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ABSTRACT

In recent years, the number of objects in low Earth orbit (LEO) has witnessed a significant increase, which poses a
challenge to decision-making and overall space situational awareness. To make critical decisions such as collision
avoidance manoeuvres, satellite owners and operators must be aware of objects in close proximity to their assets.
To achieve this, it is crucial to understand the characteristics of such resident space objects (RSOs). In this paper,
we analyse a large dataset of catalogued objects and publicly available two-line element data to identify the main
characteristics of RSOs in LEO. We use unsupervised learning techniques to find patterns in the data and group the
RSOs by their historical orbital information and patterns of life. Specifically, we use a novel deep learning-based
clustering algorithm to identify essential clusters leveraging the dynamic information of the RSOs. We further explore
the obtained clusters by using dimensionality reduction techniques, providing deeper insights into the dynamics of
objects in orbit. We discuss the limitations of current satellite datasets in providing comprehensive information,
such as the level of automation of RSOs or classification criteria for new satellite shapes. Our work contributes to
a better understanding of RSOs in LEO by uncovering patterns and identifying fundamental clusters of RSOs based
on their characteristics, therefore improving space situational awareness and decision-making for satellite owners and
operators.

1. INTRODUCTION

The exponential increase in the number of resident space objects (RSOs) [1] has become a major concern [2–4].
With the increasing orbital population, space traffic management (STM) and space situational awareness (SSA) have
become more complex, creating challenges for satellite operators, especially in ensuring collision avoidance.

The main challenge lies in the current methods to track, determine and propagate the orbits of RSOs, which are
not as effective as desired [5]. Consequently, identifying the operational patterns and behaviours, or patterns of
life (PoL), of RSOs also becomes a significant challenge. PoL refer to the typical behaviours and movements of
RSOs over time, e.g., station-keeping and collision avoidance manoeuvres. Understanding these patterns is crucial
for distinguishing between nominal (expected) and anomalous (unexpected or potentially hazardous) behaviours. This
knowledge enables satellite operators to make informed decisions about manoeuvring satellites to avoid collisions.
However, this task is further exacerbated by the increasing variety and number of RSOs, highlighting the critical need
for more robust methodologies. As the population and complexity of RSOs grow, current tracking and characterisation
methods fall short, limiting our ability to maintain space safety and operational efficiency.

This study addresses these pressing needs by presenting a new approach to extracting meaningful information from
RSOs’ temporal patterns in low-Earth orbit (LEO).
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1.1 Related Work

The problem of identifying PoL and behavioural modes has been explored by several researchers. They have primarily
used machine learning techniques to address this challenge, often leveraging either unsupervised [6–9] or supervised
learning [10–19], approaches. Statistical techniques have also been explored [20, 21], offering another dimension
to the analysis. A challenge competition has also been organised [22], with the goal of exploring the use of AI
algorithms to uncover PoLs in geostationary orbit (GEO), and to provide a labelled dataset of satellite’s manoeuvres
to the community.

Indeed, one of the main challenges around the problem of detecting RSOs’ PoLs, is the lack of information about
the satellite manoeuvres, which are of major importance to classify the operational behaviours. Unfortunately, it is
not possible to find a comprehensive catalogue of manoeuvres due to data-sharing agreements, privacy, and secu-
rity reasons. In LEO, this issue is even more pronounced due to the increasing number of objects in orbit and the
corresponding frequency of manoeuvres performed on a daily basis.

Even if such manoeuvre data were to be partially made publicly accessible, achieving good performance in operational
behaviour classification would require a considerable amount of high-quality labelled data. This presents another
significant challenge, as obtaining quality labels in sufficient quantities is often not feasible.

For this reason, using an unsupervised learning approach is a logical and practical choice. By relying on this method,
we do not depend on labelled data and instead, aim to uncover the patterns directly from the data.

As already mentioned, several studies have leveraged unsupervised learning models to identify patterns in satellite
data. Mital et al. [6] explored different clustering techniques to group the two-line element (TLE) data and find
patterns, particularly focusing on GEO, using only latitude and longitude with respect to time as features, concerning
a single day of data. Bai et al. [7] also attempted to cluster TLE data according to the magnitude of orbital manoeuvres
(i.e., large, medium, and small-scale) by using a technique that combines k-means clustering with contour mapping.
Roberts et al. [8, 9] transformed GEO satellite position time-histories into short segments and sorted them into groups
of similar features using time-series k-means clustering.

1.2 Contributions

While previous works have explored the use of different unsupervised learning models to understand RSOs’ PoL,
none of them focus on exploring historical orbital information from LEO. Thus, we propose a new approach using
unsupervised learning techniques to find such patterns in the data. Specifically, we use a novel deep learning-based
clustering algorithm to identify essential clusters leveraging the historical dynamic information of the RSOs. We
further explore the obtained clusters by using dimensionality reduction techniques, providing deeper insights into the
dynamics of objects in orbit. Additionally, we take advantage of the inherent characteristics of the RSOs to gain
a better understanding of the resulting clusters. We discuss the limitations of current satellite datasets in providing
comprehensive information, such as the level of automation of RSOs or classification criteria for new satellite shapes.
Our work focuses on the LEO, due to the increasing population of RSOs in this orbit.

2. TWO-LINE ELEMENT DATA

We use publicly available TLE data from the U.S. Space Command’s space object catalogue 1. Such a catalogue in-
cludes RSOs’ historical orbital parameters, which can be used to describe long-term changes in their orbital trajectories
throughout their lifetimes. The key parameters of the TLEs include:

• Inclination (degrees): The angle between the satellite’s orbital plane and the Earth’s equator, determining the
satellite’s orbital tilt and coverage pattern.

• Right Ascension of the Ascending Node (RAAN) (degrees): The angle from a reference direction (usually the
vernal equinox) to the point where the satellite crosses the equatorial plane heading north. RAAN specifies the
orbit’s orientation in the equatorial plane.

• Eccentricity (decimal point): Describes the shape of the orbit, with values ranging from 0 (circular) to close to
1 (highly elliptical). Eccentricity affects the satellite’s altitude variation during orbit.

1space-track.org
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• Argument of Perigee (degrees): The angle within the orbital plane from the ascending node to the orbit’s closest
approach to Earth (perigee), indicating where the satellite’s lowest altitude occurs.

• Mean Anomaly (degrees): A parameter that helps determine the satellite’s position along its orbit at a given
time. It represents the fraction of an orbit’s period that has elapsed since the satellite passed the perigee.

• Mean Motion (revolutions per day): The average number of orbits the satellite completes around Earth in a day,
directly related to the orbital period and altitude.

Given that features expressed in degrees (inclination, RAAN, argument of perigee, and mean anomaly) exhibit discon-
tinuities at 0°/180° or 0°/360°, an angle wrap-around point was used to ensure continuous representation across these
boundaries.

Considering the scope of our problem, only samples from RSOs in LEO were used. Besides, due to the computational
constraints of this work, we have chosen to limit the range of data to six months, corresponding to the first months of
2023.

3. METHOD

In this study, we address the challenge of clustering high-dimensional time series data of RSOs in LEO, where tra-
ditional methods like k-means and dynamic time warping [23] failed to produce meaningful clusters. To overcome
this limitation, we developed a deep learning-based approach to learn more robust and informative representations
of the time series data before applying clustering. More concretely, we used masked autoencoders, a state-of-the-art
self-supervised approach [24, 25].

Using a masked autoencoder to learn representations of a time series for downstream tasks (in our case, clustering)
is analogous to the principles behind masked language and image modelling. In the same way that masked language
models like Bidirectional Encoder Representations from Transformers (BERT) [24] predict missing words to capture
deep contextual representations of text, and masked image models [25] reconstruct missing parts of images to learn
intricate visual features, a masked autoencoder for time series data trains a neural network by masking portions of the
input sequence and reconstructing them.

However, there is a difference in information density between language and vision, requiring different modelling
strategies. Language signals are highly semantic and information-dense, meaning that even a few missing words in
a sentence may lead to sophisticated language understanding. This is because each word carries significant meaning
and context. In contrast, images are natural signals with heavy spatial redundancy, where missing patches can often
be inferred from neighbouring patches without requiring a deep understanding of the overall scene. To encourage
models to learn useful features from images, a common strategy is to mask a large portion of random patches, thereby
reducing redundancy and creating a challenging self-supervised task that requires a holistic understanding beyond
low-level image statistics.

Time series data, like images, often exhibit redundancy, especially in segments with consistent patterns. By exploiting
the similarity between the redundancy found in time series and images we introduce substantial masking to large por-
tions of the data thereby creating a more challenging task that forces the model to learn comprehensive and meaningful
representations. This approach encourages the model to understand the broader temporal dependencies and structures
within the data, rather than relying on local, redundant information. Classical methods for time series analysis, which
typically use engineered features and simpler models, may not capture these complex dependencies as effectively.
Thus, we opted to use a vision-inspired masking strategy rather than applying classical time series representation
methods. We propose a novel algorithm inspired by the stable state-of-the-art model for representation learning in
images, the Masked Autoencoder (MAE) [25] (Fig. 1).

3.1 Masked Autoencoder

The model proposed by He et al. [25] is a simple autoencoding approach that reconstructs the original signal based on
a partial observation. Like all autoencoders, it has an encoder that maps the observed signal to a latent representation,
and a decoder that rebuilds the original signal from the latent representation. Unlike previously proposed autoencoders,
the authors used an asymmetric design that allows the encoder to work only on the partial, observed signal (without
mask tokens) and a decoder that reconstructs the full signal from the latent representation and mask tokens.
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Fig. 1: Time masked autoencoder. A large random subset of patches (e.g., 75%) is masked. The encoder is applied
to the subset of unmasked tokens. A decoder processes the full set of encoded and masked tokens to reconstruct the
original time series in steps. (i) purple: original data; (ii) grey: masked attributes; (iii) pink: embedding of unmasked
attributes; (iv) gradients: reconstruction of original data. Figure adapted from [25].

Masking. Similar to the MAE, we follow the Vision Transformer (ViT) [26] approach, i.e., we divide each time series
into regular and non-overlapping patches. Then, we sample a random subset of patches and mask them. Given the
information density property already mentioned, such sampling is performed with a high masking ratio. This highly
sparse input creates the opportunity to have a larger encoder.

Encoder. The encoder only processes the unmasked patches. It embeds patches using a linear projection, adds posi-
tional embeddings, and processes the set with Transformer blocks [27], similar to a standard ViT.

Decoder. The decoder takes in a complete set of tokens, i.e., encoded unmasked patches and mask tokens. Each mask
token is a learned vector that shows where a missing patch needs to be predicted. Positional embeddings are also
added to the masked tokens, and a series of Transformer blocks are used to process the data. Note that the decoder is
only used during training (Fig. 2).

Reconstruction Task. The loss is computed between the reconstructed and the original time series in the space of the
time steps.

[CLS] Token. Similar to the BERT and ViT setups, an extra learnable token is appended to the input sequence. During
the processing of the input sequence, the [CLS] token aggregates information from all other tokens in the sequence,
essentially acting as a summary representation of the entire input.

Clustering. After training, the decoder is discarded and the encoder is applied to unmasked time series for the cluster-
ing task (Fig. 2). We obtain the encoded representation of the [CLS] token for each time series and perform clustering
on the [CLS] embedding space.

4. EXPERIMENTS

4.1 Ablation Studies

As discussed by He et al. [25] in the original MAE architecture, the encoder operates on a smaller subset of the full
set, e.g., 25%, as masked patches are not considered. In principle, this allows us to consider larger encoders. On the
other hand, the input to the decoder already considers the full data set, as masked patches are used. Thus, smaller
decoders should be used. With this asymmetrical design, the full set of tokens is only processed by the lightweight
decoder, which reduces training time.

To validate this asymmetrical design, we have performed some ablation experiments. Table 1 shows the results ob-
tained when considering the best validation loss from several trials to ensure a fair comparison. The results are
presented as (mean ± std) loss values obtained from such trials.

The first analysis (Table 1a) aimed to understand the impact of considering a higher number of encoder layers when
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Fig. 2: Inference setup. After training, the decoder is discarded and the encoder is applied to an unmasked time series
for the clustering task. “*” stands for the extra learnable [CLS] embedding. Figure adapted from [26].

compared to the default value of 2 decoder layers. Surprisingly, all the setups achieved a loss value within the same
order of magnitude. The mean values contradicted the expected behaviour, suggesting that larger encoders do not
necessarily lead to better performance. To further verify these results, we experimented with changing the number
of decoder layers, while keeping the asymmetrical design. Table 1b, shows that, once again, the loss values achieved
were within the same order of magnitude.

We have also explored the impact of considering different embedding dimensions (Table 1c), masking ratios (Table 1d),
and patch size (Table 1e). As shown in the referred tables, the obtained loss values remain within the same order of
magnitude as previously.

It is important to highlight that our evaluation focused on the loss function rather than alternative metrics due to
the nature of our dataset, which includes features with widely varying ranges of values. Evaluating reconstruction
performance could introduce bias, favouring certain features over others. Instead, by relying on the loss, we ensure a
more balanced assessment of the model’s ability to learn meaningful representations, which is, in fact, our main goal.

As seen in Table 1, the range of model complexities varied significantly. Despite this variation, the loss values remained
within the same order of magnitude across all hyperparameter settings. This consistent performance indicates that
the model is relatively insensitive to the hyperparameters within the tested ranges. This robustness suggests that
the model’s architecture and training process are inherently stable, providing reliable performance without requiring
precise tuning of hyperparameters.

Given the limited sensitivity to hyperparameters, the results also imply that our current model configuration is po-
tentially close to optimal for the given dataset and task. The model appears to have sufficient capacity to learn the
underlying data distribution effectively, as evidenced by the stable loss values across different trials. Expanding the
hyperparameter search space or considering alternative model architectures may yield further insights, but the current
findings suggest a solid baseline performance.

5. POST-TRAINING CLUSTERING

Since the goal of this work is to cluster the RSOs’ historical patterns, at this stage, the entire dataset used to train and
evaluate the model is considered. Thus, after training the model, the full dataset is used in the setup described in Fig. 2.
This means each sample will have a learned embedding representation for each patch and the [CLS] token.
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Table 1: Architecture ablation studies. The results were obtained from different trials to ensure a fair comparison.
The results are presented as (mean ± std). If not specified, the default is: 8 encoder layers, 2 decoder layers, embedding
dimension of 16, 75% masking ratio, patch size of 8, and 4 heads for both the encoder and the decoder.

(a) Encoder layers.

Encoder Loss
2 (1.98 ± 0.05)e-1
4 (2.17 ± 0.24)e-1
8 (2.39 ± 0.08)e-1

16 (2.41 ± 0.06)e-1

(b) Large encoder and light decoder.

Encoder Decoder Loss
8 2 (2.39 ± 0.08)e-1
8 4 (2.39 ± 0.07)e-1
16 6 (3.06 ± 1.02)e-1
16 8 (3.74 ± 1.03)e-1

(c) Embedding dimension.

dmodel Loss
16 (2.39 ± 0.08)e-1
32 (1.78 ± 0.19)e-1
64 (1.53 ± 0.09)e-1

(d) Masking ratio.

Masking Loss
70% (2.39 ± 0.03)e-1
75% (2.39 ± 0.08)e-1
80% (2.30 ± 0.02)e-1
85% (2.41 ± 0.08)e-1

(e) Patch size.

Patch Loss
4 (2.31 ± 0.08)e-1
8 (2.39 ± 0.08)e-1

16 (2.36 ± 0.04)e-1

The next step is to perform clustering on the embedding space of the [CLS] tokens. To eliminate the need for predefin-
ing the number of clusters or relying on methods like the within-cluster sum of squares, we opted for Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [28]. Unlike traditional clustering techniques, DBSCAN
identifies clusters based on the density of data points. It detects core samples within dense regions and expands clusters
outward from these cores, capturing clusters of varying shapes and handling outliers.

The DBSCAN algorithm is sensitive to its core parameters, particularly the epsilon (ε) parameter, which defines the
maximum distance between two points for them to be considered as part of the same cluster, and min samples,
which, as the name suggests, defines the minimum number of points required to form a cluster. These parameters play
a crucial role in determining the granularity of the clusters.

Fig. 3 presents the resulting clusters obtained when exploring the impact of such parameters. The clusters were
obtained when using the best-performing model from validation.

However, since the [CLS] embedding space where the clustering was performed is high-dimensional (Table 1c), a
dimensionality reduction technique is needed to visualise such data. In other words, to visualise the resulting clusters,
we need to project the data from dmodel-dimensional space to a lower-dimensional space, i.e. two-dimensional (2D).
Thus, we have used the Uniform Manifold Approximation and Projection (UMAP) [29] algorithm due to its advantages
when compared to other methods [29].

Fig. 3 shows the 2D projection of the [CLS] embedding space via UMAP. It can be concluded that:

• When ε is set to a higher value, DBSCAN tends to group more data points into fewer, larger clusters. This broad
clustering can obscure smaller, more specific groupings, as the algorithm is more likely to include objects with
general similarities in their orbital parameters.

• As ε is decreased, the algorithm becomes more sensitive to subtle differences in the data, resulting in a higher
number of smaller, more specific clusters. Notably, when ε is sufficiently reduced, DBSCAN starts to identify
clusters that correspond to satellite constellations—groups of satellites that share nearly identical orbital param-
eters. These clusters emerge because a smaller ε captures the fine distinctions between closely spaced orbits
typical of constellation satellites.

• A higher min samples value means that more data points are needed to form a cluster, which can lead to fewer
but more robust clusters. This setting reduces the likelihood of forming small clusters, instead emphasising
larger, denser groups that are more consistent across the dataset.

• Decreasing the min samples value allows DBSCAN to recognise smaller, potentially more numerous clusters.
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Fig. 3: 2D projection of the [CLS] embedding space via UMAP. The colours represent the clusters obtained when
applying the DBSCAN with different parameters. Black samples denote the noise values, i.e., samples that were not
associated with any cluster.

This can be particularly useful when trying to detect smaller groups, such as specific satellite constellations or
less common orbital configurations, where fewer points share close proximity.

To further explore the resulting clusters, and given the trade-offs already discussed, we fix the ε and min samples

parameters as 0.5 and 5, respectively (Fig. 4). As already seen in Fig. 3, such parameters result in 86 clusters.

Upon initial examination of Fig. 4, it is evident that two clusters notably stand out from the others. These clusters,
specifically Cluster 5 (shown in purple) and Cluster 59 (in green), correspond to the clusters with the highest number
of samples, representing approximately 32% and 14% of the data, respectively. Due to the large number of sam-
ples in these clusters, when analysing the orbital elements used to group the data, no outstanding patterns can be
extracted. Such results suggest that these clusters share common but non-specific behaviours or that the clustering
method reached its limit in differentiating subtle variations in the data. However, to get further understanding of
such clusters, we used information from the Database and Information System Characterising Objects in Space (DIS-
COS)2 [30]. This dataset provides information regarding the key characteristics of objects, including their size, mass
and object type.

When analysing the RSOs that compose Cluster 5, it can be concluded that according to DISCOS, approximately
73% of the data are debris, 3% are rocket-bodies, 0.4% are unknown, and the remaining are payloads. Orbital debris,
while generally passive and lacking propulsion, can exhibit unpredictable orbital characteristics due to factors like
collisions, fragmentation, and irregular shapes. These variations can lead to complex orbital dynamics, influenced

2discosweb.esoc.esa.int
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Fig. 4: Resulting clusters for a given set of DBSCAN parameters. ε and min samples equal to 0.5 and 5, respec-
tively.

by external forces such as atmospheric drag and gravitational perturbations. This unpredictability might contribute
to the challenges in identifying distinct patterns within this cluster, as the debris objects, despite sharing a common
classification, may display diverse and evolving orbital behaviours.

As for Cluster 59, approximately 99% of the objects are identified as payloads, with nearly 99% of these belonging to
the Starlink constellation 3. Remarkably, this cluster alone accounts for approximately 67% of all Starlink satellites
present in our dataset. The consistency in the formation of this cluster, even when varying the parameters in the
DBSCAN algorithm (Fig. 3), underscores the robustness of this grouping. Further analysis revealed that smaller
clusters within the dataset are also composed entirely of Starlink satellites, indicating that the algorithm is sensitive
enough to distinguish between subtle differences within the constellation. In this case, the difference lies in the fact
that the satellites in these smaller clusters were launched after those in the main cluster. These findings suggest that the
model is highly effective at recognising and clustering based on distinct orbital patterns and operational behaviours,
particularly within large satellite constellations like Starlink.

In addition to the larger clusters dominated by constellations like Starlink, the analysis also identified smaller, more
specialised clusters. One such cluster, Cluster 6 in Fig. 4, consists of debris from the SNAP-10A mission (code-named
“Snapshot”), as well as the SECOR 4 satellite. Interestingly, SECOR 4 was launched as a secondary payload alongside
SNAP-10A. This cluster’s composition highlights the algorithm’s capability to group objects based on shared launch
histories and resulting orbital dynamics. The presence of both SNAP-10A debris and SECOR 4 within the same cluster
suggests that these objects, despite their different purposes, share similar orbital characteristics due to their common
origin. The debris from SNAP-10A likely follows a dispersal pattern influenced by the original orbital parameters of
the launch vehicle, which also carried SECOR 4. The identification of this specific cluster demonstrates the model’s
sensitivity to the nuances of orbital behaviour that arise from mission-specific events, such as the fragmentation of a
satellite. By clustering these objects together, the algorithm effectively captures the relationship between the primary
and secondary payloads and their subsequent evolution in space. This ability to discern such fine details underscores
the model’s strength in identifying and analysing less common orbital patterns that may not be immediately apparent
in broader clustering efforts.

Another example of a smaller cluster identified by the model consists of a subset of satellites from the OneWeb
constellation 4 (Cluster 62 in Fig. 4). Fig. 5 illustrates the evolution of the orbital elements over time. The subtle
changes in the orbital parameters, especially the mean motion, suggest that some satellites in this cluster might have
undergone minor orbital adjustments or station-keeping manoeuvres. These are typical for constellations like OneWeb,
where satellites regularly adjust their orbits to maintain precise spacing and coverage patterns. The clustering ability of
the model to detect these variations further demonstrates its effectiveness in not only distinguishing between different
groups of satellites but also identifying potential operational activities, such as manoeuvres, within those groups.

3starlink.com
4oneweb.net
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Fig. 5: Cluster 62. Each grey line represents the evolution of the orbital parameters for a given RSO.

However, it is important to recall that the formation of such specific clusters is directly influenced by the choice of
parameters in the clustering algorithm. Adjusting these parameters, such as the epsilon ε and min samples values in
DBSCAN, can significantly change the model’s ability to capture certain patterns in the data. When such parameters
are set to produce a higher number of clusters, the algorithm is more likely to detect finer, more detailed patterns
within the data. This typically results in the identification of individual satellite constellations or even subsets of
constellations, as the model becomes sensitive to subtle differences in orbital elements and operational behaviours.
When the parameters are adjusted to produce fewer clusters, the model tends to capture broader, more generalised
operational patterns. In this scenario, specific operational details or nuances may be combined, emphasising only the
overarching trends and not the intricate details.

6. LIMITATIONS OF CURRENT SATELLITE DATASETS

The proposed clustering model has proven to be a highly valuable tool in analysing and grouping RSOs based solely
on TLEs. Despite the inherent limitations of using only TLE data, the model effectively identified distinct patterns
and behaviours, highlighting its robustness and potential in SSA. The ability of the model to differentiate between
various satellite constellations, detect potential manoeuvres, and classify clusters based on orbital dynamics speaks to
the power of this approach.

However, while TLEs offer critical information regarding the orbital elements of RSOs, they represent just one dimen-
sion of a much broader and more complex picture. To gain a more comprehensive understanding of satellite operations
and behaviours, the next logical step is to incorporate additional data sources. These could include satellite teleme-
try, mission-specific details, ground-based observations, and other relevant datasets that provide insights into factors
beyond the scope of TLEs.

Despite the clear benefits of integrating additional data sources, there are significant limitations related to data avail-
ability. Some crucial information, which would greatly improve our understanding of RSOs, is not publicly accessible
or is incomplete. For example, the degree of automation in satellite operations significantly impacts behaviour, espe-
cially regarding manoeuvring and station-keeping. However, comprehensive data on the automation levels is often not
accessible to the public, hindering full comprehension of the decision-making processes involved in observed orbital
changes. It is also important to consider the physical characteristics and shapes of satellites. As satellite designs be-
come more varied, a challenge arises due to the lack of comprehensive classification criteria for new satellite shapes
and structures. This information is crucial for accurately predicting orbital behaviour, particularly in LEO where
atmospheric drag can have a significant impact on satellites with different shapes.

Overcoming these limitations will require collaboration across the space industry, including data-sharing agreements
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and the development of new observational techniques. By broadening the data inputs, we can refine our clustering
models even further, ultimately contributing to safer and more sustainable space operations.

7. CONCLUSION

We introduced a novel approach for clustering time series orbital data, i.e., TLEs, using a vision-inspired masking
representation learning model. This innovative technique allowed us to capture and represent the complex temporal
patterns of such high-dimensional data. Subsequently, we applied a clustering model to group these time series into
distinct clusters, enabling a deeper understanding of the underlying behaviours and operational characteristics of var-
ious RSOs. Our analysis also explored the impact of considering different clustering parameters. More concretely,
we demonstrate and discuss how adjustments in parameters such as the ε and min samples values in DBSCAN can
lead to the identification of different levels of patterns within the data. It is important to note that the choice of such
parameters is dependent on the desired application, as changing these parameters can lead to detecting either broad
operational trends or more refined, constellation-specific behaviours, highlighting the flexibility and adaptability of
our approach.

The results of our clustering model revealed significant value for SSA and STM. The ability to automatically classify
and group RSOs based on their orbital patterns provides a powerful tool for monitoring satellite constellations and
understanding the operational behaviours of both active satellites and debris. For instance, by categorising satellites
into groups based on shared characteristics, orbit determination and propagation algorithms can be tailored to account
for the common properties within each group. More concretely, satellites within the same constellation or debris
cluster may exhibit similar drag profiles or orbital decay rates, allowing for more precise and efficient predictions of
their future positions.

This approach offers a scalable solution for managing the increasingly crowded space environment and contributes to
the development of more effective strategies for ensuring the long-term sustainability of space activities.

Future work should focus on integrating additional data sources to further refine the clustering results and address
some of the limitations discussed, ultimately improving our ability to maintain a safe and secure space environment.
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A. ABBREVIATIONS AND ACRONYMS

2D two-dimensional

BERT Bidirectional Encoder Representations from Transformers

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DISCOS Database and Information System Characterising Objects in Space

GEO geostationary orbit

LEO low-Earth orbit

MAE Masked Autoencoder

PoL patterns of life

RAAN Right Ascension of the Ascending Node

RSO resident space object

SSA space situational awareness

STM space traffic management
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TLE two-line element

UMAP Uniform Manifold Approximation and Projection

ViT Vision Transformer
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