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ABSTRACT

As humanity nears its long-awaited return to the Moon, this time for good, space situational awareness (SSA) architectures must be
designed so that crewed missions through Cislunar space can be executed as safely as possible. Critically, crewed missions through
Cislunar space to the Moon or Lagrange points may require near persistent detection or lines of communication by operators. How-
ever, distributed space-based SSA architectures consisting of observers with electro-optical sensors result in complex distributions
of detectable regions throughout Cislunar space over time. Persistent detection will require that there exists feasible trajectories
that traverse these regions. In this work, we introduce a novel method that captures the dynamics of detectable regions of Cislunar
space, and uncovers corridors of persistent detection to be used in mission planning where high levels of coverage are paramount.
Mission designers can use these corridors as references knowing that trajectories residing within said corridors maintain coverage
minimums within the chosen architecture.

1. INTRODUCTION

As humanity advances toward a permanent presence on the Moon, epitomized by NASA’s Artemis program [20] and
a myriad of commercial and governmental missions, the extension of Space Situational Awareness (SSA) capabilities
into Cislunar space has become crucial [14]. Cislunar space, defined as the vast region between Earth and the Moon,
is a complex and dynamic environment where the safety of crewed missions hinges partially on the ability to maintain
near-continuous detection and communication of spacecraft. The inherent challenges in this domain include the vari-
ability of observable regions, the influence of solar illumination on detection capabilities, and the need to safeguard
high-value assets, particularly in scenarios where unexpected events could jeopardize mission success.

Current Earth-based SSA architectures are primarily designed for operations in Earth orbit and are ill-equipped for the
unique demands of SSA in Cislunar space. As such, space-based architectures are necessary for conducting effective
SSA activities in the new regime. However, the dynamic nature of Cislunar space, characterized by the movement of
observers and the changing illumination conditions, results in highly variable coverage distributions within the field
of regard of observers. Consequently, mission designers are confronted with the challenge of ensuring that critical
assets remain detectable throughout their journey, especially during transits between Earth and the Moon or during
operations at the Lagrange points. Decision makers are inevitably beholden to planning missions that take into account
the capabilities and coverage behavior of whatever Cislunar SSA architecture is established.

In response to these challenges, we introduce the concept of detection corridors and a novel tool to aid in uncovering
corridors that provide minimum levels of persistent coverage, termed persistent detection corridors (PDCs). PDCs
are volumes of space where a spacecraft remains within the detectable regions generated by an SSA architecture over
time. These corridors represent feasible pathways through which crewed missions and critical assets can traverse that
guarantee minimum coverage requirements. A detection corridor is defined along a reference trajectory, allowing for
the analysis of how state perturbations along said trajectory could potentially impact asset coverage. The identification
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of PDCs involves an analysis of the spatial and temporal dynamics of detectable regions resulting from observer motion
and the varying solar illumination. By mapping these corridors, mission planners can rapidly enumerate trajectories
that optimize for coverage, minimizing the risk associated with detection gaps.

This paper presents a novel method for the automated generation and analysis of detection corridors within Cislunar
space for any arbitrary Cislunar SSA architecture. By leveraging these corridors, mission designers can ensure that
trajectories not only meet mission objectives but also maintain the minimum coverage requirements necessary for
safe human spaceflight. The results of this study also offer critical insights into the design and optimization of SSA
architectures, providing a foundation for future mission planning that prioritizes the safety and success of crewed
missions in Cislunar space.

Moreover, this work contributes to the broader understanding of how SSA architectures can designed so that they
are realistically useful for cooperative agents wishing to utilize established SSA capabilities. The ability to maintain
persistent detection of assets in Cislunar space is not only a technical challenge but also a strategic imperative as
interest in Cislunar missions expands. By addressing these challenges, our methods set the stage for more resilient and
reliable Cislunar SSA operations, paving the way for a safe and sustained human presence on the Moon and beyond.

2. BACKGROUND

2.1 Cislunar SSA

With NASA’s Artemis missions planning for a permanent human presence on the Moon [20], and numerous other
government and commercial focused missions to the Moon and within Cislunar space planned within the next couple
of decades, there is an increasing effort being made to extend Space Situational Awareness (SSA) capabilities to the
Cislunar regime [1]. As shown throughout the literature [17, 10, 14, 22, 2, 25, 24], space based distributed SSA
architectures are necessary for providing robust coverage to the entirety of Cislunar space.

In previous work [17, 16] we have explored the massive design space of Cislunar architectures, and saw how attention
must be placed on the relative positions and capabilities of observers within any given architecture so objectives
of interest are maximized in the Pareto sense. Considering observers with electro-optical sensors, as a result of a
given layout in Cislunar space, the distribution of detectable regions can vary significantly over time due to observer
positions and the varying solar illumination. This variation introduces complexities in architecture performance and
thus SSA activities over time that must be accounted for. An architecture’s performance can not be solely evaluated
in terms of total volume coverage or coverage of a single trans-lunar injection. Rather, an architecture’s utility must
be considered in the context of how useful its resultant coverage distribution is to mission designers, considering
variations in individual mission objectives.

Last year [16], we explored how cost was distributed between SSA architectures and cooperative agents (CAs) exe-
cuting a mission within Cislunar space. This work showed how architectures providing high levels of coverage to CAs
during their transfers were generally higher in cost to enable lower total control effort by the CA. On the other hand,
lower cost architectures providing similar levels of coverage passed on that cost to the CA, requiring higher levels
of control effort. As an initial proof of concept, this work was the first that considered how stakeholders with often
competing mission objectives may end up interacting with Cislunar SSA architectures.

2.2 Persistent Detection Corridors

Ensuring that a critical asset, such as a crewed spacecraft, is detectable by an SSA architecture during its entire traversal
through Cislunar space is paramount to the success and safety of such missions and to the Cislunar regime as a whole.
While good track maintenance can be sufficient in cases of detection gaps for un-crewed or lower value assets, an
unexpected emergency during flight can put human lives in danger and jeopardize mission success. As such, ensuring
that detection exists of said assets within the field of regard of an architecture must be considered as a crucial aspect
of both mission and architecture design.

In our previous work, the CA model generated transfers that maximized detectability by the architecture, and as such
attempted to uncover so-called persistent detection corridors, volumes of Cislunar space defined over time along
feasible trajectories corresponding to near continuous detection by said architectures, visualized in Fig. 1. However,
this method relied on a higher level representation of detection through apparent magnitude rather than a boolean value
of detectability based on a minimum photometric SNR value. As such, optimal trajectories returned by the CA were
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Fig. 1: Visualization of a persistent detection corridor for an arbitrary Cislunar SSA architecture.

unable to directly interact with the distribution of boolean detectable regions resulting from the architecture layouts.
In this work, we aim to create a discrete representation of these regions within which mission designers can explore
the state space of feasible trajectories, knowing that minimum levels of persistent detection of their assets can be
guaranteed.

These detection corridors exist as a function of observer positions, capabilities, and the incoming solar illumination in
the Earth-Moon synodic frame. A corridor may initially be defined along a feasible reference trajectory within the rel-
evant dynamical system (here, the CR3BP) that traverses primarily through the detectable regions of position space as
determined by the individual observers constituting the architecture. For ease of discussion and visualization, we will
be restricting these corridors to be defined in two-dimensional position space using the planar CR3BP. At each discrete
time step ti along the reference trajectory, there may exist a region of near continuous detectable space provided by the
architecture. This region of continuous detectable space represents the local neighborhood of detectability (LNoDe)
about the reference trajectory state x̂(t) at time ti. Deviation in position space from the reference trajectory that lies
within the LNoDe remain detectable, with the assumption that small course corrections are capable of realigning with
the reference trajectory.

We denote the LNoDe at time ti as Γx̂(ti), representing the region of position space within a corridor radius rc about
the reference bounded by maximum local detectability. Fig. 2 provides a visualization of an LNoDe. A detection
corridor can then be defined as the set of LNoDes evaluated along the discrete time steps of the reference trajectory:

C(x̂) = {Γx̂(ti) : ti ∈ {t0, ..., t f }} (1)

The idea of persistence can be defined in two ways. First, we may consider persistence as a measure of the total area
or volume (in the planar or non-planar CR3BP, respectively) enclosed by an LNoDe divided by the area or volume
of the circle or sphere defined by the corridor radius rc. We may refer to this concept as the LNoDe persistence,
describing the general coverage of the region near the reference trajectory at a given time step. Second, we can
consider both the total average LNoDe persistence over the entire PDC, and the occurence and duration of significant
loss in LNoDe persistence, encapsulated by taking the standard deviation of the LNoDe persistence metric. We refer
to these quantities as the corridor coverage and corridor variation, respectively. Given user defined minimums for
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Fig. 2: Diagram of a local neighborhood of detectability about reference a trajectory at time ti. The shaded region
represents the approximate region of continuous detectability about the reference trajectory’s position.

LNoDe persistence at specified time steps and corridor coverage and variation, detection corridors that meet such
requirements are referred to as persistent detection corridors (PDCs). Levels of persistence will inevitably vary across
different mission types.

Unique persistent detection corridors exist per-architecture, and may vary significantly in nature depending on ar-
chitecture attributes. But the enumeration of PDCs for potential Cislunar SSA architectures will allow for mission
designers to rapidly generate transfers based on the geometries and SSA qualities of said corridors. Critically, in mis-
sions where detectability of assets is crucial at all times, PDCs provide a foundation for mission design that is centered
around human safety.

3. METHODS

3.1 Cislunar SSA Architectures

We can model a Cislunar SSA architecture as a collection of up to five observers with electro-optical (EO) sensors and
varying telescope diameters. Through the modeling of EO sensors, we are able to obtain simulated measurements of
photometric SNR of space objects within the field of regard of each observer. This enables use to use boolean labels
indicating whether a target is detectable or not. Coverage metrics associated with the performance of an architecture
can be obtained using methods from our previous work [17]. As in this work, we define an architecture as a set of
observers {Obs1,Obs2, ...}, with each observer represented as a tuple:

Obsi = [Family, Index, Phasing, Telescope Diameter] (2)

where Family indicates the type of orbit (i.e. L1 Lyapunov, Distant Prograde, GEO, etc.), Index refers to the specific
orbit in the family, Phasing∈ [0,1) is the initial position of the orbit as a fraction of its period, and Telescope Diameter ∈
{200mm,300mm,500mm} is the diameter of the observer telescope.

To obtain a distribution of regions of detectability, we create a grid of evenly distributed points in the x− y plane in
the CR3BP rotating frame, each point modeled as a 1 meter Lambertian sphere as in [22]. The process of calculating
detectability takes place within a simulation defined at some initial epoch for some total time. At this initial epoch,
the relative angular phasing of each observer is enforced and the observers’ state histories are pre-propagated to be
evaluated at later times during the simulation. Within a user specified time span, the detectability of each grid point
is evaluated at each time step. The coverage per time step is then calculated as the number of detectable grid points
divided by the total number of grid points sampled. Over the time span, the total average coverage is then the average
of the coverage per time step. An example architecture and its resultant detection distribution from [17] is shown in
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Fig. 3 for three epochs. The process that is described below aims to capture the dynamics of these varying detectable
regions so that they can be leveraged by mission designers seeking to prioritize detectability of their critical assets.

(a) (b)

(c)

Fig. 3: Variation in detectable regions for a selected architecture consisting of 3:2 Resonant 500mm, East Low Pro-
grade 300mm, and West Low Prograde 500mm observers. Shown at three epochs over the simulation history. Artifacts
and regions labeled as edge cases are a result of the discretization and interpolation of the sampled grid points.

3.2 Sample-Based Trajectory Planning

Sample-based trajectory planning refers to the process of sampling states and control inputs across a region through
which to recover a trajectory, while adhering to dynamical and/or environmental constraints [18]. Often referred to in
the context of robotic motion planning, methods from this field are used in many applications related to astrodynamics,
often for initial mission design for transfers in multi-body systems [21, 4, 8]. These methods typically involve sampling
states within a region of interest such that the underlying system dynamics can be reasonably approximated. The
resultant states are represented within a graph, with nodes representing states and edges representing feasible motion
between states.

Bruchko & Bosanac [5, 6] introduced a foundation for rapid trajectory design within multi-body systems such as the
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CR3BP. In their work, the authors outline a method of environment approximation where full states, referred to as
centroids, in the CR3BP are sampled with velocities distributed according to a given Jacobi energy. Centroids are
propagated forwards and backwards in time for a given arclength or propagation time. The centroids and the final
states of propagation are added as nodes to a graph, with edges connecting the nodes’ states, capturing natural motion
in the system about each centroid. Afterwards, edges are constructed between nodes across centroids such that the
distance between node positions and the angle between node velocity vectors are minimized. A shooting algorithm
with control is then employed to ensure continuity in position space between nodes, obtaining a delta-v that is added
to the edge as a weight. A path finding algorithm is then used to recover paths through the graph that minimize total
delta-v of the transfer. Finally, the nodes along recovered paths are used as an initial guess for a shooting algorithm
that recovers a transfer within the system.

In this work, we implement the graph-based method from Bruchko & Bosanac with modifications to state sampling,
edge weight calculation, and trajectory recovery that are informed by Cislunar SSA domain knowledge.

3.3 Graph Construction

As noted in [5, 6], construction of a graph approximating the dynamical environment of the CR3BP requires careful
handling of parameters dictating the order, size, and resolution of the graph. Here, we outline the steps of graph
construction as well as the parameters used to guide graph construction and the effects they have on the resultant paths
and corridors recovered. The steps of this process are also outlined in the diagram in Fig. 4.

3.3.1 Centroids and Local Neighborhoods

We begin graph construction by sampling the relevant state space in our problem, that is, the regions of detectability
by an arbitrary architecture. Within an architecture simulation, we can identify a time span starting from an epoch
of interest for analysis and iterate through time steps, identifying detectable points. Inspired by Bruchko & Bosanac
[6, 5], for each time step we select a number of detectable points as centroids. It is of interest that these initial centroids
are selected so that they are as uniformly distributed across the distribution of detectable points as possible. At each
time step, we select up to nc detectable points as centroids, ensuring that spatial uniformity is achieved. Additionally,
we select a small number ne of detectable points minimizing the distance to a desired start and goal region, here chosen
to be the Earth and the Moon, respectively. These points are added as additional centroids to ensure that the graph
captures the dynamics of detectable regions relevant to Earth-Moon transfers.

A centroid selected from the grid in our problem is defined in position space only, so velocities must be sampled
intelligently so that the dynamics of the local region about that centroid are sufficiently captured. First, at each
centroid, nv unit vectors are evenly distributed about the position representing velocity directions. Then, nv unique
velocity magnitudes are uniformly sampled from a desired range of Jacobi energy at the centroid position. This range
of Jacobi energy may be selected according to desirable type of motion when considering the zero velocity surfaces
of the corresponding energy levels. After velocities are sampled, we end up with nv states represented per identified
centroid position. Then, each unique state (containing velocities) is propagated forwards and backwards for a given
time or arclength in position space, and the final states of propagation are checked for detectability at their respective
times. Forward and backwards states that are detectable by the architecture and their corresponding centroid full
state are finally added as nodes to the graph. Nodes η are defined as planar states with time of detection appended:
η = [x,y, ẋ, ẏ, ti] ∈ R5. Then, edges are added to the graph connecting backwards nodes to their centroid nodes, and
centroid nodes to their forward nodes. These edges are directed, representing motion through centroids forward in
time. Included with these edges is a default weight of 0, since traversal through the centroid represents natural motion
in the CR3BP. The collection of nodes defined a centroid position along with the corresponding detectable forward
and backward nodes makes up the local neighborhood of the centroid at the centroid time step. A local neighborhood
consists of up to 3nv nodes with up to 2nv edges. Fig. 5 shows an example of a centroid position and its corresponding
forward and backward propagated nodes.

The identification of centroids and construction of local neighborhoods occurs at each time step during the time span
of interest, resulting in up to N · 3nv · (nc + ne) nodes and N · 2nv · (nc + ne) edges in the graph for N time steps. The
next step involves taking these disjoint local neighborhoods and creating connections between them via edges, with
weights representing the dynamical feasible of traversing forward in time between neighborhoods.
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Fig. 5: A single centroid (blue) with a selection of velocity directions propagated forward (green) and backward
(purple). Traversal through the neighborhood starting from a backward node to its centroid and finally through the
corresponding forward node represents natural motion in the system dynamics. Shaded circles indicate detectability
by an architecture, the states of which are added as nodes to the graph. Figure adopted from [6].

3.3.2 Global Edge Construction

Our graph now consists of nodes and edges representing natural motion in the local neighborhood of detectable grid
points in the simulation. To create connections across neighborhoods, we use k-nearest neighbors (KNN) [19, 7] with
a custom distance function to find the k best candidate nodes. A primary concern when adding edges between nodes
is that the connection represents a dynamically feasible trajectory. Bruchko & Bosanac implement a weighted sum of
Euclidean distance and angular difference between node velocity vectors to aid in this process, followed by a shooting
algorithm generating an estimate of the cost of traversing the edge. Here, we implement a novel distance metric
inspired by methods in direct collocation [15] by using a weighted sum of trapezoidal transcription error, Euclidean
distance, and velocity angular deviation. The trapezoidal transcription error is derived from approximating a system’s
dynamics using trapezoidal quadrature, a method for approximating a definite integral in numerical integration. Within
direct collocation, constraints are enforced on segments between sampled collocation points that enforce adherence to
a system’s dynamics. The trapezoidal transcription error δk,k+1 can be expressed as

δk,k+1 = (xxxk+1 −xxxk)−
1
2

hk [ fff (xxxk+1)+ fff (xxxk)] (3)

hk = (tk+1 − tk)

where fff (·) is the system dynamics and xxxk and xxxk+1 are collocation points between the time steps of tk and tk+1,
respectively. Minimizing this transcription error indicates greater adherence to the system dynamics. The custom
distance function used in KNN for edge creation is then defined as

Di, j = ∥δi, j∥2 + d̂i, j + α̂i, j (4)

where d̂i, j is the Euclidean distance between nodes i and j normalized by a maximum distance and α̂i, j is the an-
gle between the velocity vectors between nodes i and j normalized by a maximum angle. Used within sklearn’s
NeareastNeighbors module [19], this metric encourages edge connections between nodes that are near in position
space, maintain continuity in direction of motion, and minimize error with respect to the environment’s dynamics.
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Iterating over all non-centroid neighborhood nodes in the graph, candidate nodes for edge creation are determined by
finding the k-nearest neighbors of each node. The resultants candidates from KNN are then filtered so that 1) edges are
not created between nodes that share a position, 2) edges are not created that connect backward propagated nodes to
forward propagated nodes across neighborhoods, and 3) edges are not created that connect nodes defined at the same
simulation time. The second filter condition ensures that any path through the graph will fully traverse through local
neighborhoods where edge connections forward in time represent natural motion in the system. Once candidate edges
between nodes are identified and properly filtered, they can be added to the graph with an edge weight determined by
the distance metric in Eqn. (4). The process of constructing edges across neighborhoods is the msot computationally
intense process throughout graph construction. Luckily, it is easily parallelizable with Python’s multiprocessing
module.

Edge construction between nodes across local neighborhoods is subject to several constraints. First, there is a limit
on the maximum number of edges that can originate from all nodes within a neighborhood. Second, we place a
limit on the number of edges connecting a given neighborhood to any single other neighborhood, which promotes
diverse connections across multiple neighborhoods, rather than concentrating all the best connections on just one.
Lastly, each node has a limit on the total number of incoming and outgoing edges, apart from those associated with
neighborhood connections. This ensures a more even distribution of edges among nodes, facilitating a broader and
more representative approximation of the environment. The constraints chosen here significantly impact the graph’s
overall complexity and, consequently, the precision with which it captures the underlying dynamics.

3.4 Path Finding

A path in the context of graph theory is a subgraph P of graph G consisting of distinct nodes and edges that traverse
through G given initial and final nodes η0 and η f [3]. A plethora of algorithms have been developed for uncovering
paths in graphs, with A* [13], Dijkstra’s [9], and Yen’s [26] among those most widely used due to their guarantees of
convergence given certain criteria are met. In this work, we use an implementation of A* from the networkx Python
package [12].

3.4.1 A*

The A* algorithm is a well-established pathfinding method that combines the principles of Dijkstra’s algorithm and
greedy best-first search. It is designed to find the shortest path between two nodes in a graph by minimizing the total
estimated cost from the start node to the goal node. This is achieved by utilizing a heuristic function h(η), which
estimates the cost to reach the goal from a given node η , in conjunction with the actual cost g(η) incurred to reach
that node from the start [13].

A* operates by exploring paths that minimize the function f (η) = g(η)+ h(η), where g(η) is the cumulative edge
cost from the start node to η , and h(η) provides an estimate of the cost from η to the goal. The algorithm prioritizes
nodes in the search based on this combined cost, allowing it to effectively balance the exploration of the search space
with the goal of finding the optimal path efficiently [13].

In practice, the A* algorithm maintains a priority queue of nodes to be explored, starting from the initial node. At
each step, the node with the lowest f (η) value is expanded, and its neighbors are added to the queue with updated
g(η) and f (η) values. The search continues until the goal node is reached, ensuring that the path found is the one
with the lowest total cost, assuming an admissible heuristic is used. For this work, we found that a constant heuristic
of 0 returned paths that most closely resembled natural motion within the dynamical system. In future work we will
explore heuristics that better reflect the true cost to reach the goal node at any given node. The edge costs between
nodes, represented by g(η), are then determined by our custom distance function in Eqn. (4).

3.5 Path Refinement

Paths recovered from A* within the graph represent approximate feasible trajectories within detectable regions of
Cislunar space. However, due to the discretization of the environment, these paths do not exactly represent continuous
natural motion within the system. Thus, for the resultant paths to be useful in the context of mission design, we need
to find a true feasible trajectory that minimizes the distance to the path nodes. To perform this, we implement methods
from collocation theory and perform a non-linear least squares optimization to recover natural a trajectory minimizing
the distance to any given initial path.
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Fig. 6: Distribution of different types of Legendre-Gauss collocation points. Obtained from [11].

Typically when performing collocation, a trajectory is sampled at specific collocation points distributed to optimize
numerical stability when evaluated interpolated derivatives. These collocation points are often sampled at the roots of
a high-order orthogonal polynomial, such as the Legendre polynomial. This allows for exponential convergence rates
when the entire trajectory is sampled along these roots, referred to as pseudospectral collocation [15]. Fig. 6 displays
a selection of Legendre polynomial roots, obtained from [11]. Since the nodes in the paths recovered from our graph
are not distributed in time according to these roots, we first must interpolate these paths at the roots of the Legendre
polynomial. With a properly distributed path, we can formulate the non-linear optimization.

As previously stated, given an initial set of nodes along a path representing points in Cislunar space detectable by
an architecture, we wish to recover a natural trajectory within the CR3BP that minimizes the total distance from
said nodes. Given an initial path P = {η0,η1, ...,η f−1,η f} represented by a sequence of graph nodes connected via
directed edges, we interpolate this path resulting in sequence of collocation points XC = {xxx(r) : r ∈ {r0, ...,rn}} where
{r0, ...,rn} are the roots of a Legendre polynomial. Then, we can construct the optimization problem as

min
X

(X −XC)
T (X −XC) (5)

s.t. DX − fff (X) = 0

where fff (X) are the CR3BP dynamics evaluated at the collocation points and DX = Ẋ are the derivatives of the
interpolated collocation points. The constraint in Eqn. (5) is referred to as the pseduospectral transcription error
and similar to the trapezoidal transcription error in Eqn. (3), it enforces adherence to the system dynamics at the
collocation points. As previously stated, with collocation points evaluated at the roots of the Legendre polynomial,
this constraint guarantees convergence [15]. The solving of Eqn. (5) is performed with scipy’s minimize function
using the SLSQP algorithm [23]. Once converged, the resultant solution X∗ is interpolated at the original simulation
path times t ∈ t0, ..., t f and represents a feasible trajectory within the dynamical system.

3.6 Persistent Detection Corridor Generation

With a feasible reference trajectory recovered from a path traversing through detectable regions of Cislunar space,
we then construct local neighborhoods of detectability at each time step along the trajectory. The LNoDes along the
trajectory approximate the maximum continuous region of detectability within the local region of the trajectory at each
time step. To calculate this, we sample the local region of the reference trajectory at time ti using polar coordinates
centered at x̂(ti) with θ j ∈ [0,2π) and rl ∈ (0,rc]. For each θ j, the detectability of each point at (rl ,θ j) is determined,
and the boundary at θ j is determined as the maximum value of rl such that (rl ,θ j) is detectable and rl+1 is not
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Fig. 7: Polar coordinate sampling about the reference trajectory from which LNoDe boundary points are estimated.
Detectable points are colored blue with purple points undetectable. The points determined as the boundary are outlined
in black with the interpolated boundary similarly marked connecting these points.

detectable by the architecture. Fig. 7 visualizes this method for determining the boundary points of an LNoDe at time
ti. As discussed previously, the set of LNoDes about reference trajectory constitutes its detection corridor, representing
the detectability of the trajectory and its local neighborhood in position space over time.

3.6.1 Persistence Metrics

Three metrics are considered for determining persistence within a given detection corridor, along with the total cover-
age obtained of the target along the reference trajectory. First, the area enclosed by the boundary points of an LNoDe
represents the local region within which an asset could experience perturbations in position space while remaining
detectable by an architecture. The corridor width rc at an LNoDe can be selected heuristically such that it bounds the
reachable set in position space resulting from an unexpected perturbation. Thus, the persistence of an LNoDe can be
defined as the total area bounded by its boundary points divided by the total area of the corridor with radius rc:

ρΓx̂(ti) =
AΓx̂(ti)

Arc

(6)

For this work, as a proof of concept rc is chosen to be a constant value not necessarily representing the reachable set
about the reference trajectory.

Next, the total persistence of an entire detection corridor CCC(x̂̂x̂x) can be evaluated by obtaining statistics of its LNoDes
at each time step of the reference trajectory. First, the total corridor coverage can be calculated as

ρCCC(x̂̂x̂x) =
1
N

t f

∑
ti

ρΓx̂(ti) (7)

for N time trajectory time steps. This metric represents the average LNoDe persistence over the duration of the
reference trajectory. Said differently, this metric captures total detectability about the reference trajectory within the
defined corridor radius rc. If rc is determined via an approximation of the reachable set about the reference, then this
metric represents the coverage of a target if it is perturbed at any time step. This provides insight to mission designers
of the expected coverage of an asset if the reference trajectory is not perfectly matched.

Finally, persistence can be further described by the frequency and duration of gaps in coverage. We can look at
the standard deviation of LNoDe persistence over the trajectory duration, giving us insight into the distribution of
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Observer Orbit Initial Phasing Telescope Diameter Period (TU) Jacobi Energy
3:2 Resonant 0.333 500mm 11.284 3.047

East Low Prograde 0.555 300mm 2.226 3.171
West Low Prograde 0.444 500mm 1.075 3.196

Table 1: Member observers of a selected optimal architecture. The architecture was found to be Pareto-optimal in
[17], with a cost of 14.75 and total average volume coverage of 73.81% over 30 simulation epochs.

detectable regions throughout a corridor:

σCCC(x̂̂x̂x) =

√√√√ 1
N

t f

∑
t0

(ρΓx̂(ti)−ρCCC(x̂̂x̂x))
2 (8)

Corridors with high variation per the standard deviation indicate non-uniform persistence per LNoDe, an undesirable
result if there is high likelihood of deviation from the reference trajectory at time steps where LNoDe persistence is
low. On the other hand, low variation in persistence indicates a more uniform distribution of persistence, a desirable
result if the total corridor coverage meets desired minimums. A more in depth look into detection gaps and variation
across LNoDes benefits from a visual analysis of persistence metrics over a trajectory duration.

These metrics can provide initial insight as the to performance of a corridor, and by specifying minimum values
of persistence matching relevant mission objectives, mission planners can obtain persistent detection corridors that
guarantee persistent coverage of their assets. Many detection corridors are returned with our methodology, so filtering
by persistence metrics can ensure that only PDCs of interest can be evaluated on a lower level by mission planners.

4. RESULTS

4.1 An Optimal Architecture

As found in previous work [17, 16], there exists a complex tradespace between objectives in the Cislunar SSA ar-
chitecture design problem. Notably, increases in coverage provided to volumes of Cislunar space and basic transfer
trajectories comes at the expense of either a high cost architecture or a large control effort by a cooperative agent. In
this initial work, we seek to uncover persistent detection corridors defined by natural reference trajectories. As such,
we explore architectures resulting in high average coverage of volumes and low CA control efforts. These constraints
result in high cost architectures with multiple observers, enabling large continuous regions of detectability throughout
Cislunar, as shown in a selected architecture in Fig. 3.

For an initial proof of concept for this method, we use the architecture layout from Fig. 3. The observers and
characteristics of the architecture observers are shown in Table 1.

4.2 Initial Graph

The initial simulation epoch is set to 01 Jan 2022 00:00:00 GMT, at which point initial observer phasings are set.
Starting arbitrarily past the initial epoch at 04 May 2022 16:00:00 GMT, we begin graph construction by evaluating
the detectability of evenly distributed grid points in the x− y plane, over a time period of 30 days with a time step
of 12 hours. As outlined above, at each time step, detectable points are sampled to become centroids, from which
local neighborhoods are generated by sampling velocities within the range of Jacobi energies of [3.01377,3.173],
corresponding to zero velocity curves allowing traversal to the Moon and the L1 and L2 Lagrange points. Detectability
of propagated states by the architecture is evaluated and detectable states are added as nodes, with edges representing
natural motion through the corresponding centroid state. In Fig. 8, centroids and propagated nodes added to the
graph are shown for three time steps within the simulation. After node construction, edges between nodes across
neighborhoods are constructed so that the trapezoidal transcription error is minimized, and the KNN distance metric
from Eqn. (4) evaluated between nodes is added as a weight to the relevant edge. Fig. 9 displays a 3D representation
of this resultant graph, with time past simulation epoch represented in the z-axis.
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(c)

Fig. 8: Centroids and neighborhood nodes added to the graph at distinct time steps.

4.3 Paths

With our graph constructed, the A* path finding algorithm is applied to uncover near feasible trajectories. We choose
to use a heuristic that always returns 0, as this was found to produce better resultant paths with respect to dynamical
feasibility. Edge weights added during graph construction are used by A* to estimate the cost of traversing along
edges. To find paths representative of crewed missions from the Earth to the Moon, we identify a number of initial and
goal nodes that minimize distance to the Earth and Moon respectively at unique time steps. We iterate over each initial
node to find paths to every goal node. This results in a variety of paths representing transfers of varying durations,
as well as paths with varying departure and arrival dates. The selection of initial and goal nodes is easily altered to
account for specific mission requirements if so desired.

Figure 10 displays a number of paths found after iterating through 50 initial nodes and 50 goal nodes. Recall that these
paths traverse through detectable regions of Cislunar space resulting from our graph construction process. An initial
indication of persistence can be evaluated by identifying paths with short arcs between bends (representing nodes),
representing paths whose traversals through detectable regions is likely near constant. Longer arcs between bends in a
path may indicate that in order to reach a goal node, the path had to traverse across a larger distance or period of time,
during which detection is ambiguous. Another important note is that even if a path is found from an initial to goal
node, it may not be close to feasible in the dynamical system, as it may simply be the path corresponding to the lowest
cumulative edge cost. From these paths, it is helpful to filter out or sort paths by cumulative edge cost or transcription
error.
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Fig. 9: Three-dimensional graph representing dynamical evolution of detectable regions of Cislunar space over time
as a result of a selected architecture.

Fig. 10: Set of paths recovered using A* within the detectability graph. Bends along paths indicate the position of a
graph node, with edges representing traversal between nodes. Edges are not necessarily representative of true motion
within the CR3BP.
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4.4 Corridors

We select a couple of paths from our graph with which to construct detection corridors about. The paths are sorted
by cumulative edge weight and the methods outlined above are used to obtain nearby feasible trajectories within
the CR3BP. We begin by selecting three unique paths on which to perform the interpolation at Legendre collocation
points, nonlinear least squares optimization, and corridor generation. Figures 11 - 13 display the results of trajectory
refinement and corridor generation. In each plot is shown the resultant interpolant of the original path, the solution to
the least squares optimization, and finally the corresponding detection corridor displayed in a 3D plot, with LNoDes
connected across time via interpolation of their boundary points, for clarity. Note that for ease of visualization, we
implement a corridor radius of rc = 0.1DU for each of the results that follow.

(a) Graph path refinement. (b) Resultant corridor about reference trajectory.

Fig. 11: Refined trajectory and resultant detection corridor with high levels of persistence.

In Fig. 11, we recover a trajectory starting within the vicinity of the Earth (albeit quite outside of GEO), with motion
opposite of a geostationary orbit reaching the vicinity of the Moon within four days. The benefit of this trajectory
is clear when looking at the resultant corridor. Both the reference trajectory and the corridor itself achieve 100%
coverage by the architecture, with the trivial result of no corridor variation. However, this is a case where even though
a feasible trajectory was found through the optimization in Eqn. (5) (the pseudospectral transcription error constraint
was satisfied), the reference trajectory here is not realistic given that its initial motion around the Earth is opposite to
that of most near-Earth orbits. Regardless, this is an example of a true PDC, where coverage is maintained of and
about a reference trajectory for the duration of its transfer.

Fig. 12, when compared to the previous result, more closely resembles a trajectory that we may expect in a crewed
mission to the Moon. This trajectory starts a day before the previous one, and has a duration of 5 days. Notably, the
detection corridor about this reference trajectory results in more variation in persistence. There are clearly some large
measurement gaps about the reference trajectory where no coverage is obtained, as well as LNoDes where significantly
less coverage about the reference is provided. This second observation is noticeable through the changing shape and
color of certain LNoDes along the reference. These gaps in coverage are captured in the corridor variation metric,
indicating a standard deviation in coverage among all time steps of 38.43%, a rather significant but intuitive value
given the gaps. However, even with a substantial variation in coverage, the total corridor coverage is maintained around
80%, indicating potential for a persistent detection corridor, depending on how individual mission requirements may
apply to gaps in coverage.
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(a) Graph path refinement. (b) Resultant corridor about reference trajectory.

Fig. 12: Refined trajectory and resultant detection corridor with small gaps in coverage but moderately high levels of
persistence.

(a) Graph path refinement. (b) Resultant corridor about reference trajectory.

Fig. 13: Refined trajectory and resultant detection corridor with significant gap in coverage during the middle of the
transfer.
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Fig. 14: Corridor coverage over time with marker color representing corridor variation.

Finally, Fig. 13 shows a reference trajectory starting two days after the previous with a total duration of 3.5 days.
Similar to the previous trajectory, this transfer resembles what we may expect a “generic” Earth-Moon transfer to
look like. It appears to start around Earth in an orbit near GEO, ending relatively close to the Moon with quite a
bit of energy leftover. In this scenario, the nonlinear optimization converged to find a feasible path in the dynamics,
but clearly the cost function from Eqn. (5) is rather large given how far away many of the path nodes are from the
trajectory. As a result, within the middle part of the transfer, the detection corridor lacks any coverage, leading to a
rather large gap. This is reflected in both the total corridor coverage and corridor variation metrics. Such a gap could
potentially lead to significant loss of asset tracking or communication, and significantly increase risk to human life in
the case of a crewed mission along this reference trajectory.

While we only show three selected corridors from this methodology, a great benefit to the automated generation of
corridors allows for a wider analysis and selection of corridors that may be of relevance to mission designers. We can
get a sense of the variations in corridor quality over trajectory epoch by looking at a scatter plot of resultant corridors.
Fig. 14 shows a plot of corridor coverage plotted over days past the simulation epoch, with marker color representing
corridor variation. As we might expect, corridor variation generally increases as corridor coverage decreases. This is
not necessarily always guaranteed to be the case, as demonstrated in Figures 12 and 13 where coverage is similar but
due to a large gap in detectability in Fig. 13 its corresponding variation is significantly higher. Meanwhile, the corridor
in Fig. 12 ends up with lower variation in persistence due to a shorter detectability gap but ends up with a similar level
of corridor coverage due to smaller variations in LNoDe persistence, as seen at the end of the transfer duration.

5. CONCLUSION

In this work we introduced a novel method for exploiting the capabilities of arbitrary Cislunar SSA architectures to
ensure persistent coverage of crewed missions within Cislunar space. Through our tool, multiple feasible reference
trajectories are uncovered which traverse primarily through detectable regions of space. Detection corridors along
these reference trajectories can be evaluated per given mission requirements, and corridors that meet persistence min-
imums can be used for initial trajectory design. Enumeration of many such persistent detection corridors allows for
a wide search of the trajectory design space where coverage of crewed and critical assets is crucial. At its core, this
method is an initial exploration into a process for future mission design that prioritizes persistent coverage. Inevitably,
a Cislunar SSA architecture will be constructed and missions influenced by the capabilities and resulting coverage
of said architecture. By encapsulating the dynamics of detectable regions of Cislunar space within a graph, mission
designers can make better decisions with respect to trajectory design while ensuring the safety of human life.
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