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ABSTRACT

Event-based vision sensors (EVS) are not frame-based and react to differential light on the single-pixel level. Their use has always
been intriguing in space situational awareness problems. However, the need for the low magnitudes and high signal-to-noise ratios
have been proving a challenge. Furthermore, non-linear time biases in the event registration do occur, thwarting precise astrometry.
This paper presents a comprehensive physics-based simulation method for modeling the EVS pixel architecture. In contrast to
other dynamic vision camera simulations, a truthful representation is found, avoiding rendering full frames to begin and without
making broad simplifications. Specifically, the simulator incorporates the logarithmic photoreceptor, source follower buffer, change
amplifier, and comparator. Each component’s functionality is detailed, with a specific focus on the photoreceptor’s response to light
and thermal noise, the buffering and filtering processes, and the event generation mechanism. Key aspects of the simulation include
the modeling of dark current as a Poisson process, the use of linear interpolation to handle the asynchronous nature of EVS data,
and the incorporation of noise sources such as shot noise and leakage. A multi-pixel model is implemented to simulate the behavior
of the entire sensor, allowing for the emulation of complex scenarios involving multiple moving targets. The simulator’s accuracy
is validated through qualitative and quantitative comparisons with real data from the DAVIS 346 sensor. The results demonstrate
the simulator’s capability to replicate the dynamic range and event-based data characteristics of the actual EVS, highlighting its
effectiveness in evaluating sensor performance and optimizing bias configurations for Space Situational Awareness applications.

1. INTRODUCTION

Traditional frame-based cameras capture a series of images at a fixed frame rate and store them as video data. While
this technology is widely used in daily life, as well as in academic and industrial settings, it has certain disadvantages.
For instance, storing data for a pixel whose value does not significantly change over time is redundant. Additionally,
important information can be missed between frames. In contrast, biological vision systems are event-driven and
consist of cells that individually and asynchronously transmit information to the brain without forming a matrix of
data at a fixed rate. Therefore, developing an engineering solution that incorporates biologically inspired, pixel-
independent, and frame-free image acquisition techniques could address the limitations of frame-based cameras.

The first EVS was developed and reported in 2008 [8][9][10]. In an EVS, pixels are designed to react asynchronously
to relative changes in brightness. Instead of generating images over time at a fixed rate, pixels in an EVS individually
monitor whether the current brightness deviates from a memorized reference brightness by a specified threshold. The
output of an event camera typically includes the time, pixel location, and polarity of each event. The polarity of an
event indicates whether the change in brightness is positive (represented by 1) or negative (represented by -1). This
approach allows event cameras to achieve high temporal resolution of approximately 1 s and a dynamic range of about
140 dB [4]. While the temporal resolution is not impressive on the single pixel, as the pixels act asynchronously and
independently, motion can be captured almost continuously,

Due to the high temporal and spatial resolution of event cameras, researchers in the field of Space Situational Aware-
ness (SSA) believe that these cameras can significantly advance their work. Chin et al. leveraged the event camera’s
low power consumption and high temporal resolution to develop an algorithmic pipeline for star tracking using event
data [2]. Similarly, G. Cohen et al. conducted experiments and concluded that event cameras are well-suited for
space-based SSA systems, owing to their low weight, low power consumption, and high temporal resolution [3].

However, since many effective image processing technologies in the field of Space Situational Awareness (SSA) rely
on conventional frame-based data frameworks, the novel data structure of EVS presents a bottleneck for researchers
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aiming to integrate EVS into this field, with the initial works also showing significant draw-back of using EVS for SSA
use. The problem of precise astrometry is still unsolved. Furthermore, timing biases have been observed, rendering
the timing of the observations difficult, as traditional frame-time cannot be used. To address this challenge, researchers
have developed simulators for EVS output, enabling them to explore potential applications without requiring access to
the hardware itself. For example, V2E converts frame-based video data into EVS output by calculating the difference
between brightness values in consecutive frames [6]. Benson and Holzinger approximated EVS pixel voltage using a
first-order differential equation and simulated event rates for static point sources with both constant and time-varying
mean brightness, as well as for moving sources [1]. Oliver and Salvansky proposed a physics-based EVS simulator
tailored for SSA applications, incorporating satellite dynamics, atmospheric turbulence, and key elements of the V2E
framework, particularly noise simulation [16]. Nevertheless, their algorithm for simulating photocurrent is not based
on the underlying physics of a photodiode, and no quantitative validation of the simulation was provided. Therefore,
this paper proposes an EVS simulator that takes incident photons as its input signal and generates events as output,
making it more physics-based. Specifically, the simulator models the event output of the DAVIS 346, one of the most
popular EVS models on the market, capturing the motion of five-point light sources that mimic the movement of
objects in space as observed through a telescope. The model calculates the time history of photocurrent generated in
a photodiode responding to the photon flux from the light sources, and then generates a list of events based on this
time history. Additionally, linear interpolation of the photocurrent sampled at constant time intervals is implemented
to preserve the asynchronous behavior of pixels in the EV sensor within the simulator.

2. SIMULATION METHOD

Figure 1 illustrates a typical EVS pixel design, which consists of four major components: the logarithmic photorecep-
tor, the source follower buffer, the change amplifier, and the comparator. In this section, we provide explanations of
how each component functions and how it is modeled.

Fig. 1: Typical EVS pixel architecture (courtesy [5])

2.1 The Logarithmic Photoreceptor

The input signal of an EVS consists of photons in the form of light. When a photodiode is exposed to light, photons
enter the semiconductor material. If the energy of these photons exceeds the material’s bandgap energy, electron-hole
pairs are generated, leading to a flow of free electrons, which we refer to as electric current. However, free electrons
are generated not only by incident light but also by the thermal energy within the semiconductor material. The current
generated by thermal energy is known as dark current, a significant source of noise in EVS under low illumination
conditions. The total current generated by a photodiode can be expressed as shown in Equation 1, where Ip represents
the current due to photon incidence, and Idark represents the dark current. The dark current is calculated using the
current density (Jdark), the total pixel area (A), and the fill factor (F), which is the ratio of the photodiode area to the
total pixel area:
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I = Ip + Idark = Ip + JdarlAF (1)

The amount of current a photodiode can generate from photon incidence depends on the material and geometrical
properties of the photodiode. Equations 2 and 3 represent the photocurrent and dark current density, respectively,
derived based on the physical phenomena occurring within a photodiode [7, 18]:

Ip = eηiτλ (1− exp(−αW )) (2)

where τ is the transmission coefficient, α is the absorption coefficient, ηi is the internal quantum efficiency, λ is the
incident photon rate, and e is the elementary charge.

Jdark =

(
eDh

LhNd
+

eDe

LeNa

)
n2

i +
eWni

τg
(3)

where Dh and De is the hole and electron diffusion coefficient, Lh,e is the hole/ electron diffusion length, the Na and
Nd are the acceptor and dopant concentrations in a semiconductor, w is width of the depletion region, and ni is the
instrinsic concentration.

The advantage of the dark current model is that it is based on the actual phenomena occurring within a PD. However,
most of the variables in the model are physical or material parameters specific to the PD implemented in the camera,
and these details are often not publicly available. Consequently, while the model is precise in representing the actual
phenomena, when it is used to model a specific sensor, the parameters need to be approximated based on the available
information from other sensors with publicly accessible details.

Although the physical and material parameters for the PD used in the DAVIS 346 are not publicly available, iniVation,
the manufacturer of the DAVIS 346, has reported that the average number of free electrons generated by thermal
energy is 18000 [e−/s] [11]. Since the generation of free electrons due to thermal energy can be modeled by a Poisson
process, the dark current at time t can be simulated by drawing a sample from a Poisson distribution with a mean of λ

and multiplying it by the elementary charge as

Idark, t = Pr[λdark = 18000]× e (4)

After the photocurrent is generated by the photon incidence, it is converted to a voltage that is proportional to the
logarithm of the photocurrent, as shown in Equation 5. There are two advantages to the logarithmic relationship
between the input light and the output voltage at Vpr. First, it compresses the output voltage, allowing the EVS to
achieve a much higher dynamic range. Second, small changes around the background value become proportional to
the background value. This means that the output signals for the same object under different lighting conditions are
consistent to the first order [5]:

Vpr =
UT

κ
log(Ip + Idark) (5)

where UT is the thermal voltage, and κ is the parameter of the transistor.

2.2 The Source Follower Buffer

The source follower buffer section acts as an intermediary between the highly sensitive logarithmic photoreceptor
section and the spiking components, which include the change amplifier and comparator sections. In this part of the
circuit, the noise component of the voltage signal, Vpr, which is faster than the signal of interest, is filtered out. This
filtering process can be modeled as a first-order lowpass filter. The first-order lowpass filter is described by Equation
6, where S represents a general signal and fc is the cut-off frequency.

Sout(t) = Sin(t)−
1

2π fc

dSout(t)
dt

(6)

Since the modeled input signal is discrete data, Equation 6 is discretized:
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Sout(t2) = 2π fc∆tSin(t1)+(1−2π fc∆t)Sout(t1) (7)

The cut-off frequency, fc, is assumed to be a typical value of 10 [Hz]; however, in reality, it is controlled by the source
follower bias current, Is f .

2.3 The Change Amplifier

The change amplifier section (C in Figure 1) amplifies the filtered voltage, Vs f , by the negative ratio of the two
capacitors, −C1/C2, resulting in Vdi f f . This process eliminates the DC component of Vs f [17].

2.4 The Comparators

The amplified voltage, Vdi f f , is continuously monitored and compared to the signal value at the last detected event,
Vre f . If Vdi f f changes by the user-defined thresholds θON or θOFF , an ON or OFF event is generated, and Vre f is updated
to the value of Vdi f f at the time the event is detected. The ON and OFF thresholds are controlled by user-defined bias
currents, ION , Idi f f , and IOFF . The theoretical values for these thresholds are derived by Nozaki and Delbruck [15], as
follows:

θON =
κn

κ2
p

C2

C1
log

(
ION

Idi f f

)
≈ 1

14
log

(
ION

Idi f f

)
(8)

and

θOFF =
κn

κ2
p

C2

C1
log

(
Idi f f

IOFF

)
≈ 1

14
log

(
Idi f f

IOFF

)
. (9)

where ION/OFF denotes the ON/OFF threshold bias current, Idi f f is the change amplifier bias current, and θON/OFF
represents the ON/OFF threshold.

For the DAVIS-345, the value of the nondimensional term, κn
κ2

p

C2
C1

, can be approximated to be 1/14 [13].

Once an event is detected, the pixel temporarily stops monitoring the change in Vdi f f so that the recording process is
done before the next event. The duration of the time that a pixel halts is called the refractory period. The refractory
period is uniquely defined by the bias current, Ire f r. The higher the bias, Ire f r, is, the shorter the refractory period
is. McReynolds et al. established an experimental method to predict the duration of the refractory period and the
value was measured to range from 330[µs]to 10[ms] [12]. In the astronomical application, the longer refractory period
improves the noise performance but increases the possibility that important information is missed. It is also a driver of
temporal delays which are asynchronous in different pixels.

In the comparator stage of the simulator, two sources of noise were considered namely leak noise and shot noise. The
leak noise is caused by junction leakage and parasitic photocurrent in the reset switch [15, 6]. As it was done in the
v2e simulator, the leak noise was modeled by constantly decreasing the memorized reference log-photocurrent:

log Ire f = log Ire f −δleak (10)

where
δleak = ∆t fleakθON (11)

∆t is the simulation time step, and fleak is the leak noise frequency, which is typically about 0.1 [Hz] [15, 6]. Another
source of noise is shot noise, which arises from the quantum nature of photons. In an EV sensor pixel, the rate
of shot noise increases as light intensity decreases. Therefore, under low-light conditions, such as when observing
objects in space with a telescope, shot noise must be considered. This noise can be modeled by a Poisson process
so that the produced noise rate matches the observed noise event rate [6]. More specifically, the observed noise rate,
Rn = 0.05 [Hz], is scaled by a linear function of the ratio of the current value at the current time to its maximum
possible current and a factor F , which is assumed to be 0.25. The scaled noise rate, r, is then multiplied by the time
step, δ t, to get the probability, p, which is compared with u, a uniformly distributed sample in [0, 1). The maximum
possible current is estimated to be 3.16 [nA], calculated from the order of magnitude of the dark current, 1 [fA] [15],
and the dynamic range of a typical EV sensor, which is 130 [dB] [14]:
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r =
(
(F −1)× I

Imax
+1

)
×Rn (12)

p = r×δ t (13)
if u < p : OFF event (14)
if u > (1− p)< p : ON event (15)

2.5 Linear Interpolation

One of the most notable features of an EV sensor is that each pixel monitors changes in brightness and records events
asynchronously, meaning that the output of an EV sensor is not in the form of frames. However, if we simulate the
motion of targets in fixed time steps, the simulated currents and events would also be in the form of frames. To
overcome this issue, Mueggler et al. applied a linear interpolation algorithm between frames so that the timestamps
of events detected by each pixel would differ, mimicking the asynchronous nature of an EV sensor [14]. Additionally,
the linear interpolation algorithm allows us to simulate events that might be missed in the simulator but could be
detected by a real EV sensor, as the time step for frame-based simulation is larger than the time resolution of an EV
sensor. As shown in Figure 2, the events generated by linear interpolation do not perfectly align with the real events;
however, they follow the real event generation pattern, and the error decreases as the number of frames increases. In
the proposed simulator, the values of logarithmic current, yevents, that spike events between two frames are computed
based on the thresholds and logarithmic current at the frames. During this process, the refractory period after each
event is also taken into account. Then, the time for the events is computed by

tevent = t1 +
t2 − t1
y2 − y1

(yevent − y1) (16)

Fig. 2: EV sensor simulation with linear interpolation

2.6 Multi-Pixel Model

The aforementioned process describes how the simulator models the output of a single pixel of an EV sensor. However,
to model the output of an entire EV sensor, we need to simulate the output of all pixels. To achieve this, we first
simulate the motion of targets within the field of view (FOV). In this paper, the targets are assumed to be point light
sources and are modeled using the point spread function given by Equation 17:
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Table 1: The bias configuration for the data used for simulator validation

Bias Configuration Ipr Isf Irefr ION IOFF Idiff

Fast PR, Slow SF, Balanced TH 15.0 µA 834.7 fA 4.7 nA 186.9 nA 2.0 nA 8.2 nA

λi j =
Φ

4
(er f (x̂+i j)− er f (x̂−i j))(er f (ŷ+i j)− er f (ŷ−i j)) (17)

where Φ is the total photon flux reaching the focal plane and x̂±i j =
1√
2σ

(x±i j − x̄) and ŷ±i j =
1√
2σ

(y±i j − ȳ) are normalized
pixel bounds. Note that x̄ and ȳ are the centroid of the PSF and σ is the standard deviation computed by 0.45ΛN, where
Λ is the mean wavelength of the event camera’s sensitivity range and N is the telescope f-number. The relationship
between Φ and visual magnitude is discussed in [19].

Once we simulate the movement of each target in the FOV over time, we then simulate the time history of light
intensity captured by each pixel. From this time history of light intensity, we simulate the photocurrent and generate
events for each pixel. To shorten the simulation time, functions that simulate photocurrent over time and generate
events are structured to process event history for each pixel, enabling parallel computing for multiple pixels. Figure 3
shows the flow chart of the algorithm.

Fig. 3: Simulation algorithm

3. RESULTS

To validate the result of the proposed simulator, the output of the simulator is compared qualitatively and quantitatively
with the data taken by the 2nd generation of DAVIS 346.

3.1 Setup

In the proposed simulator, the experiment done by McReynolds et al. [13] was modeled to have some output from real
measurements taken by the 2nd generation of DAVIS 346 to compare with. In the study, aligned rotating light sources
in a dark room were observed with the DAVIS 346 as shown in Figure 4. The goal of the study was to figure out the
optimal bias configuration of EVS for astronomical applications and determine the limitation of the limitation in speed
and brightness of the light source that DAVIS 346 can detect in different bias configurations.

The DAVIS 346 is a 346x260 pixels EVS whose pixel size is 18.5µm. The fill factor for the sensor is 22%. Fujinon
7-70mm lens was attached to DAVIS 346, and its focal length and f-number is 41 mm and f/1.8 respectively. The
distance from the light sources to the sensor was approximated to be 63 [cm]. The bias configuration of the data we
used to validate our simulator was named ”Fast PR, Slow SF, Balanced TH” in the study. Table 2 shows the value
of each bias current in the configuration. This bias configuration gives us the ON and OFF threshold of 0.2061 and
-0.093 respectively.

In this paper, three scenarios with different bias configurations for the simulator are considered and listed in Table 2.
Additionally, the constants necessary for the simulation setup are provided in Table 3.
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Fig. 4: Experimental lab setup. (courtesy [13])

Table 2: The bias configuration for the data used for simulator validation

No. Description ION IOFF Idiff θON θOFF

1 With the shot noise and leak noise 0.85 µA 69 nA 235.3 nA 0.0846 -0.0809

2 No shot and leak noise, λdark = 18000e−1/s 0.85 µA 69 nA 235.3 nA 0.0846 -0.0809

3 No shot and leak noise, λdark = 290e−1/s 0.75 µA 0.55 nA 15.03 nA 0.2578 -0.2181

3.2 Qualitative Comparison

One common way to visualize event-based data is to accumulate events over a specific time range to create a ”frame.”
Figure 5 shows a comparison of images created by overlaying three successive frames from the real and simulated
data. Successive frames are overlaid because it is difficult to see the targets in a single frame. The simulated frame
qualitatively matches the real data, effectively capturing the five targets and noise appearance, making it a decent
representation of the actual scenario. The integrated frame-based representation of the real and simulated (1 and 3)
data are available at the link: Simulation Result

Another visualization method for event data is a 3D scatter plot, where all events are plotted within a 3D volume using
the x and y coordinates of the pixels and time. Figure 6 shows the 3D volume plot for the real and simulated data. Due
to the linear interpolation between successive frames, the simulated data does not exhibit distinct frames of events.
Overall, the simulated data captures the sparseness of the events and the asynchronous behavior of each pixel.
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Table 3: Constants in the simulation

Variable Description Value Unit
α Absorption Coefficient 3 ·104 N/A
ηi Internal Quantum Efficiency 1 N/A
Φ Total photon flux in PSF 109 photons /s
τ Transmission Coefficient 0.68 N/A
Dh Hole diffusion coefficient 6.4632 ·10−4 m2/s
De Electron diffusion coefficient 0.0129 m2/s
e The electron charge .602176634×10−19 C
fps Frame rate for position simulation 250 frames/s
Lh Hole diffusion length 5.685 ·10−6 m
Le Electron diffusion length 2.542 ·10−5 m
ni Intrinsic concentration 2.1 ·1012 m−3

Na,d Acceptor/dopant concentrations in a semiconductor 1023 m−3

W Width of the depletion region 1.1637 ·10−7 m

(a) Real Data (b) Simulated Data

Fig. 5: Overlaied three successive frames created by the real and simulated event data
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(a) Real Data (b) Simulated Data

Fig. 6: Overlaied three successive frames created by the real and simulated event data

3.3 Quantitative Comparison

To quantitatively evaluate the simulation, we compared the total number of events and the number of ON/OFF events
in the real and simulated event data. Table 4 shows the number of total, ON, and OFF events recorded in the real and
simulated data. By tuning the bias current settings and the time-step for simulating the motion of the targets, Simulation
1 successfully generated a similar number of total events and a comparable ON/OFF ratio. However, matching only
the number of events and the ON/OFF ratio is not sufficient to fully evaluate the simulator’s performance. Since the
path of the targets in the simulation is not perfectly aligned with the real data, pixel-by-pixel comparison would be
challenging. Therefore, we counted the total number of events generated in each pixel and investigated the distribution
of these numbers. Figure 7 shows the histograms of the number of events for the real and simulated data. Since the total
number of events in each case is not the same, the frequency is normalized so that only the shape of the distribution
needs to be examined. The left and middle columns show the event distribution for the real data and Simulation 1,
respectively. The real data has a peak probability in the bin [0, 2], indicating that more pixels recorded between 0 to
2 events throughout the recording. On the other hand, Simulation 1 has a peak around the bin [12, 14] for the total
and ON events, and [4, 6] for OFF events. This is because the leak noise causes the sensor to generate ON events at a
constant rate, even without a change in photocurrent, making it unlikely for a pixel to have only one or two events in
total by the end of the simulation.

We then turned off the leak and shot noise so that we would not get events that were constantly being generated, aiming
to match the histograms of the real and simulated data. This resulted in Simulation 2, which generated 541,500 events
in total, only 11.7% of the target number. It is clear that simply turning off the shot and leak noise while keeping the
same bias current did not resolve the issue. Therefore, the ON and OFF thresholds and the dark current rate were tuned
to match the total number of events and the ON/OFF ratio with the real data. This scenario is referred to as Simulation
3. It is worth noting that decreasing the dark current rate from 18,000 [e−1/s] to 290 [e−1/s], meaning fewer free
electrons were generated by thermal energy in the photodiode, actually increased the total number of events. This is
because, when taking the logarithm of the photocurrent (which includes the dark current) and calculating the difference
between the current and memorized log current, a decrease in dark current does not simply lead to a decrease in the
total number of events. Simulation 3 generated 4,298,229 events in total, which is close to the real data. The ON/OFF
ratio was 0.878, while the real data had a ratio of 0.846. The right column of Figure 7 represents Simulation 3. The
peak at the bin [0, 2] can be observed in Simulation 3, and the shape of the histograms is similar to those of the real
data. To assess how closely the histograms of the simulated data match those of the real data statistically, we ran the
simulation 20 times for Simulation 1 and 3, computed the error for each run by subtracting the histogram of the real
data from the one by the simulation, and then took the average of the error in each scenario. Figure 8 shows the percent
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error in the bin counts between the real and simulated data. The percent error plots for Simulation 1 exhibit a turning
point, where the error transitions from positive to negative, or vice versa, particularly in bins with event counts of less
than 50. This may be due to pixels recorded in the [0, 2] bin in the real recording, which recorded additional events in
the simulation due to leak and shot noise, causing a shift to bins around [10, 12]. There is also a steady percent error
for bins with event counts greater than 50. In contrast, the percent error for Simulation 3 is less than that for Simulation
1 in bins with counts of less than 50. Additionally, larger percent errors are observed for bins with counts greater than
50, as the ideal value for this range is small, making the percent error more significant. Figure 9 displays the error
in frequency on the left-side y-axis, along with its ratio to the total number of pixels, which is 89,960 (= 346×260),
providing context for the significance of the error relative to the total number of pixels in the sensor.

Due to the shift in the peak of the histogram, larger errors, around ±10%, are observed in bins with smaller event
counts. Conversely, as seen from the shape of the histogram in Figure 7 , the error in Simulation 3 is less than 2% of
the total number of pixels, which is relatively small. Although Simulation 3 did not include shot and leak noise, its
event distribution across the pixels was closer to the real recording than that in Simulation 1. Despite the smaller error,
a turning point in the histogram error was observed, which may indicate a bias in the simulator that warrants further
investigation in the future.

Table 4: The number of events generated in different settings (see Table 2 for scenario description)

No. Total events ON events OFF events ON/OFF

Real Data 4628253 2120953 2507300 0.846

1 4589159 2087697 54.51 0.834

2 541500 264302 277198 0.95

3 4298229 2009827 2288402 0.878

Fig. 7: Event distributions for real and simulated data
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Fig. 8: Percent error in the bin counts of the histogram in Figure 7 against the real data

Fig. 9: Error in the bin count and its ratio to the total number of pixels
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4. CONCLUSIONS

The proposed EVS simulator successfully models the performance of EVS by considering various physical phenomena
and their effects on pixel-level operations. The simulation accurately replicates the characteristics of the DAVIS
346 sensor, incorporating key elements such as photocurrent generation, logarithmic response, noise sources, and
asynchronous event detection. The simulation method effectively integrates the modeling of dark current, shot noise,
and leak noise, which are critical in low-light conditions such as those encountered in astronomical observations. The
qualitative comparisons through frame overlays and 3D scatter plots demonstrate that the simulated data effectively
replicates key aspects of the real data, including target visibility and event sparseness. However, despite achieving
similar overall event counts and ON/OFF ratios, the quantitative analysis reveals discrepancies in event distribution,
highlighting the challenges in perfectly aligning simulation parameters with real-world data. In contrast, a scenario,
that excluded leak and shot noises and increased dark current noise, produced an event distribution closer to the real
data, with errors less than 2% of the total number of pixels.
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