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ABSTRACT

Improved methods for independently detecting and monitoring spacecraft are vital for Space Domain Awareness given
the rapidly increasing number of active satellites in Earth orbit. Beyond simply identifying new satellites or reacquiring
tracks after loss of custody, independent monitoring can mitigate cross-tagging risks and improve confidences in
conjunction assessments for collision avoidance. Passive radio frequency (RF) data can provide a powerful source
of information for this task by identifying periodic signatures, even if the structure of such signals is not known a
priori [7]. Compared to electro-optical measurements, RF signal data can be collected regardless of the illumination
geometry and satellite material makeup. Furthermore, passive RF signals can be observed beyond the range of typical
active radar sensors. However, many of the algorithms designed to detect and characterize unique signals from the
broad RF spectrum suffer from significant ambiguities in resulting pseudo-range measurements due to the periodic
nature of the signals. Traditional precision tracking algorithms (e.g., Kalman filters) and initial orbit determination
techniques require external reference data to disambiguate these measurements. Employing such external data can
prevent the data from being used to establish an independent estimate. In this paper, we propose an initial orbit
determination algorithm designed to exploit ambiguous RF data from arbitrary signals, even when there is a complete
lack of a priori information about the transmitter orbit.

To remove the unknown transmitter clock from the measurement model, state estimation is performed on time differ-
ence of arrival (TDOA) and frequency difference of arrival (FDOA) data from simultaneous pseudo-range and Doppler
measurements of the RF signal. Given a lack of prior information, the algorithm begins by defining a coarse set of
Keplerian state vectors across a range of altitudes. These initial guesses are assumed to be very poor, preventing
linearization of the estimation problem. The proposed algorithm adopts a basin-hopping optimization technique with
direct-search minimization following a three-stage approach, at first using only FDOA data and information about
the receiver positions to drive convergence. We then refine the FDOA estimate by restricting the search space using
a set of visibility constraints, and finally perform non-linear estimation using the full data set including ambiguous
TDOA data, enabling us to locate the global minimum from among many local minima in a computationally tractable
manner. To improve convergence on a wide range of orbits – spanning varied eccentricities, inclinations, and altitudes
– we transform the Keplerian state vector to Poincaré orbital elements for optimization. The resulting initial orbit
estimate can be used to disambiguate the measurement data and seed precision tracking algorithms independent of
prior information.

We demonstrate the flexibility of this approach by simulating measurements from random IGS stations for a diverse
set of example orbits, as may be done in a professional observation network. To validate our results, we also con-
sider real measurements from these sites, focusing on available GNSS signal data provided through NASA’s Crustal
Dynamics Data Information System (CDDIS) archive with manually introduced ambiguities. The results from this
study support the use of the presented initial orbit determination algorithm in leveraging ambiguous measurements
of passive radio frequency signals for the independent detection, tracking, and characterization of active spacecraft,
addressing significant challenges in the use of such measurement data.
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1. INTRODUCTION

The increasingly crowded orbital environment requires significant expansions of object discovery and tracking capa-
bilities to maintain safety and sustainability. In particular, fully independent detection and tracking systems should
be established to identify new satellites, reacquire satellites in the event of cross-tagging or loss of custody (e.g., due
to unexpected maneuvers), and improve state estimation for confident collision avoidance by integrating independent
data.

Recent work has shown promise in discovering and characterizing so-called “signals of opportunity” from active space-
craft [7]. By blindly identifying unique signals from the broad spectrum of passive radio frequency (RF) data, trans-
mitters can be independently found without any a priori information of the satellite state (i.e., published ephemerides).
These signals can be detected at very long ranges, and can be collected irrespective of whether the satellite is optically
visible due to illumination geometries and reflective satellite surfaces. Furthermore, the detection of a signal followed
by subsequent orbit determination ties a trackable physical spacecraft to characteristic information about its active
nature and transmitted frequency. These factors make passive RF signals particularly noteworthy for advancing Space
Domain Awareness.

However, the process of detecting periodic signals can result in pseudo-range ambiguities which must be removed prior
to most precision estimation and even initial orbit determination algorithms. If no assumptions about the transmitter
orbit are made, disambiguation of the measurement data can be extremely difficult. We present an algorithm for initial
orbit determination of passive RF signals assuming no prior information, producing state estimates which can be used
to disambiguate the data and seed precision estimation techniques. We demonstrate the flexibility and robustness of
our approach on simulated data from a global set of IGS stations, validating the results on selected real data.

2. BACKGROUND

2.1 Measurment Data

Consider a transmitting satellite sv and two stationary receivers rx1 and rx2. At time t, the geometric range ρ and
range-rate ρ̇ can be derived by comparing position and velocity state vectors x(t) and ẋ(t) between the transmitter and
receiver. Our objective is to use observable measurements of the range and range-rate to estimate the initial orbit state
xsv(t0).

ρi(t) = ∥xrxi(t)−xsv(t)∥2 (1a)

ρ̇i(t) =
(xrxi(t)−xsv(t))T (ẋrxi(t)− ẋsv(t))

∥xrxi(t)−xsv(t)∥2
(1b)

The pseudo-range Rρ (in meters) can be measured by differencing the times of transmission (t0) and reception at
either receiver (t1, t2). The model includes clock (δ t), tropospheric and ionospheric delays (δT ), and other effects and
statistical uncertainties (εt ) – let c be the speed of light.

Rρi = c(t1 − t0)≈ ρi + c(δ trxi −δ tsv)+δTi + εt (2)

For some signals t0 and δ tsv may be unknown. If a unique start to the transmitted signal can be identified at either
receiver, the time difference of arrival (TDOA, ∆T , in seconds) can be used to cancel out these unknowns.

c∆T = Rρ1 −Rρ2 = c(t1 − t2)≈ (ρ1 −ρ2)+ c(δ trx1 −δ trx2)+(δT1 −δT2 + εt) (3)

In practice, the start of a transmitted signal may be unknown, and a periodic signal received by either observer may be
measured at a different number of cycles. This results in a frequency-based ambiguity (Tf ) acting as a modulus on the
measurement (the “ mod ” operator).

c(∆T mod Tf ) = c((t1 − t2) mod Tf )≈ ((ρ1 −ρ2)+ c(δ trx1 −δ trx2)+(δT1 −δT2 + εt)) mod (cTf ) (4)

It is assumed that any change in the satellite position xsv or drift in δ tsv between the transmission time of either cycle
is dominated by other model uncertainties in εt and the orbit propagation model. These simplifying assumptions
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are not necessarily detrimental for coarse initial orbit determination, but errors should be mitigated in precision orbit
determination following the initial estimate.

The Doppler shift Fρ̇ (in meters/second) can be measured by differencing the transmitted carrier frequency ( f0) and
either received frequency ( f1, f2). The model involves clock drift rates (δ̇ t), drift in tropospheric and ionospheric delay
( ˙δT ), and other effects and uncertainties (ε̇t ).

Fρ̇ =
c
f0
( f1 − f0)≈ ρ̇ + c(δ̇rx − δ̇sv)+ ˙δT + ε̇t (5)

For some signals δ̇ tsv may be unknown, and the frequency difference of arrival (FDOA, ∆F , in hertz) is used to cancel
out this unknown.

c
f0

∆F = Fρ̇1 −Fρ̇2 =
c
f0
( f1 − f2)≈ (ρ̇1 − ρ̇2)+ c(δ̇rx1 − δ̇rx2)+( ˙δT 1 − ˙δT 2 + ε̇t) (6)

For the estimation model, we will assume that the environmental delays δT and ˙δT are again dominated by other
model uncertainties and the orbit propagation model. Once we have estimated the satellite state, the unknown trans-
mitter clock δ tsv and drift δ̇ tsv can be solved for separately.

2.2 Disambiguation

For this work, we assume the range measurements ρmeas. for evaluating the TDOA data have a Tf -second ambiguity
known from observing the RF signal. Letting N f be the integer ambiguity corresponding to the number of Tf -second
phase cycles, the relationship between the ambiguity and range measurement is straightforward.

ρ(t) = ρmeas. +N f × (cTf )≈ ∥xrxi(t)−xsv(t)∥2 (7)

If we know the transmitter state, we can disambiguate the range measurements through simple algebra, rounding
normally to the nearest integer.

N f = round
(
∥xrxi(t)−xsv(t)∥2 −ρmeasurement

cTf

)
(8)

However, in our application we assume no prior information about the transmitter, and must perform state estimation
prior to disambiguating the measurement data. Note that for effective disambiguation the exact transmitter position
need not be known, but only to an accuracy proportional to cTf . For example, a sufficient upper bound for resolving a
1ms ambiguity would be a maximum TDOA measurement residual of 150km.

2.3 State Estimation

Given N TDOA/FDOA measurements collected at various transmission times and receiver pairs {ti,(rxi
1,rxi

2)}N
i=1, the

initial orbit state x∗sv := xsv(t∗) must be propagated in time from a common initial epoch t∗ to each measurement epoch
ti. We will perform this transformation using the standard Simplified General Perturbations-4 (SGP4) propagator,
including atmospheric drag [16].

x∗sv := SGP4(xsv(t∗), t∗, ti) (9)

The estimated state x̂∗sv is solved to minimize some residual function comparing the actual measurements {∆i
T ,∆i

F}N
i=1

to those estimated from the above models {∆̃i
T (x∗sv), ∆̃i

F(x∗sv)}N
i=1. We assume that the TDOA and FDOA measurements

are independent and consider a cost function weighting time and frequency differently through σT DOA and σFDOA —
these weights could include other considerations such as trustworthiness of each receiver pair, observability, and so
on.

JT DOA(xsv(t∗0 )) =
N

∑
i=1

σ−2
T DOA

(
(∆i

T − ∆̃i
T ) mod (cTf )

)2
(10a)

JFDAO(xsv(t∗0 )) =
N

∑
i=1

σ−2
FDOA

(
∆i

F − ∆̃i
F
)2

(10b)

x̂∗sv = arg min
xsv(t∗0 )

(JT DOA(xsv(t∗0 ))+ JFDAO(xsv(t∗0 ))) (11)
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If a good initial state estimate is known and the measurements were non-ambiguous, many established techniques exist
for precision orbit determination (OD) — e.g., Kalman filtering. However, we are concerned with blind initial orbit
determination (IOD) having no a priori knowledge. Many batch least squares [13, 17] or minimum variance estimators
[5, 2] classically used for IOD depend upon linearization of the measurement and dynamics models, thus requiring
some reasonably accurate state estimate x̂∗sv. Non-linear and probabilistic solvers such as Gaussian mixture filters [6,
14] typically also require reference trajectories for optimization, use other data such as electro-optical measurements
to avoid uncertainties in RF measurements, and are frequently limited to select orbital cases. Beyond this concern
with a priori knowledge, many OD and IOD methods concerned with TDOA data also ignore the inherent ambiguities
involved with blindly detected periodic signals, and disambiguation is not possible until the state is estimated to
reasonable accuracy [7]. This work attempts to address these concerns for enabling fully independent IOD using
passive RF data including ambiguous measurements.

Fig. 1: Full TDOA+FDOA residual cost function evaluated over two-dimensional slices of the Keplerian state-space
around truth for a simulated Galileo GNSS satellite (NORAD 40889, Section 3.3). Lower residual costs are shown
in yellow with the true TLE state circled in black. The red borders denote states visible above the horizon at all
measurements, and the pink borders denote altitude and eccentricity constraints (Section 3.1.2).

3. METHODS

3.1 Optimization

3.1.1 Poincaré Orbital Elements

The state vector describing the satellite position and velocity coordinates are typically described by an equivalent
unique set of parameters defining the orbit characteristics. The classical Keplerian orbital elements include the semi-
major axis (a), eccentricity (e), inclination (i), right ascension of the ascending node (Ω), argument of perigee (ω), and
mean anomaly (M). However, these elements result in singularities for circular and/or equatorial orbits, and half of the
elements suffer from phase wrapping concerns. It is therefore useful to transform the elements into an equivalent set
with better behaviors. The transform will also prove convenient for bounding the search space of the solver, as will be
discussed in Section 3.1.2.

The Delaunay elements describe the same vector in terms of canonical variables, conjugate coordinate-momenta pairs
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useful in describing the Hamiltonian dynamics of the system. The classical Delaunay elements consist of the conjugate
pairs (M,L), (ω,G), and (Ω,H) — where variable G defines the angular momentum of the orbit [15].

L =
√

µa, G = L
√

1− e2, H = Gcos i (12)

The so-called modified Delaunay variables are derived in terms of the mean longitude (λ ) and longitude of periapsis
(ω +Ω). We will refer to these variables as the conjugate pairs (λ ,L), (p,P), and (q,Q)[1, 8].

λ = M+ω +Ω, L = L (13a)
p =−ω −Ω, P = L−G (13b)
q =−Ω, Q = G−H (13c)

From this formulation we derive the Poincaré orbital elements, a set of canonical and equinoctial variables which
are non-singular for circular and equatorial orbits (in either case, one of the conjugate pairs will go to zero). These
elements will be referred to as (λ ,L), (x1,y1), and (x2,y2) to avoid confusion with the Delaunay variables.

x1 =
√

2Psin p, y1 =
√

2Pcos p (14a)

x2 =
√

2Qsinq, y2 =
√

2Qcosq (14b)

The convenient properties of Poincaré elements mentioned above and with regards to bounding constraints discussed
in Section 3.1.2 below make this space preferable to Keplerian elements. However, as the SGP4 model propagates Ke-
plerian state vectors, we simply apply the forward and inverse transforms immediately before and after any necessary
optimization steps. The inverse transform from Poincaré back to Keplerian elements is straightforward [4].

p = tan−1 x1

y1
, q = tan−1 x2

y2
(15a)

P =
1
2
(x2

1 + y2
1), Q =

1
2
(x2

2 + y2
2) (15b)

G = L−P, H = G−Q (15c)

a =
L2

µ
, e =

√
1− G2

L2 , i = cos−1 H
G

(15d)

Ω =−q, ω = q− p, M = λ + p (15e)
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(a) Keplerian elements

(b) Poincaé elements

Fig. 2: FDOA cost function evaluated over two-dimensional slices of the Poincaré state-space around truth for a
simulated Galileo GNSS satellite (NORAD 40889, Section 3.3). Lower residual costs are shown in yellow with the
true TLE state circled in black. The red borders denote states visible above the horizon at all measurements, and the
pink borders denote altitude and eccentricity constraints (Section 3.1.2).
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3.1.2 Bounded Minimization

The optimization problem for state estimation defined in Eq. 11 is complicated by the high degree of non-linearity
in the measurement residual cost function (see Fig. 1). Given possible concerns with evaluation of the numerical
derivative, we opt to use a direct-search algorithm, in particular the Nelder-Mead downhill simplex algorithm[9].

While the angular components of a given state vector can suffer from phase wrapping, conveniently mitigated in
Poincaré elements, the search space can be bounded (and normalized). In particular, we can bound the semi-major
axis (either a or L) between a minimum and maximum altitude of choice — e.g., between 200m and 50,000km altitude,
or narrower altitude bands. We also can bound the eccentricity given prior constraints or a reference altitude are f such
that the perigee and apogee (amin,amax) do not violate certain bounds.

emax = min
{

1− amin

are f
;

amax

are f
−1

}
(16)

If the semi-major axis is restricted to a narrow band, emax may still be evaluated using a wider apogee/perigee pair to
enable exploration of highly eccentric orbits. It is assumed that the emax limit is a sufficiently extreme upper bound on
the true eccentricity when setting are f to the hypothesized semi-major axis prior to minimization. It should be noted
that this emax bound is defined using a fixed reference altitude to avoid a dependency between the searchable state
space and the current state vector during minimization.

Fig.s 1 and 2 above illustrate altitude and eccentricity bounds using the known TLE as the reference trajectory. During
minimization, several initial guesses at various reference altitudes can be solved in parallel.

In Keplerian space only these two elements are constrained and half of the terms suffer from phase wrapping (M,ω,Ω).

However, in Poincaré space both x1 and y1 are bounded between ±
√

2Lmax(1−
√

1− e2
max), and x2 and y2 are bounded

between ±
√

4Lmax. While the eccentricity constraint does bound the minimum radius of the [x2,y2] vector, it is more
convenient to let the bound on {x1,y1} restrict the minimum values {x2,y2} can take through their shared terms. Thus,
the Poincaré element set only the suffers phase wrapping concerns in λ and all other elements are constrained through
a and e.

Upon constraining the orbital elements, the explorable state-space can be normalized onto [0,1]. To account for phase
wrapping in λ , we normalize [0,2π]→ [0,1], and permit exploration over the domain [−0.5,1.5].

3.1.3 Basin-Hopping

The simplex algorithm we use to perform minimization is unable to guarantee that a convergent solution is the global
minima, especially under the significant range ambiguities in the TDOA. We therefore employ a stochastic basin-
hopping algorithm which iteratively performs minimization and random state permutation[18, 11]. The step size is
adaptively updated from an initial value based on probabilistic step acceptance tests to tractably explore the residual
space. Similar to how the search space can be constrained in the local minimization problem, the acceptance test
can also be controlled in the global minimization problem, enabling the step to be forcibly accepted or rejected. We
leverage this capability to improve convergence as discussed in Section 3.2.1. We implemented the basin-hopping
algorithm provided in SciPy; the number of iterations for the basin-hopping and minimization steps are set empirically
to achieve accurate results in an acceptable run-time.

3.2 Sequential Algorithm

The IOD state estimate from Equation 11 cannot be solved for directly due to the substantial non-linearities introduced
by the range ambiguity and lack of an informative prior. Attempting to apply the basin-hopping algorithm as-is
will either take an intractable amount of run-time to solve or will fail outright. We instead consider a sequence of
optimization problems, as shown in Fig. 3, to gradually accumulate information and constrain the problem.
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Fig. 3: Flowchart describing our initial orbit determination process.

3.2.1 Global FDOA optimization

There are several local minima in the FDOA residual cost function, mainly distributed as a function of the semi-major
axis. If we apply bounds on these variables in the Poincaré element space, and solve in parallel for several narrow
altitude “bands”, the cost space can be heavily simplified. As the basin-hopping algorithm will readily propose a
random state for subsequent steps, the other orbital elements for our initial guesses may be arbitrarily set to zero.

Table 1: Hypothesis reference trajectories used to begin the global FDOA optimization process. All other Keplerian
orbital elements are set to zero.

Minimum Altitude (km) Maximum Altitude (km) Range of Semimajor Axis Bounds
(km)

200 100 50
1,000 2,000 100
2,000 10,000 1,000

10,000 50,000 10,000

Only a small fraction of the state-space produces trajectories visible to all observers over the measurement set, i.e.
producing transmitter positions which are above the horizon relative to each observer at appropriate measurement
epochs. A straightforward approach would be to bound the search space to this domain, but we do not know this
subspace a-priori. We can steer the global solver to the visible domain by evaluating a sum Jϕ of the topocentric
elevation angles ϕ from the receivers to the transmitting satellite over the measurement set, and evaluating the sum
whenever the basin-hopping algorithm proposes a new perturbed state.

Jϕ (xsv(t∗0 )) =
N

∑
i=1

∑
rx j

(
90◦−ϕ(SGP4(xsv(t∗), t∗, ti)−xi

rx j
)
)2

(17)

If the previous minimization solution is within the visible domain (e.g., ϕ(xi
sv − xi

rx j
) ≥ 0◦ ∀i, j), we will apply the

standard Metropolis acceptance test if the proposed step remains in the visible domain and otherwise reject the step.
If the previous solution is not in the visible domain, we will only accept proposed steps which reduce the visiblity
cost function Jϕ . For the Metropolis acceptance test, the temperature is informed by an initial evaluation of the
measurement residual cost function.
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If the final solution within an altitude band after a given number of basin-hopping iterations is not within the visible
domain, we will discard the hypothesis from further analysis. Otherwise, we will use the final state estimate as the
initial hypothesis reference state for the next stage of the algorithm.

Fig. 4: Elevation-angle residual cost function Jϕ evaluated over two-dimensional slices of the Poincaré state-space
around truth for a simulated Galileo GNSS satellite (NORAD 40889, Section 3.3). Lower residual costs are shown
in yellow with the true TLE state circled in black. The red borders denote states visible above the horizon at all
measurements, and the pink borders denote altitude and eccentricity constraints (Section 3.1.2).
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(a) Full state-space. Red borders denote states visible above the horizon at all measurements, pink borders
denote altitude and eccentricity constraints.

(b) Zoomed-in view.

Fig. 5: FDOA cost functions evaluated over two-dimensional slices of the Poincaré state-space around truth for a
simulated Galileo GNSS satellite (NORAD 40889, Section 3.3). Lower residual costs are shown in yellow with the
true TLE state circled in black.
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3.2.2 Local FDOA optimization

Once we have identified an initial set of global solutions, we restrict the search space of each hypothesis to the visible
domain around the reference state using the aforementioned elevation-angle acceptance test. The temperature and
initial step-size for the basin-hopping algorithm and minimization algorithm are dramatically reduced, allowing for
significantly improved convergence in some cases.

3.2.3 Local TDOA+FDOA optimization

The second stage of our algorithm produces a state which may not be sufficient to disambiguate the TDOA data,
but which is close enough to enable basin-hopping to converge in a reasonable amount of time. Minimization is
performed the same as above, but using all TDOA and FDOA measurement data as defined in Eq. 11. The acceptance
test temperature is adjusted for the corresponding increase in the cost function from the new data, and the step size is
once again reduced. If multiple hypotheses have survived to this point, the final IOD state estimate is determined to
be the one with the lowest post-fit measurement residual.
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(a) Full state-space. Red borders denote states visible above the horizon at all measurements, pink borders
denote altitude and eccentricity constraints.

(b) Zoomed-in view.

Fig. 6: TDOA+FDOA cost functions evaluated over two-dimensional slices of the Poincaré state-space around truth
for a simulated Galileo GNSS satellite (NORAD 40889, Section 3.3). Lower residual costs are shown in yellow with
the true TLE state circled in black.
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3.3 Test Data

To test the flexibility of our approach, we simulate a diverse set of space objects inspired by Riel et al[12], capturing a
wide range of altitudes, eccentricities, and inclinations. We simulate pseudo-range and Doppler measurements from a
globally distributed sensor network for a 24 hour period from April 12-13, 2024. As the list includes objects at vastly
different altitudes, the measurement cadence is adjusted to be longer for higher-altitude orbits as done in operational
practice, and for consistency a subset of 100 measurement samples (50 TDOA and 50 FDOA) is selected for each
object. We also simulate each scenario as having an normally distributed standard deviation of 10m in range and 10Hz
in frequency, a uniformly distributed satellite clock bias up to 1ms, and a pseudo-range ambiguity of 1ms. For the
simulated data in this work, environmental factors such as ionospheric delay are ignored, and the position and clock
biases of the observers are known.

To validate our results on the 22 simulated objects covered in this work, we consider 20 real GNSS satellites using real
30-second observation data provided through NASA’s Crustal Dynamics Data Information System (CDDIS) [10, 3].
Of these real satellites, 16 belong to the GPS constellation in Medium Earth Orbit (MEO), 3 belong to the QZSS
constellation in Geosynchronous Earth Orbit (GSO), and 1 belongs to the QZSS constellation in Geostationary Earth
Orbit (GEO). A 1ms ambiguity in manually introduced to this data, and the sensor network and observation period are
equivalent to the simulated tests.

The sensor network used in this work consists of 20 random International GNSS Service (IGS) Network stations
providing RINEX V3 format observation data with both pseudorange and Doppler measurements. The daily 30-
second observation data provides many more samples than necessary to this work, and we therefore considered a
smaller sub-sample to work with. We isolated the L1:CA data and downsampled to 20-minute observations at regular
epochs, and then removed samples below the median SNR for each station.

Table 2: Simulated objects considered in validating our algorithm.

NORAD Semimajor Axis (km alt.) Eccentricity Inclination (deg)
25544 416.37 0.0005 51.64
36508 719.42 0.0005 92.03
27386 763.34 0.0001 98.28
5679 944.44 0.0010 70.00

24279 1082.22 0.0301 98.70
33105 1310.80 0.0008 66.04
41240 1337.73 0.0008 66.04
24827 2121.30 0.1072 63.30
22195 5783.75 0.0138 52.67
36501 6575.90 0.4843 49.63
19751 19125.57 0.0024 64.53
29670 19128.71 0.0021 64.70
37829 19129.93 0.0011 64.88
29671 19140.97 0.0021 64.71
43208 21528.03 0.0010 55.97
40889 23222.21 0.0005 55.25
41241 35785.32 0.0019 31.49
46114 35786.36 0.0002 0.00
28868 35786.59 0.0003 2.26
40549 35788.95 0.0036 50.69
3623 38871.56 0.0092 6.09
3674 40722.17 0.0179 11.56
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Table 3: Real GNSS satellites considered in validating our algorithm.

NORAD Semimajor Axis (km alt.) Eccentricity Inclination (deg)
39741 20181.38 0.0032 56.71
40534 20181.70 0.0087 53.37
55268 20181.77 0.0002 55.08
32711 20181.99 0.0185 54.45
24876 20182.04 0.0077 55.65
39533 20182.14 0.0072 53.60
29601 20182.23 0.0087 55.16
39166 20182.25 0.0124 55.17
41019 20182.33 0.0095 56.35
40105 20182.38 0.0025 54.90
27704 20182.50 0.0254 55.11
28474 20182.52 0.0163 55.43
29486 20182.56 0.0104 54.68
38833 20182.75 0.0150 53.51
40294 20182.94 0.0051 56.37
43873 20183.15 0.0029 55.27
49336 35783.74 0.0752 35.81
42965 35786.63 0.0748 40.54
42738 35791.66 0.0742 40.68
42917 35786.14 0.0002 0.05

Table 4: IGS Network stations used in this study (see Fig. 7).

IGS Station Name Monument/Receiver Number ISO Country Code
ANTF 00 CHL
BAIE 00 CAN
CHPG 00 BRA
CPVG 00 CPV
CUIB 00 BRA
FRDN 00 CAN
HERT 00 GBR
ISHI 00 JPN
JFNG 00 CHN
KARR 00 AUS
METG 00 FIN
MOBS 00 AUS
PICL 00 CAN
POHN 00 FSM
RGDG 00 ARG
RIGA 00 LVA
SOFI 00 BGR
SOLO 00 SLB
TWTF 00 TWN
VOIM 00 MDG
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Fig. 7: IGS Network stations used in this study (see Table 4).

4. RESULTS

4.1 Statistics of Interest

To evaluate whether the final IOD state estimate is sufficient to disambiguate the measurements for precision OD, we
compare the geometric TDOAs of the estimate x̂∗sv to those produced by the known TLE state x∗T LE at the epochs /
receivers of the measurement set. If this statistic falls within half the ambiguity (maxεT DOA < cTf /2) then the IOD
state estimate is considered to be successful.

maxεT DOA = max
i=1:N

|∆̃i
T (x

∗
T LE)− ∆̃i

T (x̂
∗
sv)| (18)

While the above statistic can be used for determining whether we can disambiguate the data, it does not describe how
well the state estimate corresponds to the true TLE over the entire trajectory, especially as the number of measurements
decreases. We thus also consider the RMS position error of the state vector, taken for 100 evenly-spaced samples over
one complete orbit. This statistic does not directly relate to the disambiguation problem, but can inform whether the
IOD estimate will be good for seeding a precision OD solver, such as a linear Kalman filter.

RMSεx =

√
1
N

N

∑
i=1

∥x∗T LE − x̂∗sv∥2
2 (19)

4.2 Simulated Data

For the simulated scenarios, the only situation where IOD failed was for the Geostationary objects. All other objects
fell within the maxεT DOA < cTf /2 tolerance (Fig. 8) and had a low one-orbit error RMSεx (Fig. 9). This is true for
objects at LEO, GSO, and Graveyard-orbit altitudes, as well as for highly eccentric and polar orbits.

In the failure cases, the FDOA went to zero for all states within the Geostationary belt, i.e., the mean longitude
solution is undefined. This appears to leave too wide a space for the basin-hopping algorithm to reasonably explore
after introducing TDOA measurements. In the other cases, the FDOA could be uniquely determined, but the local
minimum was too broad for reliable disambiguation using FDOA data alone (see Fig. 8b, in particular the dark blue
upward-triangle representing a GSO objects).

Even for cases where the FDOA estimate was within the disambiguation tolerance, the error is high enough to suggest
that an FDOA-only approach would not be sufficient in general. Inspecting the RMS statistics, we see that for cases
where the FDOA estimate appeared to be sufficient, the final state estimate had significant error throughout the orbit,
which could be detrimental for subsequent precision OD — e.g., prior error being too high to accurately linearize the
system (see Fig. 9b, in particular the squares representing GNSS objects).
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(a) Coarse FDOA estimate (b) Fine FDOA estimate (c) TDOA+FDOA estimate

Fig. 8: Simulated data analysis. Maximum TDOA error between true TLE and state estimate across observations.
Markers denote the state estimate for each unique space object.

(a) Coarse FDOA estimate (b) Fine FDOA estimate (c) TDOA+FDOA estimate

Fig. 9: Simulated data analysis. One-orbit RMS position error between true TLE and state estimate. Markers denote
the state estimate for each unique space object.

4.3 Real Data

For the real data scenarios, IOD again only failed in the Geostationary case as expected. The other MEO and GSO
satellites were successfully estimated. While the maxεT DOA < cTf /2 tolerance again appears to be sufficient after
FDOA-only analysis (Fig. 10b), the one-orbit RMS metric suggests that the complete trajectories may have too high
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an error for use as priors (Fig. 11b) requiring subsequent basin-hopping using TDOA measurements.

Errors in the real data scenarios are noticeably higher than present in the simulated data analysis. This may be due to a
variety of environmental effects not considered in the current measurement model which should be included in future
work. However, IOD estimation is merely intended to seed more extensive precision OD algorithms, and so this is not
a concern for the current work.

(a) Coarse FDOA estimate (b) Fine FDOA estimate (c) TDOA+FDOA estimate

Fig. 10: Real data analysis. Maximum TDOA error between true TLE and state estimate across observations. Markers
denote the state estimate for each unique space object.

(a) Coarse FDOA estimate (b) Fine FDOA estimate (c) TDOA+FDOA estimate

Fig. 11: Real data analysis. One-orbit RMS position error between true TLE and state estimate. Markers denote the
state estimate for each unique space object.
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5. CONCLUSIONS

This work presents an IOD algorithm for determining the orbital state of a space-based transmitter from passive RF
data in the presence of phase ambiguities. We map pseudo-range and Doppler frequency shift observables to TDOA
and FDOA measurements in order perform coarse state estimation prior to solving for the unknown transmitter clock
bias and drift.

By posing the problem in terms of sequential direct-search basin-hopping minimization in Poincaré element space,
we are able to successfully detect a wide range of simulated objects (including LEO and highly eccentric objects)
and real GNSS satellites (including GSO satellites) without making any substantial prior assumptions about the trans-
mitter states. This may enable detection and tracking of arbitrary active satellites during daylight hours and at long
ranges (Geostationary orbits or higher), mitigating risks of custody loss, cross-tagging, and low-certainty conjunction
assessment.

We have demonstrated the efficacy of the proposed algorithm on the simulated and real data by comparing the maxi-
mum post-fit residuals of the state estimate to the signal ambiguity, demonstrating that the signals can be disambiguate
for subsequent precision OD. We also demonstrated that the algorithm produces estimates with low RMS position
error relative to truth across full orbit trajectories, supporting use as a prior for precision OD.

Geostationary satellites in the both the simulated and real data were the only objects observed for which the proposed
algorithm failed, likely due to undefined solution for the mean longitude along the GEO belt in the FDOA cost space.
In future work, if the initial FDOA estimate yields a near-GEO state, we are interested in launching several parallel
solvers using TDOA measurements initialized at hypotheses spanning the mean longitude. We also are interested
in exploring the minimum number of measurements necessary for successful estimation across the various orbital
configurations, and validating our simulations on more extensive real data sets.
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