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ABSTRACT

Space situational awareness (SSA) is becoming increasingly important as the number of objects in low Earth orbit (LEO) grows
exponentially. Due to the congested and dynamic background of the LEO population, objects can be difficult to properly differen-
tiate, and potential hazards can go unnoticed as satellites undertake activities that are not discernable from astrometric observations
alone. These challenges can be addressed by exploiting photometric (brightness) information from optical measurements to enhance
orbital intelligence by providing complementary signals about individual resident space object (RSO) characteristics. This work
demonstrates a two-step machine learning (ML)-based approach developed by Slingshot Aerospace for characterizing satellites in
LEO via optical sensors. First, we present a novel photometric fingerprinting algorithm that enables object characterization, identi-
fication, and classification. Second, we examine methods for embedding and comparing fingerprints with potential applications to
attitude change detection using photometry. We demonstrate performance using a wealth of real LEO observations.

1. INTRODUCTION

Space domain awareness (SDA) has become an increasingly important area of development as investment in space
skyrockets. The accurate and timely understanding of the space environment that is generated by SDA activities
is required to reduce risk, optimize expenditure, and pave the way for future space operations. Conjunction risk
assessment, which evaluates the likelihood of two objects colliding, is one area of SDA research that has received
substantial focus in recent years. Projects that aim to capture and remove debris require SDA information about
materials, spin rate, and orbital velocity. Anomaly detection algorithms use SDA information to monitor and protect
precious space resources.

A myriad of different modalities can be deployed in sensor networks around the world to capture SDA information,
ranging from radar and radio frequency (RF) systems to optical imaging cameras. Terrestrial telescopes often collect
unresolved detections of light reflected off of the space objects they track. When recorded over a period of time,
the reflections form a light curve, which can be used together to characterize various features of the tracked object.
Features derived from light curves can provide valuable information to telescope systems that complement traditional
orbital state estimates, helping to better identify objects, and surface characteristics such as stability, tumble rate,
material, or object geometry.

Herein, we discuss a novel approach to object fingerprinting developed by Slingshot Aerospace that is based on light
curves, and that has been tested across a large number of objects and multiple geographic locations. Our approach
could be applied to all of the objects in low earth orbit (LEO), but for the purposes of this exploration we focus on
differentiating three Starlink bus type variants in particular. Fingerprints and the best methods for comparing them are
evaluated across multiple observation sites using a variety of different sampling techniques.

2. BACKGROUND

2.1 Light Curve Inversion

Light curve inversion, or modeling the surface of a rotating object given its brightness variation, is a problem that
has long been considered. The heart of the challenge is that, given a set of known variables (e.g. object position
and orientation), and a set of observed signals (e.g. object brightness over time), one can attempt to reconstruct the
geometry and features of the object. Early works include estimations of the shape, rotation period, pole direction,
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Fig. 1: Difference in satellite to sensor angles over time by regime

and scattering parameter of an asteroid [1]. Over time, it became apparent that the same approach could be used
to estimate the shape and stability of nearer objects in geosynchronous orbit (GEO), and more recently, in LEO.
Although direct reconstruction of detailed satellite geometries and material properties remains out of reach, the prior
work provides a solid foundation for feature set creation and the application of advanced machine learning (ML)
methods to light curve data to enable effective characterization, classification, and differentiation of orbiting bodies.
Three primary considerations are discussed below for creating feature sets to support ML-based object classification
using photometric data.

2.2 Object Position and Light Sources

There are a number of aspects that influence the particular light curve created by an object passing through the field
of view of a sensor. The first set of factors affecting the light curve are the orbital positions and angles relating the
object position, the sensor position, light source positions, and the relationships between them. The angle between
the sensor and the sun, centered on the reflecting object, is defined as the solar scatter angle (or solar phase angle
[2]), and it represents the reflection angle of incident light from the observer’s perspective. The angle of the object
relative to the sensor, often represented as an azimuth and elevation, describes the direction and distance over the
horizon an object is positioned. In addition to direct sunlight scattering, reflected sunlight off Earth’s surface, called
“Earthshine”, also contributes a non-negligible illumination component whose strength depends on the Earth surface
materials’ reflectivity and the position of the satellite over Earth’s surface, relative to the solar light source. As an object
travels through the sky relative to the sensor, the scattering angles shift, and so the observed apparent magnitude (a
measure of photometric brightness) will not only depend on the physical characteristics of the object, but also the
dynamic environmental effects.

These angles and effects are substantially different between orbital regimes. The first and most obvious difference
between orbiting bodies in LEO and GEO is in the length of the period of time an object is in the sky. Objects in GEO
are placed in an orbit designed to remain steady relative to the sensor. The azimuth and elevation shift very little over
time, and so collections of an object’s brightness can measure long trends. In LEO, an object’s relative position tends
to shift much faster, leading to passes that typically span up to only a few minutes. The viewing geometry during the
next visible pass will typically differ substantially from the previous, presenting challenges for direct comparisons.
Fig. 1 shows the variability in angle of a satellite relative to a sensor over a three hour period for a geosynchronous
satellite and a sun-synchronous LEO satellite. Consequently, algorithms designed to build baselines on long stretches
of data to recover spin rate or find attitude changes that may work in GEO collapse when applied to LEO data.

A second factor affecting light curves is the variety in solar scatter angle. As objects in LEO are moving much faster
than those in GEO, the range in solar scatter angle is substantially wider. This means non-geometry and attitude factors
affecting the light curve are changing fast enough that they need to be accounted for in analyses and characterization,
especially for LEO objects that tend to cover a significant portion of the field of view over the course of the night.

2.3 Object Geometry, Material, and Attitude

Object geometry, material, and attitude interact with the object position and light source to account for most variation
in a light curve. These are features most lightcurve inversion algorithms are attempting to recover. Objects have a
large number of potential geometries, which can be broadly grouped into three categories: rocket bodies, debris, and
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payloads. Rocket bodies tend to be cylindrical and large, whereas debris can range anywhere from large sheets of metal
to smaller pieces of solar panels or flecks of paint. This paper focuses on payloads that also are variable in size and
structure. They can range from extremely large school bus-sized GEO satellites to small cubesats and nanosats, which
are small boxes deployed predominantly in LEO. The body can be symmetrical or asymmetrical, and the placement
of solar panels and paint on the payload affects the reflectivity of light as orientation changes.

The third factor tied to unknowns about the object is the attitude and rotation rate. Debris, rocket bodies, and uncon-
trolled payloads can spin along an unknown axis at an unknown rate, since they have no thrusters or reaction wheels
to help stabilize the body as it travels along its orbit. Controlled payloads are different in that they often are equipped
with thrusters and reaction wheels designed to hold the body steady1 – payloads often maintain a specified attitude
to achieve their mission. For example, communications satellites must be pointing in the correct direction to orient
antennas and properly provide internet service, whereas imaging satellites must be aiming cameras in the direction
of the desired image subject. When a vehicle changes attitude, scattering surfaces on the payload rotate relative to
the illumination sources, and the apparent magnitude may shift. Additionally, some attitude changes may cause the
dominant scattering contributions to migrate from a less reflective surface, like the side of a satellite, to a more reflec-
tive surface, like a solar panel, with corresponding modulations to the observed magnitude. This paper will address
payloads that are assumed to be holding a constant attitude, to focus explicitly on recovery of satellite geometry and
potentially on occasional attitude changes rather than recovery of spin rate or related fields.

The full physical scattering profile from an object is often encoded quantitatively as the bidirectional reflectance
distribution function (BRDF). Prior research on the photometry of LEO communications satellites has shown that
their operational configurations yield stable BDRFs that can be reconstructed from large data sets of photometric
observations, which is an important requirement for the ML methods described below [3; 4].

2.4 Sensor Characteristics and Environmental Noise

The final factor with potential to influence light curve characteristics comes from the surrounding environment and
the sensor system. Atmospheric transparency varies both spectrally and in total extinction, as a function of elevation
angle (i.e., air mass) and the distribution of water vapor, droplets, and other particles within the light path. These local
environmental features can affect the observed apparent magnitude of an object over time. As such, sky transparency
effects are mitigated by comparing star apparent magnitudes with the Gaia G, Bp, and Rp band-passes for calibration,
computing color correction terms for solar-illuminated objects along with a corresponding photometric zeropoint.
Sensor systems also have a number of components that require addressing, including the optical assembly’s spectral
transmission, stray or background light in the optics path, satellite proximity to other light sources (e.g., stars), and the
camera’s saturation limit. Finally, optical sensor systems must also account for vibrations caused by wind or gimbal
imperfections, local atmospheric seeing conditions, and any satellite/sensor relative angular rates that blur or smear
the point spread function.

2.5 Machine Learning for Geometry Classification

Machine learning is well-positioned to provide more insight into extraction of information from light curves, especially
as the processing power and amount of available data grows. Substantial effort has been aimed at evaluation of light
curves and other optical data in GEO orbits, ranging across tumbling detection, object classification, and attitude
derivation. Statistical and feature-based techniques have been applied to assess optical fingerprinting approaches for
comparing RSOs under various conditions in GEO, medium Earth orbit (MEO) and high Earth orbit (HEO) [5; 6],
and lightcurve data has been combined with astrometric data to estimate the mass of inactive GEO RSOs [7]. Each
of these approaches served to prove that a large amount of information about GEO RSOs can be derived from optical
data starting with strong statistical models.

A number of machine learning approaches to lightcurve analysis also have been studied. Random forest algorithms
have been used against GEO objects with long optical histories to distinguish tumbling objects from stabilized space-
craft [8]. Recurrent neural networks (RNNs), convolutional neural networks (CNNs), multiple kernel learning (MKL),
and meta-learning methods have been applied to shape, attitude, and type classification for near-GEO objects based
upon lightcurves [9–11].

There has been less work addressing RSOs in LEO orbits, though common ML approaches like Support Vector Ma-
chines and Long Short-Term Memory Networks have been applied to discriminate between stable satellites, tumbling

1There are notable exceptions to this generalization, such as spin-stabilized systems that maintain their orientation in a subset of directions while
intentionally rotating around a spacecraft axis.
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Fig. 2: Illustration of pointing vectors oriented from the satellite body to the primary illumination source (sun-RSO)
and to the observer (sensor-RSO).

satellites, and rocket bodies using lightcurves [12]. Perhaps most relevant to the work discussed in this paper is the
application of boosted decision trees to predict satellite platforms from light curves of LEO RSOs, which showed that
there is sufficient information contained in LEO lightcurves to detect characteristics of different satellite platforms
[13].

3. PHOTOMETRIC FINGERPRINT DEFINITION

Herein we define the central mathematical construction that will be processed through ML models for RSO classifi-
cation and differentiation: the photometric fingerprint. It is a representation of an RSO via a numerical function of
observed apparent magnitude over a collection of points in a four-angular-dimensional space. Mathematically, it is
closely related to an optical BDRF, though it does not directly encode the same information as a BDRF.

Let us assume that photometric measurements have been collected for a number of distinct orbiting bodies, and that
approximate position and velocity state estimates were obtained for those objects at the same times that the photometric
observations were collected. The position and velocity vectors from the orbital state estimates define a co-moving
RSW/RIC (radial-intrack-crosstrack) frame for the RSO. For spacecraft in controlled, stable attitude configurations,
that frame is expected to coincide with the body frame of the object. Both the sun and observer follow distinct paths
from the point of view of the RSO; at any instant in time, one can define two pointing vectors, one toward the sensor,
and another toward the sun, see Fig. 2. For photometry, this perspective decouples the motion of the illumination
source(s) – direct and reflected solar irradiance – from the relative trajectory of the observer, with respect to the static
body geometry of the object. For a given arrangement of sun and RSO (i.e. a fixed sun-pointing vector in the body
frame), different observer-pointing vectors induce reflections off different facets, structures, and materials of the body.
Conversely, given a static sensor-RSO vector in the body frame, various arrangements of the illumination sources
highlight different geometric features of the spacecraft.

Over the course of a single satellite pass over a ground sensor or through the field of view of a spaceborne sensor, the
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co-moving frame translates and rotates along with the orientation of the spacecraft, which in this case we assumed
stable with respect to the Earth. Consequently the sensor-RSO and sun-RSO pointing vectors both evolve in time,
and the light curve collected throughout the pass consists of reflections off multiple facets under varying illumination
conditions. While this phenomenon leads to challenges for comparing individual light curves created by different
facets of the spacecraft, it lends itself very well to a fingerprinting approach.

Each photometric sample includes an observation of the apparent magnitude at a point in the combined four-angular-
dimensional space. Under the aforementioned condition of an RSO with perfectly stable relative orientation, a sparse
fingerprint representation encompassing a diverse set of angles can be assembled for each object by combining obser-
vations across one or more satellite passes. This is much like sampling different points in a two-dimensional human
fingerprint. In practice, however, it may be possible to collect multiple (possibly conflicting) observations at identical
or nearby positions in parameter space,2 so the final step in constructing a photometric fingerprint is to aggregate those
multiple observations into a unified representation of the object over the entire four-dimensional space. We will dis-
cuss our approach to aggregating multiple measurements for stable objects in the Methods section below, and present
alternative extensions in the Discussion section at the end.

We finally note for comparison that GEO satellites tend to have effectively static sensor-RSO vectors, and in near-
equatorial orbits the solar pointing vector rotates around one axis on a daily period while the yearly period in the
orthogonal angular direction leads to slow, low-amplitude variation in that direction. The phenomenon results in GEO
RSOs that are well characterized by two-dimensional fingerprints; even a single-dimensional fingerprint (i.e. a light
curve) covers almost the entire accessible parameter space, especially after accounting for the slow seasonal variation.
LEO satellites, on the other hand, exhibit rapid variation in all four angular directions: two sensor-RSO angles and
two sun-RSO angles. This is a principal reason that LEO light curves and fingerprints are much more complex and
challenging to process compared to GEO.

4. METHODOLOGY

This paper proposes a new ML-based approach to characterize and classify RSOs in LEO via photometric finger-
printing techniques. Using a large observational dataset collected from Slingshot’s global network of Horus optical
fence systems [14], we aggregate multiple photometric measurements into numerical representations of individual
RSOs and satellite bus families that uniquely distinguish them from others. We call these representations photometric
fingerprints, by which we mean concrete, densified versions of the abstract fingerprints introduced in Section 3. We
then trained a neural network to quantify the similarity between fingerprints and identify candidate satellite bus clas-
sifications for various objects. To demonstrate the effectiveness of the proposed methods, we show that three distinct
collections of Starlink satellites can be distinguished by their photometric fingerprints.

For the analysis presented in this paper, we focused on first-generation Starlinks, as they made up the majority of the
Starlink population in orbit at the time this study began [15]. The full set of first-generation satellites were further
designated into three variants, each with a different configuration of body features that affect the amount of solar
radiation reflected toward Earth. The three are detailed below.

• Version 1.0: The original production run of Starlinks

• Version 1.0-visorsat: A modified bus with an additional sun shield “visor” [16]

• Version 1.5: An upgraded iteration of the original version3 [3]

For the purpose of this study, we assumed all RSOs with a given bus variant had consistent BDRFs, so that all
observations of any object in the bus family could be assimilated into a single reference fingerprint for the entire
variant – some variations were present in reality, but on average this was found to be a reasonable approximation.
A principal finding of our investigation is that the reflectance properties mainly differed between objects in different
bus families, presumably due to variations in shape and material. Those differences were substantial enough to yield
unique photometric signatures that were captured by the fingerprinting technique.

2This would be the norm for unstable and tumbling objects.
3Starlink v1.5 satellites have undergone additional design evolution through multiple sub-variants, the effects of which were not considered in

this study [3].
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Fig. 3: Classification Workflow

We further demonstrate that fingerprints derived from future observations can be compared against prior established
fingerprints to correctly identify the Starlink bus family from which those observations were sourced. This enables
a novel approach for identifying and classifying RSOs based on photometric signatures, and it provides a valuable
augmentation of traditional trajectory-based object correlation strategies.

4.1 Data Source

4.1.1 Observational Data Collection

Slingshot operates a global network of geographically-diverse Horus optical fence systems, together providing uncued
tracking of LEO objects as small as cubesats across both northern and southern hemispheres. Each Horus system
continuously images the majority of the sky visible from its ground station, allowing simultaneous long-pass tracking
on transiting objects while gathering both astrometric and photometric observations. With uncued processing, Horus
routinely detects objects with poor or nonexistent prior orbital state knowledge, allowing regular collection on new
foreign launches, newly-released payloads, and objects not present in public catalogs. Thus, the Horus network is
ideal for gathering information in support of object characterization and anomaly detection.

4.1.2 Data Preparation

We identified satellites of interest, collected optical and positional data related to those satellites, and then split the
observations for experimentation. We selected objects with orbits that lent similar viewing angles, to reduce chances
that our model confounded lightcurves and sky position. We filtered to active satellites with one of the three variants
described above. The variants were assigned using documentation in the Slingshot Seradata database [15]. We then
imposed an orbital constraint by selecting only satellites that were orbiting at 53 degrees inclination. The active Star-
links are kept at generally the same inclination over time, so we were able to detect these by averaging the inclination
of the satellite orbits and identifying those station keeping at 53 degrees. Once the selected objects were identified, we
gathered all Slingshot observations and state vectors from four Slingshot Horus optical fence locations for one month.
Each observation site was processed separately to ensure consistency among the accessible viewing geometries from
each sensor location.

The data included the apparent magnitude of an observation and the orbital state for the object at that time. The
satellites of interest were typically represented by 1000 to 7000 observations over the time period, with a relatively
steady revisit rate. Observation here refers to a set of astrometric and photometric measurements made on a detection of
an object within an image or stack of images. The apparent magnitude measurement was computed from the luminous
flux collected by each sensor, corrected and normalized by accounting for background sky illumination and known
reference star magnitudes. The process yielded comparable apparent magnitude measurements for each observation.
Orbital states were obtained by internal orbit determination methods.

4.2 Model Details

Our classification model was constructed as follows: Horus observations were divided into two time intervals and
the Starlink RSOs were divided into training and test sets. All of the observations over the first time interval were
used to construct fingerprints of the three variants. The training set observations over the second interval were used
to construct individual fingerprints and train a twin neural network. Then classification was performed against the test
set RSOs to classify which variant each RSO belonged to. The full workflow is provided in Fig. 3. In the remainder
of this section, we describe this workflow in more detail.
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4.2.1 Fingerprint Aggregation

The photometric fingerprints introduced in Section 3 required the aggregation of multiple photometric measurements
into a unified fingerprint. We addressed this with a sequence of binning and smoothing operations. To reduce compute
requirements, we also reduced the dimensionality of the fingerprints by projecting into a three-dimensional subspace.
To convert the sparse representation of angles and observations into a dense fingerprint, we first divided the observation
space into multi-dimensional angular bins. The photometric observations were then each assigned to their nearest bin,
tracking total observation counts separately from the sum of observed magnitudes. We applied a smoothing operation
to the sparse data by convolving a Gaussian kernel with both the count and sum metrics. Then, to reduce noise from
areas with too few nearby observations, a post-convolution filter was applied to mask out bins with convolved-count
values below a minimum threshold. The dense photometric fingerprint was then completed by computing a ratio of
the two smoothed metrics, which yielded a numerical representation for each point in the unmasked parameter space.

A photometric fingerprint could have been generated from any collection of observations; there was no strict require-
ment that the included observations come from a single sensor, or even from the same object. However, observations
from objects with substantially different physical characteristics (shape, materials, attitude, etc) were expected to
wash out in aggregate because of the smoothing process, yielding bland averages with little effect. On the other hand,
multiple objects with very similar physical characteristics yielded consistent photometric patterns, and fingerprints
generated from their combined observations yielded useful averages with extensive coverage of the parameter space,
due to the diversity of angles at which observations of multiple objects were collected.

This latter detail was valuable for establishing baseline reference fingerprints, against which future observations could
be compared. While it was possible to generate a reference-fingerprint for any single object by collecting observations
over long periods of time at different solar and sensor angles, combining the observations of multiple similar objects
enabled rapid construction of a numerically dense representation for each family of objects. For the analyses presented
in this paper, we produced reference-fingerprints for each of the three Starlink variants described above by combining
all observations of objects within a family for a particular site and over a selected time period into the reference-
fingerprint for that family.

Once the baseline reference-fingerprints were produced with dense coverage of the parameter space, new inference-
fingerprints were constructed on a per-RSO basis from collections of additional observations, and those were compared
to the reference-fingerprints to determine relative similarity via the comparison methods described in the next sections.

4.2.2 Fingerprint Comparison

We compared fingerprints using two methods: a baseline masked distance calculation and a trained neural network
based on the “twin network” architecture [17]. The twin network is a machine learning based pattern for pairwise
comparison of complex feature spaces. We trained the network to map fingerprints into a latent embedding space, such
that inference-fingerprints from each family were embedded closer to the embedding of their reference-fingerprint than
the others. For inference-fingerprints from unknown RSOs, the “best match” reference-fingerprint then provided the
classification. The experimental data setup is described below.

4.2.3 Mean Absolute Difference (MAD)

We computed the masked distance metric, or the mean absolute difference (MAD), between two fingerprints, disre-
garding points that were masked in either fingerprint. To classify an unknown inference-fingerprint, we calculated the
MAD from each reference-fingerprint and took the one with the smallest distance as the class selection. This technique
was the most straightforward approach for comparing reference fingerprints to inference-fingerprints, and so we used
it as a baseline for more sophisticated model results.

4.2.4 Twin Network

We created a model that embedded the fingerprints into a reduced-dimensional latent space representation such that the
representations cluster by bus type within the embedding space for comparison of reference-fingerprints to inference-
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Fig. 4: Twin network architecture

fingerprints. We trained a twin network architecture [17] using a conventional neural network training method with
batches of randomly chosen inference- and reference-fingerprints from the training dataset described above. A twin
network processes an input (in this case the fingerprints) and reduces the parameter space to a lower-dimensional
embedding-space vector. Our network used two stacked embeddings. The first used the full fingerprint and reduced
it to a smaller convolved space. The reference-fingerprint embedding was then updated through a cross attention
layer, conditioned on the inference-fingerprint. The embedded inference-fingerprint and the embedded and attention-
updated reference-fingerprint were then fed into the second encoder, which reduced the samples to vectors of length
8. The model architecture is illustrated in Fig. 4 . Each batch was trained with contrastive loss – the distance between
reference-fingerprint and inference-fingerprint belonging to the same (different) class was minimized (maximized) by
iterative updates to the network weights.

Reference aggregation data: All observations from a particular site for the first three weeks of the time period
were labeled and grouped according to their known Starlink variant. The observations were then aggregated into one
reference-fingerprint for each variant.

Model training data: The last week of the time period was partitioned into train and test sets, randomly assigned
by NORAD ID; 80% of the RSOs in each family were reserved for model training and the other 20% were reserved
for performance evaluation. This separation ensured that no observations in the evaluation dataset were physically
associated with any in the training dataset. The observations were then grouped by time into 24-hour batches. At least
one inference-fingerprint per batch was generated for each RSO (excluded if no observations were collected for that
RSO in that time period). This setup was designed to test the efficacy of the fingerprints as they would likely be used
in an online system for attitude change analysis, cross-tag remediation, or other applications (see Discussion section
for further considerations).

Model evaluation: A principal application of the fingerprints could be the detection of differences from expected
photometric signals, so we evaluated performance by measuring their ability to classify unknown fingerprints into the
correct bus model variant. For each reference-fingerprint, the network processed the reserved evaluation RSOs from
the test set and compared inference-fingerprints to the reference-fingerprint. The output of the model was a measure of
similarity between the inference- and reference-fingerprints; the reference with maximum similarity was then selected
as the candidate Starlink variant classification for each RSO. These candidate classifications were compared with the
true class labels (Starlink variants) for those objects, yielding statistical performance measures including precision,
recall, and f1-score. The results were taken overall, and then broken down by the binned number of observations used
to create the inference-fingerprints. RSOs that were tracked with fewer observations on a day would fall into a lower
bin, and RSOs with a higher number of observations would go into one of the higher bins. Examination of the scores
broken down in this way provided some insight into how many observations would be needed on an RSO in a day to
provide a useful inference-fingerprint.

5. RESULTS

We processed the data via the methods described above and found that, given well-established reference-fingerprints,
inference-fingerprints generated from small numbers of observations, even for a single RSO, provided effective tools
for discriminating between the possible classes.

Fig. 5 illustrates reference-fingerprints generated for each of the four sites used in this analysis. Two of the sites were
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Fig. 5: Reference Fingerprints for four sites

Table 1: Evaluation f1 scores averaged across sites for daily model

VISORSAT v1.0 v1.5 Average
<20 Obs MAD 0.55 0.04 0.14 0.24

Twin 0.35 0.06 0.61 0.34
<40 Obs MAD 0.47 0.19 0.37 0.34

Twin 0.59 0.19 0.77 0.52
<80 Obs MAD 0.53 0.25 0.44 0.41

Twin 0.63 0.37 0.8 0.6
<160 Obs MAD 0.63 0.43 0.57 0.54

Twin 0.84 0.59 0.87 0.77
<320 Obs MAD 0.77 0.64 0.73 0.71

Twin 0.92 0.79 0.94 0.88
<640 Obs MAD 0.79 0.68 0.77 0.75

Twin 0.96 0.87 0.96 0.93
>640 Obs MAD 0.94 0.72 0.79 0.82

Twin 0.99 0.85 0.94 0.93

in the northern hemisphere. The reference-fingerprints were created using all observations from each site and for each
variant across a set time period. The visualizations were projected from the true three-dimensional fingerprints, down
to two dimensions for visualization purposes. Note that the fingerprints were roughly consistent across hemispheres.
The apparent differences may be caused by the variety of latitudes at which the sensors were located, which affected
the accessibility of different regions of solar angle parameter space. Since the sample data were collected over a
relatively short period of time, compared to the full annual cycle, the higher-dimensional base fingerprints did not
cover the full space of possible scattering angles. Reducing the projection to two dimensions exposed some visual
artifacts that may reflect the seasonal shift. An analysis of fingerprints from samples collected throughout the year
may be interesting for future work.

The classifications generated on the test set by the twin network resulted in a mean f1-score of 0.71. The metric
here was reached by calculating the f1-score for each class and then averaging them. This allows us to measure the
performance without over-representing the majority class. Table 1 shows the f1-scores broken down by class and by
range of observations used to create the inference-fingerprint. Across the variant classes, the model did better when
given an inference-fingerprint created on more observations, up to those created with >640 observations. Inference-
fingerprints created with more observations than that saw a slight decrease in f1-score for the v1.0 and the v1.5 variants.
The Visorsat and v1.5 Starlink variants had higher performance metrics than the v1.0 Starlink for every observation
bin. This may be due to similarities between the variant geometries, but also may be due to v1.0 being a minority class.
We had the smallest number of examples of Starlink v1.0 variants in our dataset, and so there were fewer examples to
learn from and the reference-fingerprint was likely sparser.
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6. CONCLUSIONS AND FUTURE WORK

Our results indicate that the novel fingerprinting method developed reference- and inference-fingerprints suitable for
Starlink version classification, even when the inference-fingerprints were created using only the observations available
in a brief 24 hour time period. The model showed reduced performance when the inference-fingerprint had a lower
number of observations available over the course of a day. This supports the concept presented above: photometric
fingerprints assimilate scattering characteristics across a range of viewing and illumination angles; RSOs with too few
observations (or those only viewed at ambiguously informative geometries) are more difficult to classify because their
fingerprints do not adequately populate the fingerprint parameter space.

One way to improve performance here may be to extend the timeframe that observations are taken across for the
inference-fingerprints, as that would both increase the number of observations available and would increase the num-
ber of angles the observations cover as the RSO orbit shifts overhead. A future study investigating how fingerprint
performance evolves with different time-windows would help to shed more light on this aspect of the fingerprints. Our
results lent insight into the optimal number of observations required to identify RSO variants. The daily fingerprints
required at least 160 observations for the twin network to exceed 50% accuracy on the minority class (Starlink v1.0).
This figure may be used as a point of reference for future attempts to classify RSO variants.

Another interesting follow-up study might include the analysis of the photometric fingerprints for each variant, with
an in-depth investigation into the reasons for performance differences among variant types. Further areas of focus
might include an evaluation of which regions of the fingerprint parameter space are more or less effective at differenti-
ating among variants. An identification of strongly-separated viewing and illumination geometries could then provide
insight for prioritization of sensor tasking to more efficiently classify unknown objects.

6.1 Applications for Cross-tag Filtering and Candidate Rejection
Track correlation involves processes for tagging sequences of observations (tracks) with the cataloged objects most
likely to be responsible for those observations. Track correlation has broadly presented challenges in the past, espe-
cially when multiple cataloged orbits pass within close proximity. Those close proximity passes may lead to cross-
tagging, wherein the incorrect object becomes associated with the observations.

Photometric measurements have the potential to enhance track correlation algorithms in several ways. Photometric
based fingerprints may provide an independent method for filtering the candidate object list based on comparisons
between small inference-fingerprints with known reference-fingerprints for the candidates. In such applications, the
observation period used in the inference-fingerprint may span only a few minutes to days. The results of our analysis
provide a quantitative measure of candidate classification reliability as a function of the number of available observa-
tions from short periods of time.

Moreover, those performance metrics were based on a traditional three-class classification problem, wherein only a
completely correct answer counted in favor of the model. In a production system there would be many more classes,
and it is expected that even a small number of observations would be able to rule out many candidates. A small
example of this is given in Fig. 6, where we have plotted two RSOs and the model-computed distances between their
inference-fingerprints and each reference-fingerprint. The RSO on the left had a clear match, with the Starlink v1.0
reference-fingerprint being significantly closer than the other two. The RSO on the right had two close potential
matches but one clear rejection – Starlink v1.5. Thus, while additional observations may be required to uniquely
determine a single class, even a small collection of observations should significantly reduce the number of possible
object families. We leave that study as an exercise for the reader.

6.2 Effects of Seasonality
The data used in the experiments discussed here spans one month. We expect that the fingerprint of an object, both
reference and inference, will shift with seasonality. An extension on the experiments discussed to cover windows of
time around the year would provide insight into how steady the fingerprinting approach is over time. A multi-year
experiment would lend insight into whether the fingerprints are cyclical on an annual scale. Additionally, a series of
experiments could test how long after a reference-fingerprint is created it continues to be useful for the classification
of inference-fingerprints. The results from this paper compare reference-fingerprints created over three weeks of
data to fingerprints from the subsequent week. Although reference-fingerprints should be consistently updatable, it
would be worthwhile to explore and see how results degrade over time as the time between reference-fingerprint and
inference-fingerprint data increases.
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Fig. 6: Twin embedded distances to reference fingerprints (smaller distance means the fingerprints are more similar)

6.3 Applications for Attitude Change Detection

In addition to providing a method for gathering additional information about a satellite and aiding track correlation
processes, the daily fingerprints show promise in applications of attitude change detection. The current fingerprinting
approach operates under the assumption that a satellite is holding a consistent attitude relative to Earth, for instance
to operate a nadir-pointing antenna. As the object passes overhead, ground sensors gather a number of lightcurves
that can be unfolded across the fingerprint feature space. If a satellite were to adjust its attitude on or before a pass
overhead in a manner that measurably affects its photometric profile, the subsequent fingerprint representation for that
pass would be different from prior passes. This difference would appear as an anomaly or a shift in the inference-
fingerprint, especially in the embedding space produced by a model like the twin network. Future work investigating
the changes in inference-fingerprints over time, perhaps expanded to a newer and more actively maneuvering set of
satellites, would help to confirm or deny this theory.

6.4 Applications for Tumbling Object Recognition

Although the methods described above apply only to objects with stable orientations, the concept can be extended to
incorporate a temporal component that further captures dynamic effects such as rotation and tumbling. As in the static
fingerprint cases, there are numerous potential applications ranging from object classification and characterization
systems to dynamic change detection enhancements.

6.5 Parting Thoughts

The photometric fingerprinting methodology developed by Slingshot Aerospace and introduced in this paper has
demonstrated effective differentiation between quasi-similar satellite bus families. The applications to broader col-
lections of satellites and data processing pipelines are straightforward, and the potential benefits are easy to imagine.
We look forward to future investigation of the extensions described above to support the growing investment in space
fleets and associated data processing systems.
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