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ABSTRACT

Cislunar space has increasingly captivated the attention of both commercial and defense sectors, driven by ambitions
to extend the operation of space-based assets into this expansive domain. The stable triangular Lagrange points, L4
and L5, offer diverse viewing angles of the Earth-Moon system making them prime candidates for space infrastructure
and situational awareness. L3 has commonly been overlooked for mission applications due to its distance from lunar
vicinity and is thus less trafficked. While considerable attention has been devoted to transfers from Earth to the
Lagrange points, notably L1 and L2 in preparation for Lunar Gateway, there is a growing need to explore trajectories
returning from cislunar regions to Earth orbit. To effectively navigate and exploit cislunar space for this purpose, it is
imperative to establish a comprehensive understanding of its astrography. This entails mapping impulsive-maneuver
transfers within the Earth-Moon system from L3, L4 and L5 to Earth-orbit destinations including GEO, MEO, and LEO.
It is crucial to delineate criteria for evaluating the value of trajectories in this domain: delta-v and the flight duration
of the transfer. Identifying common pathways is also vital for efficient space traffic management and situational
awareness, akin to maritime chokepoints facilitating commerce across the high seas.

1. INTRODUCTION

Cislunar space has become a region of interest as commercial and defense sectors seek to expand the operational
capabilities of space-based assets into this domain. To effectively navigate and use this region in space, its foundational
astrography needs to be defined by mapping key trajectories in the Earth-Moon system [10]. However, a prerequisite
for cislunar astrography requires establishing criteria for evaluating what makes a trajectory strategically valuable in
the space domain.

A spacecraft’s trajectory through cislunar space is heavily dependent on two factors: delta-v (velocity changes, rep-
resentative of fuel-cost) and time of flight (TOF). A number of feasible trajectories can exist between two regions
(or orbits) in cislunar space through the variation of these parameters. While each trajectory is defined by its own
propulsive maneuvers, trajectories may travel along similar pathways or converge through a distinct region in space.
Analogous to the concept of maritime chokepoints – which represent convergent lines of commerce across the high
seas – identifying where and how lines of commerce exist in cislunar space is beneficial to space traffic management
and space situational awareness (SSA). Additional qualifications for a strategic trajectory stem from application-based
implications such as the detectability of a satellite along the trajectory and spaceflight safety [6, 5].

The Earth-Moon Lagrange points have previously been identified as key regions in cislunar space [4]. In recent years,
the field has directed research of the Earth-Moon system to the L1 and L2 Lagrange points attributed to development of
NASA’s lunar gateway [7, 3, 8]. The L1 and L2 regions, being in lunar vicinity, are also more heavily trafficked than the
triangular Lagrange points and L3 at present. The triangular Lagrange points, L4 and L5, are gaining notice as strategic
regions for space infrastructure and SSA due to their stability and diverse viewing geometry of the Earth-Moon system
[9]. Due to their stability, these regions also offer minimal station-keeping requirements [2]. L3 remains less studied
with efforts designing two-impulse transfers from Earth to L3 libration point orbits (LPOs) [1]. This work will further
examine the lesser studied L3, L4 and L5 regions.
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Historically, research has limited the direction of travel along cislunar trajectories as departing from Earth, the common
objective being to design transfers specifically from an Earth orbit to LPOs to place assets in-orbit about the Lagrange
points [7, 3, 8, 9, 1]. To encompass all spaceflight applications, including those that are modernly achievable or
futuristic such as crewed missions and asteroid mining, trajectories returning from cislunar regions to Earth-orbit must
be researched as well. The results of recent work have also focused on analyzing transfers between specified orbits
or orbit families (e.g. For lunar gateway, a geostationary transfer orbit [GTO] to near rectilinear halo orbit [NRHO] )
[7]. Developing a rudimentary understanding of cislunar astrography will require more generalized, high-level results
that analyze trajectories traveling from various cislunar regions to the domain of Earth-orbit (all orbits extending out
to and including geosynchronous Earth orbit [GSO]), not just case-based orbit-to-orbit transfers.

In this work, trajectories from the Earth-Moon L3, L4, and L5 equilibrium points to Earth-orbit are modeled according
to the Circular Restricted Three-Body Problem (CR3BP) dynamics. Given an initial impulsive maneuver at Lagrange
points, trajectories are numerically integrated for a one-month period. Trajectories with a perigee intersecting the do-
main of Earth-orbit are flagged as trajectories of interest. A second impulsive maneuver is then used as a circularizing
burn to inject into Earth-orbit at the perigee altitude, pro- versus retro-grade direction is determined and corresponds to
the direction of the velocity vector of the incoming trajectory at perigee. Results will discuss the tradespace between
delta-v and TOF for trajectories transferring from the Lagrange points to the common Earth-orbits of GEO, half-GEO,
and LEO. Through a survey of the trajectories, we identify the minimum-delta-v and minimum-TOF members and
determine strategic attributes of the pathways traveled through space. Through these methods of analysis, we will con-
tribute to the mapping of strategic regions of interest within cislunar space, a critical step in defining the foundations
of astrography for the Earth-Moon system.

2. BACKGROUND

2.1 Circular Restricted Three-Body Problem

Spacecraft motion is influenced by several (arguably infinite) gravitational bodies and external perturbing forces. The
Circular Restricted Three-Body Problem (CR3BP) is a simplified dynamics model that defines the orbital motion of a
massless particle moving under the gravitational influence of two primary bodies modeled as finite point masses m1
and m2. This three-body system is characterized by the mass ratio of the system µ = m2/(m1 +m2) where typically
m2 ≤ m1 is standard convention. For the Earth-Moon system µ ≈ 0.01215. The two primaries are assumed to move
along circular orbits about their barycenter. This barycenter defines the origin of a uniformly rotating plane. The
x-axis of the coordinate system points from m1 to m2, the z-axis points in the direction of angular momentum vector
for the rotating plane, and the y-axis completes a right-handed set.

Nondimensionalization for the CR3BP defines the distance between the Earth and Moon as unity, the system’s total
mass as unity, and the system’s rotation period as 2π (nondimensionalized time equivalent of one month). The com-
putation of quantities relating to the CR3BP will be carried out using these nondimensionalized units (distance unit
[DU] and time unit [TU]). Results may be reported in dimensionalized units.

The dynamics of this system are defined by the CR3BP equations of motion

ẍ = x+2ẏ− (1−µ)(x+µ)

r3
1

− µ(x+µ −1)
r3

2
(1)

ÿ = y−2ẋ− (1−µ)y
r3

1
− µy

r3
2

(2)

z̈ =− (1−µ)z
r3

1
− µz

r3
2

(3)

where

r1 = [(x+µ)2 + y2 + z2]
1
2 (4)

r2 = [(x−1+µ)2 + y2 + z2]
1
2 . (5)

In the planar formulation of the CR3BP, it is assumed that all motion remains in the x-y plane so that the z-components
of position, velocity, and acceleration are set to zero and excluded. The planar state vector is therefore defined as
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X(t) = [x, y, ẋ, ẏ]T having an initial condition notated by X0 = X(0) (each component of the initial state vector will
also follow this notation, i.e. ẋ0 = ẋ(0)). Analysis described in proceeding sections of this paper will consider the
planar CR3BP.

2.2 Lagrange Points

In the CR3BP, Lagrange points (LPs) are the five equilibria that exist in this dynamical systems model. They are
classified as either collinear or triangular Lagrange points. The collinear Lagrange points, L1-L3, are located along
the x-axis of the system; L1 between the primaries, L2 set to the outside of m1, and L3 set to the outside of m2. The
triangular Lagrange points, L4 and L5, are located on a unity equilateral triangle formed by the Earth, Moon, and
respective Lagrange point. The layout of the Earth-Moon system’s LPs is shown in Figure 1.

Fig. 1: Lagrange point locations in the Earth-Moon system (not to scale).

The planar state vector evaluated at a Lagrange point is written as

XLP = [xLP, yLP, 0, 0]T (6)

where the position coordinates used for each Lagrange point are documented in Table 1 and the velocity is zero. The
coordinate positions for L4 and L5 are found by analytically solving Eqs. 1-2 as a system of equations and L1-L3 are
found numerically using fsolve in MATLAB.

LP xLP, DU yLP, DU
L1 0.83691513 0
L2 1.15568217 0
L3 -1.00506265 0
L4 0.5−µ

√
3/2

L5 0.5−µ -
√

3/2

Table 1: Planar position coordinates for the LPs.

The planar CR3BP observes geometric symmetry about the x-axis of the rotating frame according to the coordinate
transformation

(x,y, ẋ, ẏ, t) =⇒ (x,−y,−ẋ, ẏ,−t). (7)

As L4 and L5 are located across the rotating frame’s x-axis, respective trajectories to and from these Lagrange points
observe this transformation. For example, the spatial path followed by a trajectory departing from L4 can be mirrored
across the x-axis as a trajectory arriving to L5. Such a pairing of trajectories is recovered by numerically integrating:
(1) an initial state at L4 forwards in time and (2) this L4 initial state transformed through Eq. 7 (so that it becomes an
initial state at L5) backwards in time.
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3. METHODS

3.1 Compute Trajectories from the Lagrange Points to Earth-Orbit

Step 1: Generate trajectories originating from the Lagrange points

Trajectories originate from a desired Lagrange point: L3, L4 or L5, at which an impulsive maneuver is applied. The
imparted velocity change ∆v̄1 is defined by both magnitude ∆v1 and direction θ (see Figure 2) such that the initial
state of a planar trajectory is X(0) = [xLP, yLP, ∆v1 cos(θ), ∆v1 sin(θ)]T . Varying the ∆v1 and θ parameters across a
range of values produces a set of initial conditions resulting in a collection of trajectories such as the collection shown
in Figure 2.

Fig. 2: Defining magnitude and direction of the initial impulsive velocity change.

In this study, the parameter values used are ∆v1 ∈ {0,0.01, . . . ,0.8} DU and θ ∈ {0,0.01, . . . ,360} degrees. Iterating
over all two-parameter combinations, as a grid search, trajectories are propagated for a duration of 2π TU, equivalent
to a month-long transfer, using ode45 in MATLAB. Trajectories impacting the Earth or Moon are terminated upon
impact. Trajectories considered to have escaped the Earth-Moon system are terminated when r > 3 DU from the
barycenter.

Step 2: Select desired Earth-orbit destinations

The Earth-orbit regimes of geosynchronous Earth orbit (GSO), medium Earth orbit (MEO), low Earth orbit (LEO) are
popular destinations for active spacecraft. Each orbit regime houses an assortment of satellite-based services including
telecommunications, global positioning systems, and weather monitoring.

Within each regime, we select a planar circular orbit as a desirable Earth-orbit destination for inbound trajectories
from the L3-L5 Lagrange points: geostationary Earth orbit (GEO), half-GEO, and a 1000-km altitude LEO. The radial
distances, relative to Earth’s center, for each orbit are provided in Table 2.

Orbit Radius, km
GEO 42,164
MEO 26,578
LEO 7,378

Table 2: Selected orbit radii.
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Each of the selected Earth-orbits are modeled as two-body problem (2BP) solutions. The on-orbit velocity vector,
vorbit, is tangent to the radial position vector of the orbit relative to Earth, rorbit, and its magnitude is computed by the
circular velocity equation

vorbit =

√
µE

rorbit
(8)

where µE = 3.986∗105 km3/s2 is the gravitational parameter of the Earth. Vectors given in the 2BP are inertial, unlike
solutions of the CR3BP whose vectors are relative to the CR3BP rotating frame.

Step 3: Find Earth-orbit intersections

Along a CR3BP trajectory, the radial distance of the spacecraft (sc) relative to the Earth is computed as

r̄(t)sc/E = |r̄(t)− r̄E | (9)

where
r̄E = [−µ 0]T . (10)

The local minima of r(t)sc/E for t ∈ [0,2π] represent close approaches to Earth called perigees. For trajectories
attaining multiple perigees during the month-long propagation period, only the absolute minimum pass-distance is
recorded such that

rp = min(r(t)sc/E). (11)

We identify trajectories of interest when rp is located at or below the radius of GEO, indicating that the trajectory
intercepts Earth-orbit (potentially one of the desired Earth-orbit destinations selected in Table 2). For trajectories
satisfying rp ≤ rGEO, we plot rp as a function of ∆v1 and θ . By plotting this data, we are able to identify constraints
on the magnitude and direction of ∆v1 required for attaining Earth-orbit from L3-L5.

Furthermore, we flag trajectories with rp intersecting the relevant GEO, MEO, LEO radii, rorbit, such that

|rp − rorbit|< ε. (12)

where the tolerance is ε = .003∗ rorbit. These flagged trajectories will be examined in Step 4.

Step 4: Apply impulsive-maneuver to circularize trajectory into Earth-orbit

At perigee a second impulsive maneuver, ∆v̄2, is used to circularize the transfer trajectory into Earth-orbit. Typically,
computation of a velocity change at perigee involves only the magnitude difference between the pre- and post-burn
vectors (written in the same coordinate frame) is needed. However, Step 4 formulates the full-form vector difference
to account for a coordinate frame difference between our pre- and post-burn velocity vectors.

Recall that ∆v̄2 is an impulsive maneuver transferring the spacecraft from a cislunar trajectory with v̄p written in the
CR3BP rotating frame to an Earth-orbit with v̄orbit written in the inertial frame. A velocity vector in the CR3BP
rotating frame (R) can be expressed with respect to the inertial frame (N) using the transport theorem

N v̄(t) =
Nd
dt

(r̄(t)) (13)

=
Rd
dt

(r̄(t))+ωR/N ×R r̄(t) (14)

= Rv̄(t)+ ω̄R/N ×R r̄(t) (15)

where ω̄R/N = [0, 0, 1]T n.d. (out-of-plane direction) is the angular rotation rate of the CR3BP rotating frame relative
to the inertial frame.

Applying the transport theorem, the velocity change required by the second impulsive maneuver is computed as

∆v̄2 = v̄orbit − (v̄p + ω̄R/N × r̄p). (16)
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The total velocity change required to perform the cislunar transfer from the Lagrange Point to Earth-orbit sums the
magnitudes of the first and second impulsive maneuvers

∆vtot = ∆v1 +∆v2. (17)

We plot ∆vtot versus TOF to provide a comparison between cislunar transfers from L3-L5 to a desired Earth-orbit
destination selected from Table 2.

3.2 Survey Trajectories Offering Transfers to the Desired Earth-Orbit

The values of ∆vtotal and TOF are quantitative measures for evaluating a transfer’s fuel-efficiency and timely ma-
neuverability. In mission design, transfers offering minimum ∆vtotal or minimum TOF are preferred. Plotting ∆vtotal
versus TOF helps to better understand the tradespace of costs associated with transfers available from L3 −L5 to the
Earth-orbit domain. From this plot, we are able to identify families of minimum ∆vtotal and minimum TOF transfers,
each family consisting of 5-10 trajectories. Spatially plotting these families then provides a geometric understanding
of the cislunar pathways spacecraft are likely to travel when transferring from the LPs to Earth-orbit.

4. RESULTS

4.1 ∆v1 Magnitude and Direction Constraints for Attaining Earth-Orbit from the Lagrange Points

Plotting rp as a function of ∆v1 and θ in Figures 3, 5 and 7 shows that Earth-orbit can only be attained when applying
certain magnitudes and directions of the ∆v̄1 impulsive maneuver. The minimum values of ∆v1 required to reach Earth-
orbit from L3, L4 and L5 are given in Table 3. These values correspond to the darkest blue contour curve on each plot.
All values of ∆v1 between this respective minimum and the maximum tested value 0.8 DU/TU produce trajectories
that intercept Earth-orbit. Table 4 identifies limited ranges of θ , unique to the Lagrange point trajectories depart from,
for which the Earth-orbit domain is intercepted. These ranges correspond to the minimum to the maximum departure
angle recorded by each contour plot. While Figures 5 and 7 contain multiple sections or bands of contour curves, an
absolute maximum and absolute minimum departure angle can still be determined. (Note that the departure angles
from L4 in Figure 3 have been wrapped from [-180 180] degrees and the departure angles from L3 and L5 in Figures 5
and 7 have been wrapped from [0 360] degrees.)

Using the minimum ∆v1 values and reduced θ ranges found, we can reduce the grid search size by approximately half
for each Lagrange point. Thus, reducing computation time by eliminating parameter values for which Earth-orbit was
not attainable.

LP of Origin Min ∆v1, km/s
L4 0.347878
L5 0.337646
L3 0.429732

Table 3: Minimum ∆v1 required to perform transfers from the respective Lagrange point to Earth-orbit.

LP of Origin θ Range, degrees ∆θ , degrees
L4 [-78.68, 44.09] 122.77
L5 [106.43, 275.98] 169.55
L3 [23.78, 167.77] 143.99

Table 4: Range of θ enabling transfers to Earth-orbit from the respective Lagrange point. ∆θ calculated to show
spread of the range values.

The minimum ∆v1 values and θ ranges, shown in Tables 3 and 4, are found strictly for a time of flight limited to 2π

TU and a maximum tested ∆v1 of 0.8 DU/TU. Increasing the assumed maximums for TOF duration or delta-v will
alter these values; an investigation into how significantly the data will adjust has been left for future work.
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Fig. 3: L4 perigee distances as a function of the magnitude of ∆v1 and departure angle θ .

(a) Draw line at rGEO (b) Corresponding trajectories from L4 to GEO

Fig. 4: The set of points along the horizontal black line rp = rGEO represent the parameter set (∆v1, θ) for trajectories
intersecting GEO.

Each contour plot depicted in Figures 3, 5 and 7 presents a patterned structure of sequential, enveloping curves that
plot rp as a function of ∆v1 and θ . The plotted rp range from 6,738 km to 42,164 km – the radius at Earth’s surface
to GEO. By selecting a perigee radius according to a desired Earth-orbit destination, the set of all possible parameters
∆v1 and θ for attaining that orbit are provided by (1) drawing a horizontal line across the contour plot at the desired
rp value and (2) finding points of intersection between the contour curves and line drawn (as shown in Figure 4).

The L4 contour plot in Figure 3 shows the smoothest continuation from one contour curve to the next forming a single
wedge in the shape of a skewed “W”. A “flat-lining” phenomenon, which occurs on all three contour plots, disrupts
the structure presented by the contour curves. Occurring at rp = 6,378 km, the “flat-line” indicates instances where
trajectories have been terminated upon impacting the Earth, their perigees thus measured as Earth’s average radius.
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Fig. 5: L5 perigee distances as a function of the magnitude of ∆v1 and departure angle θ .

(a) Points of interest (b) Corresponding trajectories from L5

Fig. 6: The minimum perigee radius is dependent on the maximum allowed transfer duration.

Trajectories originating from L5 attain Earth-orbit for four distinct groupings of departure angles (Figure 5). Addition-
ally, it can be noted that the lowest magnitudes of ∆v1 occurred for departure angles in the 142-145◦ range. The abrupt
dip in the contour curves seen for approximately rp < 2,500km and 185◦ < θ <225◦ is due to trajectories that attain
a low-altitude, third perigee within the 2π TU maximum flight duration while other trajectories only complete two
higher altitude close approaches with Earth before the maximum time of flight terminates trajectory propagation. An
example of this is illustrated in Figure 6 – two trajectories having similar ∆v1 parameterization (i.e. ∆v1 = 0.675292
km/s; θ ∈ (207.40◦, 207.87◦) are propagated for the maximum flight duration. While the trajectories travel along
similar pathways, only one completes a third perigee within the month-long time of flight. This third perigee occurs
at an approximate 8,700-km radius in comparison to the previous 23,500-km perigees. Being the absolute minimum
radius of perigee, this third perigee is recorded on the contour plot for such trajectories. The key take-away from this
example is that the absolute minimum perigee attained along a transfer is dependent on the allowed maximum TOF.
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Fig. 7: L3 perigee distances as a function of the magnitude of ∆v1 and departure angle θ .

(a) Point of intersection (b) Corresponding trajectories from L3

Fig. 8: Intersection points on the contour plots identify two solutions for transferring to the same Earth-orbit.

The L3 contour plot in Figure 7 shows three groupings of departure angles - the center section featuring curves which
overlap one another. Points of intersection between contour curves identify where differing magnitudes of ∆v1 from
the same departure angle, θ , result in the same rp. Figure 8 provides an example of how two trajectories, originating
from L3 with θ = 74.13◦ but having different impulsive maneuver magnitudes, can provide different transfer options to
Earth-orbits within 3-km radial distance of each other. In this case, the difference of approximately 184 m/s imparted
along the same departure angle resulted in geometrically similar trajectories. However, it should be noted that minimal
differences in ∆v1 magnitude or direction can result in significant variation between the spatial pathways traveled by
the corresponding trajectories.
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4.2 Minimum-∆vtot and Low-TOF Transfer Families

In the realm of trajectory design, the primary measures of cost associated with performing a trajectory transfer are ∆vtot
and TOF. Both of these measures factor into the strategic value and applications of trajectory transfers. Trajectories
having lower ∆vtotal are more fuel-efficient allowing a spacecraft to allocate a greater fraction of its fuel-reserve for
mission operations once arriving to the orbit destination. Defining what constitutes a timely transfer is often mission-
dependent. The results of this section examine the ∆vtot and TOF costs associated with performing transfers between
the selected Lagrange points and desired Earth-orbits.

The results of this section have been grouped by Earth-orbit destination: GEO, MEO, or LEO, rather than by a trajec-
tories’ originating Lagrange point. This is done to aid in the visualization of results for mission planning purposes. We
are exploring transfers that enable storage of a spacecraft at one of the Lagrange points to replenish satellite constel-
lations in operation around Earth. In this regard, the destination orbit of the transfer is arguably more important than
the trajectory’s starting location. For example, a transfer delivering a telecommunications satellite intended to replace
a non-operational spacecraft on-orbit in GEO must arrive to the GEO-belt. A satellite’s orbit of operation is a mission
requirement while its storage location is open for selection based on time of flight or ∆vtot constraints allotted for the
transfer.

For each Earth-orbit destination, Table 5, records ∆vtot and TOF pairings corresponding to the absolute minima of
these quantitative measures. The values displayed by the table have been gathered from Figures 9a, 9c and 9e. Recall
that these results are constrained by a month-long maximum TOF and a 0.8 DU/TU ≈ 0.81854 km/s maximum for
∆v1.

Destination Optimality L3 L4 L5
GEO min-∆vtot (1.46449, 19.7512) (1.36149, 26.7778) (1.36701, 24.9810)

min-TOF (1.90292, 3.5434) (1.69679, 15.7083) (1.90757, 3.5813)
MEO min-∆vtot (1.80169, 27.2911) (1.88148, 23.7571) (1.9462, 26.4517)

min-TOF (2.15963, 7.4478) (2.19688, 14.9020) (2.25213, 3.6572)
LEO min-∆vtot (3.59238, 27.1214) (3.64161, 19.8987) (3.60083, 26.9225)

min-TOF (3.70308, 18.1813) (3.74874, 4.6078) (3.74517, 26.2992)

Table 5: Optimal transfers listed by their (∆vtot [km/s], TOF [days]) costs. Grouped by the Lagrange point of origin
and Earth-orbit destination for the transfer, each cell of the table contains both the minimum ∆vtot and minimum TOF
transfers for side-by-side comparison.

GEO Transfers: Considering the trajectories that provide transfers to GEO from each Lagrange point, transfers from
L3 or L5 offer the shortest TOF, ranging from about 3-4 days, with comparable ∆vtot costs on the order of 1.90 km/s.
Least expensive transfers are available from L4 and L5, on the order of 1.36 km/s, but compromise increased fuel-
efficiency for a longer transfer time of 3-4 weeks. Transfers from L5 to GEO include both minimum ∆vtot and minimum
TOF options. Enabling the selection of a trajectory that minimizes either ∆vtot or TOF from the same Lagrange point is
advantageous; this allows mission planning to account for both time-critical and fuel-limited scenarios when returning
to Earth-orbit. This is especially true as there is an approximate 540 m/s difference between the impulsive maneuvers
required to perform the minimum ∆vtot and minimum TOF solutions from L5 to GEO.

MEO Transfers: Transfers arriving to MEO from L5 can be completed in approximately three-and-a-half days at the
cost of 2.25 km/s to perform the two impulsive velocity changes. Transfers from L3 offer the lowest ∆vtot of 1.80 km/s
but take four weeks to complete. L4 to MEO transfers feature median ∆vtot costs and TOF durations, and may not be
optimal solutions. MEO transfers will need to chose between the TOF or delta-v mission requirement as being most
imperative to the mission.

LEO Transfers: Entering into LEO from the Lagrange points is the most fuel-demanding maneuver sequence when
comparing transfers to the three Earth-orbit destinations. Performing these transfers costs between 3.59-3.75 km/s,
having varied flight durations. The fastest LEO transfer originates from L4 and is completed in 4.6 days requiring
approximately 3.75 km/s. The absolute minimum ∆vtot occurs for transfers from L3 completed in 27.3 days. The
delta-v difference between the minimum ∆vtot and TOF solutions from each Lagrange point range from 107-144 m/s.
Selection of a transfer to LEO, will likely be driven by TOF constraints and spatial geometry of the trajectory in
accordance with mission requirements for the transfer rather than delta-v constraints.
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Overall, selection of a minimum TOF versus a minimum ∆vtot transfer will need to consider the additional 0.150-
0.540 km/s cost required to reduce the 3-4 week transfer duration of the absolute minimum ∆vtot solution to the 3-5
day transfer duration of the absolute minimum TOF solution.

4.3 Surveying the Spatial Representation of the Transfer Families

While the preceding subsection discussed the absolute minimum TOF and ∆vtot solutions for completing transfers
from the Lagrange points to Earth-orbit, it should be noted that these solutions only encompass a select few of the total
trajectory options for attaining Earth-orbit. Figures 9b, 9d and 9f show the minimum TOF or minimum ∆vtot families,
colored according to value of their ∆vtot cost, as a subset of the complete set of transfers to the desired orbit, colored
in grey. For ∆vtot or TOF requirements featuring intermediary values, the graphs displayed in Figures 9a, 9c and 9e
are tools for comparing and finding suitable trajectories to meet delta-v or TOF requirements.

The collection of minimum-∆vtot and minimum-TOF families identified in the previous subsection produce an assort-
ment of spatial trajectories for traveling from the three selected Lagrange points to a desired Earth-orbit. Examining
the regions of cislunar space through which these trajectories travel and their spatial geometries, we can identify
qualitative characteristics and patterns attributed to each transfer family.

In Figure 9, we see that all transfers inject into prograde Earth-orbit. This is due to the maximum TOF and ∆v1 range
limit imposed during the grid search for solutions. A higher magnitude of ∆v1, and likely a longer TOF, would be
needed to search for potential retrograde orbit solutions.

The shortest-TOF trajectories can be geometrically identified by the “S”-shaped paths passing directly between the
respective Lagrange point and Earth-orbit radius (orbit marked in yellow) in Figure 9. An easy way to locate these
transfers on the spatial plots is to draw an imaginary line from the Lagrange point to Earth and identify the skewed
“S”-shaped trajectories centered about that line. These minimum-TOF transfers only attain one perigee, at which a
circularizing maneuver injects the spacecraft into Earth-orbit.

The minimum ∆vtot transfers travel along less-direct paths to reach Earth-orbit from the Lagrange points. These
trajectories form lobes surrounding the Earth, often attaining 2-3 perigee before intersecting the desired Earth-orbit
radius to within the ε tolerance. For trajectories arriving to GEO and MEO, the first close approach to Earth is just
outside the GEO or MEO radius and must make a second pass before obtaining perigee at the exact desired Earth-orbit
radius. In these cases, corrective maneuvers could be used to prematurely intersect with the desired GEO or MEO
orbit upon the first perigee, rather than waiting for the second perigee, if time is critical. This observation does not
hold for the LEO transfers. Their initial close approaches to Earth are high-altitude passes not in the vicinity of LEO.

We also see the tendency for a subset of the minimum ∆vtot transfers, those originating from L4, to travel through lunar
vicinity (see Figures 9b, 9d and 9f). These trajectories attaining gravity-assisted close approaches to the moon before
being redirected towards Earth. Such transfers would enable mission operations in lunar vicinity (potentially entering
and departing lunar orbit) before continuing on to arrive at the respective Earth-orbit destination.

4.4 Example Mission Planning Application

The strategic value of certain trajectories over others will be application dependent - balancing the time of flight re-
quirements and propellant budget allotted for the trajectory transfer. For example, say a repository of backup satellites
was placed in storage at one of the Lagrange points, at the ready to replace communications satellites rendered non-
operational on-orbit in GEO. In the event that a satellite unexpectedly ceases functional operation, a fast transfer time
enabling rapid replacement would be preferred. On the other hand, a scheduled satellite replacement occurring at end-
of-life would require a less urgent transfer time and prioritize low fuel cost. Placing such a repository of replacement
satellites in storage at L5 would enable both mission scenarios.
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(a) ∆vtot versus TOF for transfers to GEO. (b) Minimum ∆vtot or minimum TOF transfers from L3-L5 to GEO.

(c) ∆vtot versus TOF for transfers to MEO. (d) Minimum ∆vtot or minimum TOF transfers from L3-L5 to MEO.

(e) ∆vtot versus TOF for transfers to LEO. (f) Minimum ∆vtot or minimum TOF transfers from L3-L5 to LEO.

Fig. 9: The left column of figures provides a comparison of ∆vtot versus TOF for attaining each Earth-orbit at GEO,
MEO or LEO. The right column of figures spatially represents the minimum ∆vtot or minimum TOF transfers, colored
according to their ∆vtot cost. Trajectories in grey do not represent these minimums but still offer a transfer from
Lagrange point to Earth-orbit. In Figure 9c, value at (27.3215, 5.58701) omitted. In Figure 9e, values at (27.3215,
9.34059), (27.3215, 5.94314), (27.3215, 5.34989), and (27.3215, 5.21998) omitted.
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5. CONCLUSION

This investigation analyzed two-impulse transfers returning a spacecraft from the L3, L4 and L5 regions to Earth-orbit.
The magnitude and direction of the initial impulsive maneuver applied at the Lagrange point determines the radius of
Earth-orbit that the transfer will intercept and circularize into. Plotting minimum TOF and minimum ∆vtot transfer
families revealed geometric characteristics of the families and common pathways traveled through cislunar space from
the Lagrange points to Earth-orbit.

Future work will map three-dimensional corridors of travel existing in cislunar space by expanding analysis into the full
CR3BP dynamics model and implementing continuation methods such as Monte Carlos research. Applied to cislunar
architecture design, this work becomes beneficial to space situational awareness and space traffic management. The
volume of cislunar space is vast – monitoring and tracking satellites across this region takes time and resources. These
corridors of travel, characterized as low-cost routes for traveling between regions in the Earth-Moon system, identify
sub-volumes of cislunar space where spacecraft are most likely to be located. We can focus and refine the overall
volume of space an observer satellite must monitor in order to perform target tracking in the cislunar domain.

Additionally, grouping of the minimum ∆vtot and minimum TOF transfer families could be improved by incorporating
clustering algorithms. The trajectory design process could be made more realistic through the inclusion of low-thrust
maneuvers used to assist circularizing the trajectory into Earth-orbit.
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