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ABSTRACT 

 

The Pattern of Life (PoL) characterization of a satellite in Low Earth Orbit (LEO) is an intricate process demanding 

high fidelity data and robust data processing techniques. The solution to this complicated problem demands a 

methodology based on multiple perspectives and the ability to process, synthesize and correlate data from multiple 

sources of varying fidelity. Towards this objective, the current research proposes a dynamic and robust methodology 

to precisely characterize and synthesize PoL of satellites based on a multi-perspective multi-modal analysis, involving 

many aspects of a Space Domain Awareness (SDA) technological chain. First, maneuver detection from different data 

types such as optical observations, Two Line Elements (TLE) and state vectors is described. For the maneuver 

detection from optical observations, the proposed technique is built upon a hypothesis-based tracking algorithm where 

each hypothesis makes a claim about the source of measurement, based on its statistical distance with respect to the 

predicted measurement. This technique is found to be suitable for processing maneuvers near-real time as well. For 

the maneuver detection from TLEs, a new technique called iterative sequential moving window method is proposed. 

The proposed technique involves a layered analysis inside the conventional moving window method for maneuver 

detection and does not require a user-defined threshold to be specified for maneuver detection. The iterative sequential 

moving window method is extended to the analysis of state vectors as well and it is found that maneuver detection 

using state vectors derives more accurate information about the maneuvers compared to TLEs. Next, a post-processing 

of the inferences derived from maneuver detection is conducted, leading to the purpose of the maneuver and 

correlation with the historical trend and PoL characterization of the satellite. The applications of the proposed 

methodology and the techniques developed for the characterization of space objects involve efficient and unambiguous 

cataloging of space objects, precise maneuver characterization and the generation of predictive analytics enabling 

reliable, action-oriented space domain awareness. 

 

1. INTRODUCTION AND BACKGROUND 

 

Humanity's utilization of space in the last century has been marked by significant advancements, from satellite 

launches to crewed missions to the Moon. The proliferation of satellites for communication, navigation, and scientific 

research has resulted in exponential increase in global accessibility, technological advancement and convenience. 

However, the increase in satellite deployment in recent times has highlighted the urgent need for a robust space 

operations infrastructure. Developing a comprehensive space infrastructure is essential to ensure the safety and 

sustainability of future space operations. A critical requirement for this development is the ability to characterize, 

synthesize and evaluate the Pattern of Life (PoL) of all Resident Space Objects (RSO). A good starting point for this 

meticulous task would be the characterization of all active assets in the Low Earth Orbit (LEO). 
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The PoL characterization of a satellite in LEO is an intricate process demanding high fidelity data and robust data 

processing techniques. The inferences drawn from such an analysis can be subjective, depending on the requirements 

of the end user. The lack of ground truth data to test the reliability of the algorithms and the lack of commonality 

among different perspectives, requirements and definitions of PoL characterization demand a solution based on 

multiple perspectives and the capability to ingest and fuse data from multiple sources of varying fidelity. In this 

context, the current research proposes a robust methodology to precisely characterize and synthesize PoL of satellites 

based on a multi-perspective multi-modal analysis. The contributions of the work are twofold: 1) the development of 

maneuver detection techniques ingesting multiple data types such as raw optical sensor observations, Two Line 

Elements (TLE) and state vectors and 2) a multi-perspective correlation and inference generation for maneuver 

detection, anomaly detection & threat analysis, identifying the purpose of the maneuver etc.  

 

 

 

2. LITERATURE REVIEW 

 

There is immense wealth of literature for detecting the maneuvers of space objects from multiple data types and using 

multiple techniques. A popular methodology in the literature to analyze the maneuvers from TLE data is to employ a 

sliding window method to evaluate the standard deviation of the time averaged motion and identify the maneuvers by 

determining the deviations which exceed user defined thresholds. Ref. [1] developed such a technique wherein the 

dispersion of a pre-defined parameter is calculated by finding the difference between its expected and actual values. 

The statistical distribution of this dispersion is then utilized to determine a maneuver threshold. Maneuvers are 

identified when the dispersions surpass this threshold. This methodology was shown to be applicable to the detection 

of other ‘space events’ also such as a collision event and solar activity changes. Another notable feature of the moving 

window technique is the computational efficiency of the numerical implementation and can be attributed to the simple 

cubic polynomial fitting of the sequential time series data. The sharp increase of the derivative of the time series data 

at the time of maneuver is also used to detect the event.  

 

Ref. [2] employed a preprocessing algorithm to smoothen the TLE data and correlated the difference between the 

leading and the trailing segments at an extrapolated mid-point time to a maneuver. The necessity for ‘tuning’ the 

algorithm parameters for the analysis of different objects resulting in the lack of a ‘single best set of algorithm 

parameters’ for all satellites is emphasized. A parameter termed as ‘time-lag’ was defined and it corresponds to the 

difference between the epoch of the peak of the time-series data and a known (truth) maneuver time. An average offset 

of around 2-3 days is reported [2] and was attributed to many factors including the latency in state estimates used for 

generating the TLEs, lack of post-maneuver data etc. 

 

Ref. [3] proposed two techniques for the detection of maneuvers from TLEs, the first involves a consistency check of 

the time-series data from TLEs and the second is a slightly modified version of the moving window technique 

mentioned in [1]. The first method (TCC) is based on the notion that unless a maneuver occurs, the spatial discrepancy 

between the propagated state and the later published state should be small. The second method (TTSA) applies two 

pre-processing steps of analyzing the input time series for the detection of harmonics and estimating the noise of the 

time series without harmonics, before applying the moving window method. It is found that the second method (TTSA) 

results in less false positives compared to the first method. Ref. [4] modified the TCC method by employing a filter 

that leverages locally weighted regression and when applied to the pairwise differential residuals, analyzes their 

fundamental structure.  

 

Ref. [5] modeled the maneuver as a jump Markov nonlinear system having multiple modes. Then an interacting 

multiple model estimation simulation is performed, and the mode with highest probability is correlated with the 

maneuver of the spacecraft. Ref. [6] developed a method to identify abnormal data segments compared to identifying 

outliers from the TLE data for maneuver detection. Two anomaly indices (SMA-based and inclination-based) are used 

to denoise the different data segments and generated using a discrete wavelet technique. All the above-mentioned 

literature requires thresholds to be specified for the analysis and it is well established that thresholds differ for different 

objects and are highly dependent on the type of data. Further, the sensitivity of these techniques to the thresholds 

directly decides the reliability of the maneuver detection. To reduce the outliers in the TLE data aimed at enabling an 

automatic detection of thresholds, Ref. [7] presented a new filter based on an Expectation Maximization algorithm. 

The variances estimated in the polynomial regression and prediction are used to determine the thresholds. However, 

in consistency with other literature, the window length and the threshold setting strategies are found to be the most 
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significant parameters in the effectiveness of the algorithm. Recently, the application of AI/ML techniques for the 

detection of maneuvers [8] is gaining prominence but the literature is not discussed herein for brevity.  

 

The technique for maneuver detection from raw optical observations is closely related to data association and object 

tagging. The advantages of such an approach will be twofold: 1) it reduces the time between occurrence and detection 

of the maneuver, and 2) since the measurements are directly used for maneuver detection, it does not require additional 

pre-processing of data in batches before it is fed into the algorithm. The underlying idea behind this approach is 

explained in detail in [9] which involves data association of noise-corrupted measurements to the source it originated 

from, followed by filtering and state estimation. Several efficient and robust multi-target tracking algorithms like the 

Global Nearest Neighbor (GNN) [10], Joint Probabilistic Data Association (JPDA) [11], Multiple Hypothesis 

Tracking (MHT) [12], Random Finite Sets (RFS) [13] have been established after rigorous implementation and testing. 

The associated measurements, along with a-priori states, undergo the Kalman filtering process [14], for the estimation 

of posterior states. 

 

In a situation where the spatio-temporal variation of the target state is only governed by the natural forces, the track-

to-orbit (T2O) correlation works effectively within a certain gating threshold. However, if the target performs a 

maneuver, its orbit starts receding gradually from the one computed by the standard orbit propagation dynamics. As 

a result, the T2O correlation stops, and the incoming measurement is then initialized as an Uncorrelated Observation 

(UCO) [15]. The initialization of a new UCO is attributed to two possibilities: 1) the UCO originated from the same 

object, but the object may have performed a maneuver, 2) the UCO originated from an object not listed in the catalog. 

The scope of this paper is limited to processing UCOs that originate out of a maneuver. Ref. [16] proposed a very 

straightforward methodology in which Mahalanobis distance was used as an indicator to detect a maneuver, followed 

by a conjunction analysis-based approach for its estimation. They also used an EKF/UKF framework to compute 

posterior state estimates, using the incoming measurements pre- and post-maneuver. However, the problem of 

correlation of UCO with its corresponding target still remains a major challenge if the algorithm is to be used to 

accommodate multiple targets simultaneously. 

 

Based on the literature mentioned above, it can be observed that there is no common framework to derive maneuvers 

from different data types and attributes. Further, the quantification of the reliability of the maneuver detection 

algorithms remains a tough task because of many uncertainties, inconsistencies and insufficiencies in the input data, 

lack of truth to validate the derived maneuvers and most importantly the deliberate covert nature of maneuvers of 

military assets. To address these issues, the current paper proposes a multi-perspective multi-modal evaluation of the 

pattern of life of RSOs in LEO. The different data types such as raw optical observations, TLEs and state vectors are 

processed and the maneuver detection techniques for each of these data types are described. A multi-perspective post-

processing is carried out to determine the purpose of the maneuver and to derive further inferences regarding maneuver 

reconstruction. 

 

The paper is organized as follows: the maneuver detection from TLEs is described in the next section. The proposed 

‘iterative sequential window’ method builds on the moving window method by adding one more layer of iterative 

analytics on the current window of data. The maneuver detection from the state vector data is described next. The 

fundamental characteristics of the data being very different from that of the TLEs, the moving window method is 

modified to account for the cyclic variation of the data. Subsequently, the technique for maneuver detection from 

optical observations is explained. The proposed technique is built upon a hypothesis-based tracking algorithm, where 

each hypothesis makes a claim about the source of measurement, based on its statistical distance with respect to the 

predicted measurement. Then individual analyses are correlated and post-processed to derive the purpose of the 

maneuver. Summary and conclusions are presented in the final section, describing the scope for future work. 

 

 

3. MANEUVER DETECTION FROM TLE 

 

3.1 Data collection and processing 

 

The TLEs for the analysis of maneuver detection are sourced from the publicly available NORAD data through Space-

Track [17] for the specified analysis timeframe. The TLE data is then categorized according to the timestamp 

chronologically and the Day of the Year (DOY) is used subsequently to tag the TLEs. Further, if there are multiple 

TLEs in a day, the difference of the parameter values between the first TLE and last TLE is also quantified. In this 
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manner, the smaller variations within a day are attributed to orbital decay and the larger, significant deviations across 

the day are analyzed. The time-stamped data in TLE is then transformed into the classical orbital elements and the 

individual parameters such as Semi-Major Axis (SMA), inclination etc. are analyzed independently. 

 

3.2 Basic moving window method 

 

A methodology to detect maneuvers from TLEs similar to that proposed by [1] is implemented first. The analysis of 

each parameter derived from the TLEs begins with a curve fit of the given data to a linear polynomial curve (a linear 

curve fit avoids overfitting of the data). The data is divided into multiple chunks and different curve fits are established 

for different chunks of data. Then a moving window analysis follows. The choice of window length is an important 

step in the maneuver detection process and a typical value of 10 days can be used as a good initial window length 

when the TLE data spans more than 30 days. The next step is the computation of deviation from the actual SMA 

values from the TLE and the values predicted by the fitted curve. These deviations form the basis of the maneuver 

detection process in two ways: 1) a threshold to distinguish between the normal orbital behavior and potential 

maneuvers is defined based on the Mean Absolute Deviation of the computed deviations and 2) the comparison of the 

threshold with the actual values of deviations to flag potential maneuvers. From the definition of threshold, upper and 

lower limits (confidence intervals) for anomaly detection are established using a significance level (𝛼 = 0.05). The 

acceptance of the confidence interval can be set using the significance level. The deviations which exceed the threshold 

are categorized as maneuvers and the consecutive detections within a specified time frame are eliminated ensuring 

that each detected maneuver is unique and significant. Then the maneuver characteristics such as start, end epochs, 

the resulting orbital parameter change (say, change in SMA or inclination) etc. are derived. 

 

Using the above-mentioned methodology, many RSOs in LEO were analyzed. The truth data for the maneuvers 

conducted by satellites being very rare (a few true maneuvers can be accessed in [19]), this research generates the 

truth data by visual inspection of the time history of SMA and inclinations of various RSOs similar to the approach 

followed in [20]. A tool is created which plots the time-series of actual parameter values and the deviations from the 

fitted curve. The True Positives (𝑇𝑃) are identified by visual inspection, denoting here on as ‘truth maneuver data’. 

An algorithm-derived maneuver detection is classified as true positive if the maneuver epoch falls within ± 1 day from 

the epoch of the actual maneuver data and other detections are classified as False Positives (𝐹𝑃) or False Negatives 

(𝐹𝑁) depending on the comparison with actual maneuver data. These values are used to compute the 𝐹1 score based 

on the following formulae: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄   (1) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄   (2) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄   (3) 

 

The performance of the maneuver detection algorithm in the existing literature for different RSOs are quantified in 

Table 1. The semimajor axis history and the detected maneuvers are presented in Fig. 1. 

 

 

Table 1: Performance of the basic maneuver detection algorithm. 

RSO 𝑻𝑷 𝑭𝑷 𝑭𝑵 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 

581xx 13 107 2 0.10833 0.86666 0.19259 

458xx 5 40 0 0.11111 1 0.2 

460xx 8 42 0 0.16 1 0.27586 

457xx 7 56 0 0.11111 1 0.2 

558xx 4 24 7 0.14285 0.363636 0.20512 

 

 

From Table 1, it can be observed that the reliability of maneuver detection performed by the existing maneuver 

detection algorithms is poor. The fundamental reason is the large number of false positives and stems from the 

inappropriate value of threshold and duplication of detected maneuvers across different windows. Based on this 
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reasoning, the current research proposes an iterative sequential window method which doesn’t need an explicit 

threshold to be described and is explained in the next section. 

 

 
Fig. 1: Maneuver detection of object 581xx using basic moving window method. 

 

3.3 Iterative sequential window method 

 

The iterative sequential window method builds on the conventional moving window method by adding one more layer 

of analysis on the data. Within a fixed window of data, the preliminary step involves removal of the first data point 

from the analysis and subsequent application of moving window technique. In the next step, the second data point is 

removed, and the process repeats till the last data point is removed from the analysis, forming an iterative method and 

the standard deviations for all these window segments are computed, as depicted in Fig. 2.  

 

 

 
Fig. 2: Concept of iterative sequential moving window. 
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The next step involves computation of a test statistic, denoted 𝑓 is computed by the following formula: 

 

𝑓 = 𝑙𝑜𝑔(𝜎𝑤𝑤 𝜎𝑠𝑤⁄ ) (4) 

 

The test statistic 𝑓 compares the standard deviation of the whole window (𝑤𝑤) to the average standard deviation of 

the subset window (𝑠𝑤). This magnifies a significant change in variability between the standard deviations of whole 

window and smaller window, eventually contributing to reject or accept the null hypothesis of maneuver. The next 

step in the algorithm is the computation of a Bayes factor (𝐵𝐹), a function of the lengths of the whole window and 

smaller windows, as defined below. 

 

𝐵𝐹 = 𝑁𝐹 ∗ 𝐸𝐹 (5) 

where 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑁𝐹) =
(𝑁𝑤𝑤 − 2)3/2

2√𝜋(𝑁𝑤𝑤 − 1)(𝑁𝑠𝑤 − 1)
 (6) 

 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐸𝐹) = 𝑒2 [
𝑁𝑤𝑤 − 𝑁𝑠𝑤

(𝑁𝑤𝑤 + 𝑁𝑠𝑤) − 2
] 𝑓 −

(𝑁𝑤𝑤 − 1) ∗ (𝑁𝑠𝑤 − 1)

(𝑁𝑤𝑤 + 𝑁𝑠𝑤) − 2
 (7) 

 

The normalization factor (𝑁𝐹) adjusts for the size of the windows. This adjustment helps maintain consistency and 

reliability in detecting maneuvers, regardless of how large or small the analyzed data windows are. The exponential 

factor (𝐸𝐹) is where the actual comparison happens. It uses the test statistic 𝑓 and checks how the differences between 

the full and smaller windows compare when adjusted for their sizes. If the smaller window shows a significantly 

different standard deviation than the full window, the exponential term and the Bayes Factor 𝐵𝐹 will be high, 

suggesting that a maneuver is likely. 

 

The last step in the iterative sequential moving window technique is the computation of the Bayesian Probability 

(𝐵𝑃). Bayesian probability helps quantify how confident that a detected change in the data is due to a maneuver rather 

than random fluctuations or due to orbital perturbations. A high 𝐵𝐹 means there's strong evidence for a maneuver, 

while a low 𝐵𝐹 suggests otherwise. 

 

𝐵𝑃 =
𝐵𝐹 ∗ (1 −

1
𝑤𝑖𝑛𝑙𝑒𝑛

)

(1 + 𝐵𝐹 ∗ (1 −
1

𝑤𝑖𝑛𝑙𝑒𝑛
))

 (8) 

 

The formula adjusts the Bayes Factor based on the size of the window (𝑤𝑖𝑛𝑙𝑒𝑛). It accounts for the fact that as the 

window size increases, the chance of detecting a maneuver due to random noise decreases. The term 

(1 −
1

𝑤𝑖𝑛𝑙𝑒𝑛
) helps to normalize the influence of the window size. The formula ensures that the resulting 𝐵𝑃 value 

falls between 0 and 1, which is the standard probability range. 

 

𝐵𝑃 assesses the likelihood that a detected change in data is due to a maneuver rather than random noise. A 𝐵𝑃 value 

close to 1 suggests strong evidence that a maneuver has occurred, while a value near 0 indicates that the change is 

likely due to random fluctuations. The threshold for 𝐵𝑃, which is 
1

𝑤𝑖𝑛𝑙𝑒𝑛
, decreases as the window length (𝑤𝑖𝑛𝑙𝑒𝑛) 

increases, making the criterion for detecting a maneuver stricter and reducing sensitivity to minor fluctuations. 

Conversely, with smaller windows, the threshold is higher, increasing sensitivity and the likelihood of detecting 

maneuvers. Thus, if 𝐵𝑃 exceeds this threshold, it suggests a high probability that a maneuver has taken place. A high-

level flow chart representing the maneuver detection using the iterative sequential window method is depicted in Fig. 

3. 
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Fig. 3: High level flowchart of the maneuver detection process using iterative sequential window technique. 

 

 

 

 

3.3.1 Maneuver detection from TLEs using the iterative sequential window method 

 

The TLE data of satellites used in the previous section was used to quantify the maneuver detection performance using 

the iterative sequential window method and results are presented in Table 2. 

 

 

Table 2: Performance of the iterative sequential window method for maneuver detection from TLEs. 

RSO 𝑻𝑷 𝑭𝑷 𝑭𝑵 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑹𝒆𝒄𝒂𝒍𝒍 𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 
% improvement in 

𝑭𝟏 𝒔𝒄𝒐𝒓𝒆 compared 

to basic method 

581xx 13 2 2 0.86666 0.86666 0.86666 350.00 

458xx 5 2 0 0.71428 1 0.83333 333.33 

460xx 6 0 0 1 1 1 214.29 

457xx 7 2 0 0.77777 1 0.875 333.33 

558xx 6 3 5 0.66666 0.545454 0.6 322.22 

 

It can be observed from Table 2 that the performance and reliability of the iterative sequential window method is 

significantly greater compared to the basic moving window method. As an indicative result, the maneuver detection 

of the RSO 581xx for the timeframe from 01/01/2024 to 01/08/2024 is plotted in Fig. 4. 

 

 

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



 
Fig. 4: Maneuver detection of the object 581xx using TLEs using the iterative sequential moving window method 

 

During this period, this object is found to have conducted 12 along track maneuvers, ranging from SMA changes 

of 1.1257 km to 3.3054 km. All these maneuvers are identified to be orbit maintenance maneuvers. From the orbital 

evolution, the satellite is deduced to have a high thrust chemical propulsion system. The mass of the satellite (as 

obtained from public verified sources) is about 300 kg. The average period between each maneuver is about 17 days. 

The temporal distribution of these maneuvers is nearly repetitive in nature, the least duration between maneuvers 

being 11 days and the most duration was 28 days. Based on the pattern of maneuvers, an along track maneuver was 

predicted to happen around 31-07-2024 to 23-08-2024, without the knowledge of the TLEs around that time frame. 

When the actual orbital data was received, the satellite was found to have conducted a maneuver on 21-08-2024, 

confirming the hypothesis of orbit maintenance maneuvers. 

 

As another demonstration of the maneuver detection and an associated purpose, the SMA history of the satellite 558xx 

is presented in Fig. 5. This satellite has conducted a rigorous orbit maintenance with SMA 7583.925 km by orbit 

maintenance maneuvers at regular intervals of 30-40 days. An out of pattern maneuver was detected on 02-08-2024 

between 15:00:00 UTC and 20:30:00 UTC, reflecting an SMA change of about 175m. This is correlated with a 

conjunction analysis of this object (generated with an in-house tool) where a close proximity with the object 394xx 

was observed at 07-08-2024 20:41:00 UTC. The miss distance was 1.28808 km, and the collision probability was 

2.99598591e-04 (analyzed using Alfano Max Probability method [19] The subsequent analysis using data on 03-08-

2024 revealed that the predicted close approach was no longer a threat. This sudden change in predicted miss distance 

is attributed to a maneuver on 02-08-2024 15:00:00. The secondary object did not perform any maneuvers during this 

period, which further confirms the inference that the observed SMA change was due to a collision avoidance maneuver 

(CAM) conducted by the object 558xx. 
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Fig. 5: Maneuver detection of 558xx using the iterative sequential window method 

 

4. MANEUVER DETECTION FROM STATE VECTORS 

 

Maneuver detection from state vectors is different from maneuver detection from TLEs in several aspects. First, the 

time series TLE data is discrete in nature whereas the state vector data is more continuous. Second, the effect of 

maneuver(s) on the SMA, inclination etc. are less distinguishable compared to the TLEs. Further, the grouping of the 

data based on timestamp of the TLE expressed as DOY will not work for the state vectors where precise timestamps 

are to be ingested. 

 

 

4.1 Data generation and processing 

 

The data for maneuver detection from state vectors is generated using an in-house high fidelity numerical propagator. 

The reason for the use of synthetic data is the unavailability of reliable open-source data for the satellite of interest 

(581xx). Using the information of propulsion system characteristics from the previous section and deriving the initial 

states from in-house proprietary data sources, two along-track maneuvers are simulated within a span of 12 

hours.  Each of these maneuvers spanned 8 seconds and the details are mentioned in Table 3. 

 

 

 

 

Table 3: Details of maneuvers used for generating synthetic data of maneuver detection from state vectors 

Maneuver Start epoch End epoch Acceleration components in 

RSW coordinate frame (m/s2) 

Burn 

duration 

1 2024-06-21 09:59:55 2024-06-21 10:00:00 0.0, 0.1666, 0.0 5 seconds 

2 2024-06-21 21:59:55 2024-06-21 22:00:00 0.0, 0.1666, 0.0 5 seconds 
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4.2 Maneuver detection from state vectors using iterative sequential window method 

 

The maneuvers simulated in the previous section were exactly captured using the iterative sequential window 

algorithm. The increase in SMA due to the two maneuvers are found to be 1.540 km and 1.496 km because of the first 

maneuver and second maneuver respectively. Fig. 6 depicts the evolution of SMA over time and the detected 

maneuvers from the state vector data. 

 

 
Fig. 6: Detection of maneuvers from state vectors using the iterative sequential window method 

 

 

4.3 Comparison of maneuver detection from state vectors and TLEs 

 

To compare the fidelity of maneuver detection using state vector data with the maneuver detection using TLEs, the 

state vector data is used to generate TLEs using an in-house developed algorithm and analysed using the iterative 

sequential window method. The state vector data is chunked into multiple data sets and the TLEs are generated for 

chunks of data not involving any maneuvers. These TLEs are then used as input for the iterative sequential window 

algorithm.  

 

The TLE-based maneuver detection did not distinguish between the two maneuvers and was captured as a single large 

maneuver as depicted in Fig. 7. The possible reasons are twofold: 1) the maneuvers are separated temporally by just 

12 hours. The sensitivity aspect of the TLE-based algorithm to detect closely conducted maneuvers is to be 

investigated and 2) the window length of 10 days used for the analysis is too large for the detection of closely 

conducted maneuvers. However, it is demonstrated that the underlying problem of maneuver detection of closely 

spaced maneuvers (within a few hours) can be solved by state vector-based analysis.  
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Fig. 7: Maneuver detection using TLEs generated from state vectors. 

 

 

 

5. MANEUVER DETECTION FROM OPTICAL SENSOR OBSERVATIONS 

 

This section describes maneuver detection from raw optical sensor observations like Azimuth & Elevation (𝐴𝑧, 𝐸𝑙) 

or Right Ascension & Declination (𝑅𝐴, 𝐷𝑒𝑐). In order to reduce latency between the execution and detection of the 

maneuver, insights are needed to be drawn in real time before post-processing the observations into state vectors or 

orbital elements. The observations data needed to perform the analysis is generated using the state vectors mentioned 

in the previous section.   

 

5.1 Data generation and processing 

 

The algorithm requires 3 data inputs: 1) the initial state of the target of interest 2) the ground station coordinates and 

3) the angles-only tracking data. The first two inputs can be extracted from proprietary data sources. For angles-only 

tracking data, synthetic data was generated by propagation of states using an in-house high-fidelity numerical orbit 

propagator. The initial states were propagated till the maneuver was to be performed, then after adding maneuver, the 

resulting states were again propagated till the end of the astrometric scan. Besides compensating for unavailability of 

reliable data for the target of interest, it also allows us to generate tracking datasets with desired maneuver parameters, 

namely, the time of maneuver, the thrust and the duration of burn. The data was then fed into a multi-target tracking 

algorithm equipped with new track initialization feature, the testing conditions of which are tabulated below: 
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Table 4: Simulation parameters for the multi-target tracking algorithm 

Feature Attribute 

Coordinate Frame (for state vector) TEME 

Propagation model (for data 

association) 

Two-body (Keplerian) 

Initial State Covariance (𝑃0) 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = 1 𝑘𝑚 

�̇�𝑥 = �̇�𝑦 = �̇�𝑧 = 10 𝑚/𝑠 

Process Noise (𝑄) 𝜎𝑥 = 𝜎𝑦 = 𝜎𝑧 = 1 𝑚 

�̇�𝑥 = �̇�𝑦 = �̇�𝑧 = 1 𝑐𝑚/𝑠 

Measurement Noise (𝑅) 𝜎𝛼 = 𝜎𝛿 =
5 𝑎𝑟𝑐 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

Measurement step-size 5 seconds 

Initial epoch for the scan 2024-06-10 12:00:00 

(UTC) 

Terminal epoch for the scan 2024-06-10 12:30:00 

(UTC) 

Upper bound threshold 𝑑𝑚𝑎ℎ𝑎𝑙  for 𝐻1 12 

 

 

5.2 Standard target-tracking approach: Mahalanobis distance calculation 

 

 

Assuming no control input, the state dynamics is modeled as: 

 

𝑥𝑘+1|𝑘 = 𝐹𝑘𝑥𝑘 +  𝑤𝑘 (9) 

 

where 𝐹𝑘 is the state transition matrix, 𝑥𝑘 is the posterior state estimate at timestep 𝑘, 𝑤𝑘 is the process noise, assumed 

to be zero-mean Gaussian with noise covariance 𝑄. The initial state is assumed to follow a Gaussian distribution as: 

 

𝑋0 ~ 𝒩(𝑥0, 𝑃0) (10) 

 

where 𝑥0 is the mean state, and 𝑃0 is the 6 × 6 state covariance matrix. Similarly, the relation between state and 

measurement can be modeled as: 

 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 +  𝑣𝑘 (11) 

 

where 𝑧𝑘 = [𝛼𝑘 𝛿𝑘] 𝑇 is the angles-only measurement pair, namely Azimuth (𝛼) and Elevation (𝛿). 𝐻𝑘 is the 

measurement model, and 𝑣𝑘 is the measurement noise, also assumed to be zero-mean Gaussian with noise covariance 

𝑅. In a real-time scenario, the incoming measurements 𝑧𝑘 cannot be computed accurately by 𝐻𝑘𝑥𝑘, hence another 

quantity called innovation or measurement pre-fit residual is calculated as: 

 

�̃�𝑘 = 𝑧𝑘 − 𝐻𝑘𝑥𝑘|𝑘−1 (12) 

 

Using this innovation, the Mahalanobis distance is calculated as: 
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𝑑𝑚𝑎ℎ𝑎𝑙 = �̃�𝑇𝑆−1�̃� (13) 

 

where 𝑆 is the innovation covariance matrix, or the covariance of the apriori measurement pdf. The 𝑑𝑚𝑎ℎ𝑎𝑙  is then 

used for hypothesis selection. Once the hypothesis is chosen, the quantity �̃�𝑘, along with other quantities is used in 

the filtering step to get the posterior state estimates. 

 

 

5.3 Hypothesis-based multi-target tracking 

 

The technique used in this paper closely follows [16] where Mahalanobis distance is used as an indicator to detect a 

maneuver footprint. However, the methodology proposed by [15] also highlights the importance of track-to-orbit 

correlation, so that the incoming measurements can be used by UKF to get an accurate estimate of the posterior state 

vector of the target even after maneuver has been performed. This track-to-orbit correlation is usually carried out 

under a data association framework like GNN or JPDA [10-11], however, these techniques are also equipped with a 

certain permissible limit for association, known as gating condition. Gating condition ensures that only the 

measurements originated because of standard orbit propagation get associated to the orbit. Measurements originated 

after anomalous target activities like a maneuver, fail to satisfy these gating conditions, thus rendered uncorrelated. 

To evade this, a hypothesis-based tracking approach has been used. In this paper, we assume the following set of 

hypotheses for a measurement: 

 

ℋ0: Measurement originated from a catalogued object because of orbit propagation. 

ℋ1: Measurement originated from a catalogued object, because of maneuver. 

ℋ2: Measurement originated from a new object. 

 

 
Fig. 8: Criteria for selection of measurement origin hypotheses:  

standard orbit propagation, maneuver and new track initiation 

 
The rule for choosing any hypothesis is depicted in Fig. 8. Here, 𝑑𝑚𝑎ℎ𝑎𝑙  is the Mahalanobis distance of the obtained 

measurement with respect to the a-priori measurement pdf. A threshold of 3 was chosen for ℋ0 because a Gaussian 

random variable is likely to fall within 3𝜎-bound with a probability of over 99.7%. A calculated estimate of threshold 

value for ℋ1 can also be decided based on the knowledge of the most aggressive maneuver the target may perform 

which, in turn, is an attribute to the kind of propulsion system used in the target object. 

 
5.3.1 Maneuver detection using one-layer gating condition 

 

Two test cases were prepared, each consisting of one maneuver performed during the 30-minute scan window, the 

parameters of which are presented in Table 5:  
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Table 5: Details of maneuvers used for generating synthetic data of maneuver detection from observations 

Maneuver Start epoch End epoch Acceleration components  

in RSW frame (m/s2) 

Thrust 

1 2024-06-10 12:15:00 2024-06-10 12:15:02 0.0, 0.1666, 0.0 50 N 

2 2024-06-10 12:15:00 2024-06-10 12:15:02 0.0, 0.0333, 0.0 10 N 

 

Data association was performed, first, with only the 3𝜎-bound, i.e., only the hypotheses ℋ0 and ℋ2. In that case, the 

T2O correlation stops after the detected maneuver epoch, thus indicating a maneuver, however the incoming 

measurement gets initialized as a new track. Fig. 7a and Fig. 7b depict the evolution of measurement pre-fit and post-

fit residuals for Azimuth & Elevation separately, along with the demarcation of true and detected time of maneuver. 

Measurement post-fit residual is obtained by calculating the difference between incoming measurement 𝑧𝑘 and 

posterior state estimate 𝑥𝑘|𝑘 converted to measurement space. Because the T2O correlation stopped, the incoming 

measurement could not be used by the UKF for posterior state estimation, hence, the measurement post-fit residual 

comes out to be the same as the measurement pre-fit residual. 

Fig. 7a: Evolution of residuals in Azimuth (left panel) and Elevation (right panel) for NORAD ID 581xx.  

Thrust = 50 N, Burn duration = 2 s 

 

Fig. 7b: Evolution of residuals in Azimuth and Elevation for NORAD ID 581xx.  

Thrust = 10 N, Burn duration = 2 s 
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5.3.2 Maneuver detection using two-layer gating conditions 

 
The above process was repeated, this time, with all the 3 hypotheses ℋ0, ℋ1 and ℋ2, i.e., with both 3𝜎- and 12𝜎- 

bounds. As the Mahalanobis distance exceeds 3, a maneuver is indicated, however, since it is less than 12, it can still 

be associated with the target. Hence, the incoming measurement is now available to be used by UKF for posterior 

state estimation. Fig. 8a and Fig. 8b depict a significant reduction in the measurement post-fit residual, highlighting 

that the filtered state is being calculated as a result of both the standard propagation and the maneuver. 

 

Fig. 8a: Evolution of residuals in Azimuth and Elevation for NORAD ID 581xx.  

Thrust = 50 N, Burn duration = 2 s 

 

Fig. 8b: Evolution of residuals in Azimuth and Elevation for NORAD ID 581xx.  

Thrust = 10 N, Burn duration = 2 s 

 
The following plot shows the evolution of Mahalanobis distance for target tracking scenarios with Maneuver 1 and 2 

respectively. Although  𝑑𝑚𝑎ℎ𝑎𝑙exceeds 3 at the same time for both one-layer and two-layer gating, its value diverges 

with time for the one-layer gating, showing a slow recession of the propagated orbit from the actual one. However, 

two-layer gating enables the use of UKF, which prevents the Mahalanobis distance from diverging, thus providing a 

more accurate state estimation after the maneuver. The improved technique based on two-layer gating condition, along 

with maneuver detection, solves the problem of correlation of post-maneuvered track to its pre-maneuvered orbit. This 

improvisation would be helpful when multiple targets perform maneuvers during the scan. 
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Fig. 9: Evolution of Mahalanobis distance in the two maneuver datasets for NORAD ID 581xx 

 
Table 6: Deviation in maneuver epochs from the synthetic data generated for the two test cases 

Maneuver Thrust True epoch Detected epoch Latency in 

detection (seconds) 

1 50 N 2024-06-10 12:15:00 2024-06-10 12:16:00 60 

2 10 N 2024-06-10 12:15:00 2024-06-10 12:16:30 90 

 

 

Table 6 clearly shows that a more aggressive maneuver is detected with less latency than a less aggressive maneuver. 

Furthermore, the computation time for each maneuver and with both single-layer and double-layer gating achieved a 

runtime of ~7.5 minutes, thus showcasing its ability to be used for real-time data processing. 

 
 

6. CONCLUSIONS 

 

 

A dynamic and robust methodology to precisely characterize and synthesize PoL of satellites in LEO based on a multi-

perspective multi-modal analysis is proposed. This involves a two-stage processing where the first step involves a 

comprehensive maneuver detection process and the second step consists of correlating, synthesizing and deriving 

inferences from a number of SDA related aspects. In the first stage, two new techniques for maneuver detection from 

optical observations and TLEs are proposed. The maneuver detection from observations is based on a hypothesis-

based tracking algorithm and from the TLEs is an improvement to the moving window analysis. The proposed 

technique for maneuver detection from TLEs, called iterative sequential moving window method, improves the 

performance and reliability of the maneuver detection process by two orders of magnitude compared to a basic moving 

window analysis. The technique is extended to derive maneuvers from state vectors and the reliability of the inferences 

is found to be better compared to the maneuver detection from TLEs. The proposed technique for maneuver detection 

from observations is found to be compatible with near-real time processing of optical observations. In the second stage 

of the proposed methodology, the purpose of the detected maneuvers is derived and demonstrated for routine orbit 

maintenance maneuvers and a collision avoidance maneuver.  The applications of the proposed methodology and the 

techniques developed for the characterization of space objects involve efficient and unambiguous cataloging of space 

objects, precise maneuver characterization and the generation of predictive analytics enabling reliable, action-oriented 

space domain awareness. 
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