2) <0},

In the absence of other sensor data, the region® @ (z) may be used to define a uniform distribution for the unknown
state component x,,, and can be subsampled to return candidate hypotheses for (o, p). Finally, combining these samples
with the known state x; yields feasible candidate hypotheses x which may be used to initialize a Multi-Hypothesis
Filter or other associator.

While the above CAR notions are generalized to any nonlinear observation model, its application in existing literature
has overwhelmingly focused on the short-angle EO observations considered in this work. Assuming the observations
are pre-compressed to include angle-rate data, the state elements for this use case are defined as follows

xp=y =wsad] xl=lp). K =[aT.qT]. 7

Note that unlike [9], (7) does not include observation time as an explicit observation parameter, as the effects of
sample time uncertainty are not considered in this work (though they can be included in the above framework during
compression). The two most prevalent CAR constraints in current literature are detailed in the following sections.

2Note that & is not a true unit vector. The additional cosine term is traditionally included to simplify notation.
3Note that,depending on the underlying constraint surface, D(z) may contain multiple isolated connected components.
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2.2.1 CAR Semi-Major-Axis Constraint

The first and arguably most prevalent CAR constraint is defined by bounding the RSO’s feasible semi-major axis to
the range a € [a~,a™] [4]. These bounds are then related to the RSO’s position and velocity state via the Keplerian
two-body specific energy equation
LS ®)
2 i
Using (2) to recoordinatize (8) into the EO observation frame and isolating the range and range-rate terms, we arrive
at the polynomial form:

2E = p* +wip+Flp), )
where )
F(p) 1= wap® + wap +wy = ———te (10)
P+ Wsp+wo
and s
wo = llgll°, wi=2(q-p),
Wy = & cos2(8) + 62, w3 = 20'/(q-&)+25(q~3), (11)
wa = g, ws =2(qp).
Next, recall that the two-body specific energy is also related to the orbit’s semi-major axis a € Ryq via
Ea)=-2, (12)
2a

where E(a) < 0 implies a bounded orbit. Combining this with (9) and re-arranging, we arrive at the constraint function
kit 2,0) = 7 +wip+ Flo) + £ (13)

Under these definitions, the CAR @D,(z,a*) defined from «,(x,,z,a™) < 0 specifies the feasible values of x,, = (p, p) for
a bounded orbit with a semi-major axis a < a* under the observation z. Examples for the CAR resulting from (13) in
GEO and LEO scenarios are shown in Fig. 1. Although the shape of the CAR’s boundary varies substantially between
these cases, we can quickly identify two important properties for CARs produced under this constraint:

1. @4(z,a) has only one simply connected component.

2. D,(z,a) is symmetric about a fixed p* for a given observation.

These properties follow directly from (13) being a concave up quadratic in p with p and a only affecting the vertical
offset. These properties make this CAR comparatively simple to model numerically, but also allow the resulting CAR
to become quite large.

Thankfully, one can usually also infer a lower bound for the SMA of feasible orbits. In this case, the constraint (13)
can also be used to enforce the lower bound a > a™ in the form

—Ka(xy,z,a") <0.

Because both SMA constraints share the same quadratic form, CARs produced by each (and the combination of both)
share the properties described above. This work will consider both upper and lower form SMA constraints, though the
former will be prioritized in discussion due to their intrinsic similarities.

2.2.2 CAR Eccentricity Constraint

Like with the orbit’s Semi-Major Axis, bounds on orbital eccentricity e can also be used to constrain the feasible range
and range-rate space [|]. Specifically, an orbit’s eccentricity can be related to its two-body specific energy E and
orbital angular momentum # via the relation

—12(1-e*) = 2E||h|*. (14)
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Fig. 1: Surface plots of the (a* = c0) SMA constraint (13) for the (a) GEO and (b) LEO scenarios specified in table 1.
The CAR itself is colored in black, while the curvature of the constraint surface is highlighted in color.

The angular momentum / := r X i can also be written in the EO observation frame as
127 = cop? + P(p)p + U (p),
where the polynomial functions P(p), U(p) € R are given by
P(p) = c10> +2p +c3,
U(p) = cap” +csp® + cop” + c7p + cs,
and the coeflicients ¢; and momentum terms k; are defined as follows
co = lh1%, c1:=2hy-hy,  cy:=2h;-hs,
c3 = 2h1 - hy, ca = [l cs = 2hs - hs,
co =2k -ha+ sl c7:=2hs-ha, =Rl
hi=gxp, hy = px (i +58),
h3 :=i;><q+q><(d&+58), hy=qxq.

Finally, (14) can be expanded using (9) and (15) and re-arranged to yield the quartic eccentricity constraint

Ke(Xu>2,€) = 2E|[R|* + (1 - &%)

= ayp’ +asp’ +axp® +arp+ao,

where the quartic polynomial coefficients a; are given by

ag = F(p)U(p) + (1 —€?), ar = F(p)P(p) +w1U(p),
az = U(p) +coF(p) + w1 P(p), az = P(p) + cowy,
a4 = Cg.

5)

(16a)

(16b)

a7)

(18)

19)

(20)

As with the SMA constraint (13), the eccentricity constrained region «.(x,,z,e*) < 0 specifies the feasible values of
x, = (p,p) for a bounded orbit with eccentricity e € [0,e*] under the observation z. Unlike with the SMA constraint
however, the CARs @,(z,e) resulting from (19) are neither symmetric nor simply connected, vary quite drastically
between GEO and LEO observations (see Fig. 2 for examples), and are generally much smaller. Also unlike the SMA
constraint, a lower bound e~ is not normally enforced, as circular orbits are nearly always considered admissable.
This combination of factors makes the eccentricity constraint challenging to implement numerically, but also highly

effective for drastically reducing the feasible hypothesis space.
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Fig. 2: Surface plots of the eccentricity constraint (19) for the (a) GEO (e¢* = 0.08) and (b) LEO (e* = 0.2) scenarios
specified in table 1. The CAR is colored in black, while the curvature of the constraint surface is highlighted in color.

3. APPROACH

This section introduces the framework for incorporating observation parameter errors into a CAR using the distribu-
tion formed by its boundary contour. Specifically, it presents two approaches for estimating this distribution: (a) an
existing 1% order approach presented by [9] which we refer to as Differential Inflation, and (b) an alternative approach
employing an adaptation the Unscented Transform (UT). To determine the efficacy of these methods, a Monte-Carlo
approach is presented for robustly estimating the true contour distribution. Finally, practical considerations and rec-
ommendations are discussed for implementing these algorithms.

3.1 Modeling CAR Parameter Error

While the original CAR definition presented in section 2.2 is highly effective at limiting the hypothesis space under
appropriately chosen constraints, the assumption of zero observation error in its construction leads it to be inherently
undersized. In reality, the source observation y, observing sensor state parameters k, and even the observation time ¢
are all uncertain, all of which can substantially affect both the size and shape of the resulting CAR (e.g., consider the
light blue regions in Fig. 2). To examine this effect in more detail, consider the Taylor series expansion of the CAR
constraint (6) under the perturbations Ax, and Az:

0 0
—KAxu+ x

ry LR @21)

K(xy +Axy, 2+ AZ) = k(xy,2) +
Like its defining constraint, the CAR ©@(z + Az) is affected by this perturbation, contracting or inflating along its
boundary 0% depending on the specific perturbation Az. For numerical purposes, it is both preferable and sufficient
to model these perturbations in the CAR using its boundary, defined by

0D (z+Az) ={s : k(s,z+ Az) =0}. (22)

Through (21) and (22), a distribution of parameter errors 6Z maps to a distribution of CAR boundary solutions. To
capture this distribution numerically, let the boundary for each isolated (simply connected) CAR region* be param-
eterized as a periodic contour s(7) with 7 € [-1,1]. 5 Under this framework, the CAR boundary distribution can be
described using the same parameterization: for each 7, the distribution of boundary contours ds can be described point-
wise by the Gaussian N(s(7), Ps(7)). The CAR boundary may also be inflated at each T by projecting the covariance
P;(7) along a direction (1) chosen ‘outward’ from the original boundary. For example, the traditional 30~ confidence
interval can be captured by the contour:

$30-(7) = 8(7) + 30 (D7), (23)

“Distinct regions where the constraint surface k < 0.
5The parameter 7 is not necessary for the CAR boundary (22) definition, but adds the necessary vector space structure for modeling perturbations
in the boundary contours (i.e. 3D (z + Az) — 09 (z) is not well defined). Approaches for selecting 7 for the u < 2 case are discussed in later sections.
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Fig. 3: Illustrations of modeling CAR parameter error inflation using boundary contours s(7). Panel (a) depicts the
inflation of the CAR using a known step size and direction, while panel (b) depicts measuring this distribution on an
example constraint using sample contours obtained via Monte-Carlo or unscented methods.

where the projected variance 02(t) € R is given by
o3(1) = () Py(r)a(1), (24)

An example of this inflation is illustrated in Fig. 3a, where the vector (1) = s () orthogonal to the original boundary
contour is chosen for the inflation direction: a standard, effective choice employed throughout this work.® The remain-
der of this section discusses potential (existing and novel) approaches for estimating the distribution N(s(7), Ps(7)).

3.2 CAR Differential Inflation

The first and most prevalent approach for estimating the CAR boundary distribution N(s(7), P¢(7)) is introduced in
[9], and denoted here as the Differential Inflation (DI) approach. This method uses the gradient of the CAR constraint
to linearly map perturbations in the observation parameters (Az) to perturbations in the unobservable space (Ax,,).
Specifically, consider the 1%torder Taylor series (21) of the CAR constraint and recall that the CAR boundary is defined
by the identity x(x, + Ax,,z+Az) = 0. Combining these, (21) can be approximated to the local linear map

- %Ax" = g—lz(Az, (25)
which relates the (first order) sensitivity of the observation parameters to the unobservable space through variations in
the constraint function x. However, as the linear map (25) is defined using the gradient of «, it only relates variations
orthogonal to the constraint boundary (i.e. along s, (1) = 9/ax,) and thus is inherently rank deficient. The remaining
null space (tangent to the boundary contour) can be spanned by the rows of any orthonormal matrix 7 € R¥~x#
satisfying TAx,, = 0. Combining these yields the following full rank version of (25)

Ok Ok
_[a;”]Ath = [aoz}AZ (26)
Applying the linearity of Gaussian random variables, the perturbations Az and Ax, can be replaced by the error
distributions 6Z ~ N(0, P;) and 6 X, respectively. Thus, (26) can be written as

o 17 ek
(5Xu=—[ﬁ;u] [002}52, 27)
[ —
M(x,,2):=

The alternate inflation direction n(r) = R VDR s 1(7) (where RDR™ diagonalizes the covariance Ps(t)) was also found to be effective, better
tracking more drastic changes in the eccentricity CAR. However, it is not well supported analytically and so is omitted in this discussion.
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which, along the CAR boundary contour s(7), reduces to the compact form
oy(1)8.(1) = M(s(1), 2)6Z. (28)

Note that (28) directly yields the variance o-(7) in lieu of a traditional covariance Py(t) (i.e. the step direction i(t)
in (24) is fixed). This is not necessarily a shortcoming, as the requirement for a full covariance matrix is introduced
by the parameterization T of the CAR boundary: a structure which the generic DI method in (27) does not inherently
require. In practice, the DI method’s greatest limitation is also a strength: the restriction to a linear approximation
of k makes DI extremely computationally efficient, but also omits any nonlinear effects or features (e.g. extremal
points) which may substantially affect the shape of the inflated CAR. This trade-off is reflected in the results for the
eccentricity constraint CAR presented later in paper.

3.3 The CAR Unscented Transform

While a linear approximation of a nonlinear function is frequently sufficient for modeling sensitivity to parameter error,
highly nonlinear functions like the eccentricity constraint (19) can render this approach unreliable. A popular approach
for effectively modeling the nonlinear transformation of a distribution is the Unscented Transform popularly applied
in the design of Kalman filters [7]. Briefly, this method models the effect of a nonlinear function f(x) : R - R on a
multivariate Gaussian random variable x ~ N(u,, P,) by using a set of representative sigma points which capture the
major features of the distribution. A common selection for these points is

xi=p, +[nPli i=1,...,n 29)
X; =, —[\VnPyli-n, i=n+1,...,2n

where the operator [ v/]; denotes the i row of the matrix square root. Specifically, the sigma points chosen in (29)
capture the distribution’s mean and the principle axes of its 1o covariance ellipsoid. Mapping these sigma points
through f, the sample mean and covariance can be obtained as follows

1 2n 1 2n
¥ g 2 A Py 5 ) UG- -l (30)

Alternatively, the sample mean p, may be fixed to the transformed mean sigma point f(xo) if desired. This deceptively
simple approach is highly efficient compared to traditional sample-based estimation methods (e.g. Monte-Carlo) and
is at least third-order accurate for Gaussian inputs [7]. Notably however, the UT remains a local approximation and
may still perform poorly if f is sufficiently nonlinear.

To leverage the appealing benefits of the UT for the CAR boundary estimation problem developed in this work,
a mapping f must be found which is compatible with the above definitions. Given the constraint «, the original
definition (22) maps the observation parameter set z to a CAR boundary contour d20. Correspondingly, a set of sigma
points z; selected from the parameter distribution would produce a set of Sigma Contours 0%D; which collectively
describe the key nonlinear transformations of the CAR boundary. Intuitively, it then follows that (30) can be applied
point-wise along these Sigma Contours to estimate the boundary distribution. More specifically, given a common
parameterization 7 for the family of Sigma Contours s;(7), the UT statistics (30) can be rewritten as

2n

1
Hy(@) =s0(m),  Py(1)= o Z[Si(T) — (] [5/(0) — (D17 31

i=1

where the estimated mean p(7) is fixed to the mean solution contour so(7). This concept is illustrated in Fig. 3b,
which depicts a distribution of boundary contours for an ellipsoidal example CAR and the estimated 30~ covariance
ellipsoids at the sample times 7. This example problem also illustrates two challenges inherent to this approach:

1. 7 must be consistently defined (i.e. identify similar points) across all sigma contours s;.

2. The inflation direction 72(7) in (24) must be selected to estimate the 30- CAR bound from Py(7).
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Beginning with (1), recall from section 2.2, that the boundary contours 0% are collections of points which possess no
inherent ordering. To apply the UT, the parameterization T must provide this ordering with each fixed 7 identifying
a consistent location on each contour. For the ellipsoidal example shown in Fig. 3b, the angle of the contour normal
s1(7) is a consistent feature across the contour family which can be used to associate similar points. For example,
letting T € [-1,1] in Fig. 3b be clockwise increasing and periodic, the top, rightmost, and bottom edge of each
ellipse may be assigned the the times 7 = -0.5, 0, and 0.5 respectively, with the leftmost edge assigned the periodic
reset time 7 € {—1,1}. In cases where the contours are not uniquely point-wise identifiable (e.g. the CAR constraints
depicted in Figs. 1 and 2), it is often sufficient to fit a set key feature points like those specified above using a smooth,
monotonic increasing regression to consistently define 7 along the remainder of the contour. In practice, a suitable
parameterization will produce a dominant eigenvalue in the covariance P(t) at almost all points (see 3b), orienting
the CAR’s local inflation direction.

Regarding challenge (2) above, note that even in the simplified example shown in Fig. 3b, the covariance ellipsoid
P;(7) is not always dominantly skewed along the contour normal §, (7). In some cases, it may prove beneficial to select
an inflation direction 7i(7) reflecting the covariance estimate (e.g. along the dominant eigenvector) rather than §, (7) as
assumed in this work. In practice, such adaptations can correct for error introduced by imperfect parameterizations;
specifically those derived for contour families which drastically vary in shape. For simplicity, alternate inflation
directions are not discussed in this work, though initial testing provided compelling evidence for their use.

3.4 Monte-Carlo Estimation of CAR Boundary

In order to compare the accuracy of the DI and UT approaches, the true distribution of the CAR boundary contours
must also be determined. As in many applications, this is most reliably accomplished by directly and comprehensively
sampling the distribution in order to directly measure its Probability Density Function (PDF). As with the unscented
approach, a parameterization of the solution contours is ultimately required to estimate the resultant contour distri-
bution as well as to compare them to the DI and UT solutions. Given N parameter samples z; generated from the
multivariate Gaussian distribution z + 6Z, the estimated boundary contour distribution statistics are given by

=

ul 1

Hy(7) = %ZS[(T), Ps(m)= 57 ’ [5:(7) = (D] - [s:(1) = p, (D1, (32)

i=1 i

1l
—_

where, in contrast to (31), the sample mean is estimated to accurately capture the underlying distribution.
3.5 Estimating CAR Boundary Contours

In practice, each of the above algorithms requires one or more parameterized estimates of the CAR boundary contour
s(7) in order to compute and apply the parameter-error inflation. When comparing the many techniques available in
the literature for estimating surface contours, the reader should consider the following two requirements

1. The numeric form of the contours s(7) must admit support for interpolation along the entire boundary 2.

2. The selected CAR contour solver must be robust to numerically ill-conditioned units and constraints.

Briefly, requirement (1) ensures that any samples of the original boundary contour s(7) or samples of the boundary
contour distribution §;(7) accurately reflect the CAR boundary 0% and do not include error or numerical artifacts
added by the interpolation scheme. Additionally, this requirement ensures that the entirety of the CAR boundary
is captured in the numeric representation of s(7), ensuring that any regions of high sensitivity are captured by the
chosen inflation algorithm. The second requirement ensures that the CAR boundary is accurately determined to an
appropriate tolerance for the selected application units: a challenging prospect given the numerical ill-conditioning
introduced by the scale of astronomical units. An practical example of this issue is the numerical artifacts observed
in the SMA contours presented by [9] (identified as erroneous against MC simulations). To address these challenges,
this work employs canonical unit scaling and numerical integration techniques in determining the CAR boundary, as
these techniques (1) provide both relative and absolute tolerance guarantees along the computed solution mesh and (2)
provide built-in interpolation schemes which also satisfy those fixed tolerances.

In addition to accurately computing the individual boundary contours, one must also account for CARs composed
of multiple isolated regions. For example, the surface map shown in Fig. 2a reveals a CAR composed of three
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Table 1: CAR Observation Parameters
| al] 6 [°] @ [°/s] o [%/s] ¢ [km] g [km/s]
GEO | 270.292 -5.417 3.72E-3 1.77E-4 [-1381.427,5122.805,3527.9] [-3.74E-1, -1.01E-1,0]

LEO | 309.091 17.322 -3.84E-2 0 [-1359.374,5128.701, 3527.9] [-3.74E-1, -9.91E-2, 0]

Table 2: CAR Observation Uncertainties
\ Sample Period 0,05 [arcs]  oy,05 [arcs/s] o4 [m] oy [m/s]

GEO 1 min 5.7735 0.1179 1 1

LEO 1 sec 5.7735 7.0711 1 1

sub-regions, while that shown in Fig. 2b shows a CAR which, through inflation, will merge two of its three sub-
regions. While large portions of these sub-regions may be removed when combined with other constraints, the regions
which remain are equally likely under the uniform distribution assumed by the CAR approach. Thankfully, this
complication is simple to overcome in practice: each of these regions may be inflated independently using any of the
above approaches, and the overall CAR for that constraint is obtained as the union of the sub-regions.

4. NUMERICAL EVALUATION

This section compares the efficacy of the Differential, Unscented, and Monte-Carlo approaches for estimating the CAR
region for representative examples scenarios in GEO and LEO respectively.

4.1 Experimental Design

To comprehensively evaluate the accuracy of the DI and UT CAR parameter error estimation schemes, this section
examines the EO CAR inflation for two representative example scenarios: a compressed observation for a GEO
object taken with a 1-min sample period, and a compressed observation for a LEO object taken with a 1-sec sample
period. The specific observation, station parameters, and (compressed) observation uncertainties are shown in tables
1 and 2 respectively. These scenarios are identical to those presented in [9] (absent errors in sampling time), but are
compressed from 3 angles-only measurement arcs to single angle/angle-rate measurements. For each scenario, the 30
DI and UT CAR inflation boundaries are then compared against an N = 10,000 case Monte-Carlo simulation. For
simplicity, comparisons of the eccentricity CARs only include the largest CAR sub-region (though the merger of two
of these regions is discussed in the LEO example). The exact computational expense of each method is not strictly
compared in this study, though the approximate run time of the DI, UT, and MC methods was observed to scale closely
with the required number of contour solutions for each approach (i.e. 1, 21, and 10,000 respectively).

4.2 GEO Scenario

We first examine the inflations of the GEO scenario CARs depicted in Fig. 4 with the SMA bounds a € [4 - 10*, 00)
km and eccentricity bounds e € [0,0.08]. Looking first at Fig. 4a, we note that the DI, UT, and MC inflation regions
reasonably agree for both the SMA and ECC constraints, widening the resulting CAR in manner consistent with the
surface maps shown in Figs. 1a and 2a. Comparing the individual inflation boundaries more closely using the contour
distributions shown in Fig. 4b, we see that the UT approach is, on average, around 10x closer to the MC boundary
than the DI boundary. In practice, this accuracy gain is likely insignificant as the majority of the DI boundary differs
from the MC boundary by less than 0.25%. The large apparent errors in the eccentricity CAR near 7 = —0.5 and 0.5
correspond to the top and bottom of the CAR in 4a and are artifacts of normalizing that region’s near-zero inflation.

Combining these results, we may conclude that (in this scenario) the UT approach provides superior accuracy to the
DI approach at the cost of additional computational expense. More critically, note that the combined CAR composed
by intersecting each of these constraints nearly doubles in size under the inclusion of observation parameter error. This
emphasizes the critical importance of including this error in practical applications of the CAR approach.

4.3 LEO Scenario

We next examine the inflations of the LEO scenario CARs depicted in Fig. 5 with the SMA bounds a € [7 - 103, 00)
km and eccentricity bounds e € [0,0.2]. As with the GEO example, we first note from Fig. 5a that the SMA constraint

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



0.2 IS 1 N
15 Ka(p, p,a™) = = = -Differential (30) L ,' Seell : S
Ka(p, p,a~) =mememes Unscented (30) 0.15F ~~ 1 LeEss~
. . 4+ ereneneneses M . — ~ . ] , id - ~ ~ 1
10! Ke(p, pye™) Monte-Carlo (30) Ko N . R -\ ~u
=T 01t P AR VL
= 32 [ A IR
= £ R RN
g 5| SIS el \ . I M
# - E 0.05 ) l/)}/ ‘1 ! \\\\\ ;
o == i ot W w4
£ o} £ g OfmEETYy i v
~ = = W L7 ] i
% 5 = S ool | |' H
s 5t -0.00 [
= < /_‘\ |§| :l
~ O = 01 " |=
—~ = H
10 .\\ é 5 ,=, :|
_/ III N
. -0.15 " [-==-DIvs. MC | !
-15 2 5 'l | UT vs MC|
Lot 0.2 L I L |
0 1 2 3 4 5 6 7 -1 0.5 0 0.5 1
Range p [km] x10* .

Fig. 4: Comparison of CAR 30 inflation results in GEO scenario using different approaches. Panel (a) depicts the
entire region, while (b) displays relative inflation error along the contour normal w.r.t. the Monte-Carlo results.

inflation boundary is largely identical between the DI and UT methods. Looking at Fig. 5b, the DI and UT approaches
slightly under/overestimate the inflated region respectively, though the deviations of each are < 0.25% with respect to
the MC estimate.

Unlike in the GEO scenario however, each approach’s estimate of the eccentricity constraint boundary is far more
nuanced. As shown by the colormap in Fig. 2b, the eccentricity CAR inflation shown in 5 captures the merging of two
CAR sub-regions. As a result, the distributions modeled by the UT and MC approaches becomes heavily bimodal,
with the solution contours split above and below the saddle point between the two sub-regions. This large variation in
the Gaussianity of the contour distribution is reflected in the variation between the solutions, with high agreement in
the (Gaussian) lower right lobe, and high variation in the (bimodal) upper left. Naturally, as all of the above approaches
(including the MC) assume Gaussianity in the contour distributions, their relative accuracy in this example is harder to
measure. From a practical viewpoint, the combination of the low gradients near saddle points and the bimodal contour
distribution produced by merging CAR sub-regions should render the DI approach more conservative and the UT
approach more comprehensive. This interpretation is reflected in the results shown in Fig. 5a with Fig. 2b, where the
UT approach appears to better track the behavior of the constraint surface than the DI approach and the MC solution
appears to drastically over estimate the inflated CAR.

Regardless of the selected inflation algorithm, this example also reveals a composite CAR that is substantially (3-10x)
larger than the original CAR when considering reasonable parameter errors. This further emphasizes the importance
of including parameter errors when implementing the CAR approach.

5. CONCLUSION

In this work, we examined alternative strategies for incorporating parameter uncertainty in the Constrained Admissible
Region for short-arc EO observations. To this end, we first reproduced and expanded upon the Differential Inflation
approach developed by [9] to include both prevalent CAR constraint bounds on orbital eccentricity and semi-major
axis. This included the introduction of canonical scaling and numerical integration techniques in defining the constrain
boundary, reduce intrinsic numerical ill-conditioning and addressing key shortcomings reported by [9]. To examine
the higher order moments of the parameter-uncertainty inflated CAR, we also developed an adaptation the Unscented
Transform (UT) to measure nonlinear distortions in the CAR boundary through careful parameterization of the solution
contours. The accuracy and numerical efficiency of the above approaches were then compared against Monte-Carlo
simulations in both the LEO and GEO orbital regimes. This comparison yields the following key conclusions:

1. The size and shape of the CAR is massively expanded by the inclusion of standard EO observation error in both
the GEO and LEO regimes (3-10x),
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Fig. 5: Comparison of CAR 3¢ inflation results in LEO scenario using different approaches. Panel (a) depicts the
entire region, while (b) displays relative inflation error along the contour normal w.r.t. the Monte-Carlo results.

2. In most cases, both the DI and UT approaches accurately model the CARs inflation (< 0.25% relative error),

3. Both approaches become unreliable near saddle points in the constraint surfaces (where the CAR boundary is
more bimodal than Gaussian. In this case, the UT method better estimates the CAR’s (discontinuous) expansion.

These results highlight the importance of parameter error in admissible region generation and present multiple ap-
proaches to combine the respective robustness and computational efficiency benefits of the Probabilistic Admissible
Region and CAR approaches in practical applications.
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