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ABSTRACT

This study conducts an examination of synthetic tracking as a fundamental technique for satellite detection. Using
synthetic data generated by SatSim, we assess the efficacy of standalone synthetic tracking in detecting moving objects
across varying brightness levels. Performance evaluation is conducted using metrics precision, recall, and F1 score,
aiming to understand the performance of synthetic tracking. Particularly, we emphasize assessing the detection rates of
dimmer objects. By implementing a convolutional neural network model through transfer learning, we notably enhance
detection metrics and improve sensitivity in detecting dimmer objects compared to standalone synthetic tracking. We
demonstrate a robust pipeline for maximizing detection of satellites with unknown velocities using sidereal data by
combining synthetic tracking with convolutional neural networks while maintaining high precision.

1. INTRODUCTION

Astrometric localization involves extracting stars from images and aligning them with real-world stars, enabling pre-
cise satellite localization down to arcseconds. Successful astrometric fitting is crucial for subsequent near-Earth object
(NEO) tracking and for space domain awareness (SDA). When an object’s velocity and location are known, a telescope
can follow the movement of the object and accurately record its position. This is known as rate tracking. However,
the challenge lies in detecting unknown objects due to uncertainties in velocities and astrometric data. Unknown ob-
jects result from untracked maneuvers, new launches, and breakup events — establishing orbits for these objects is a
fundamental goal of SDA

To address these challenges, the study proposes a novel approach combining deep learning with synthetic tracking
techniques. Synthetic tracking not only reduces noise in short-exposure sidereal images but also allows for the correc-
tion of camera imperfections, refining the astrometric fit for deep learning. This refinement enhances the accuracy of
satellite localization and subsequent tracking. Most importantly, synthetic tracking allows for the detection of objects
of unknown velocities [8].
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Fig. 1: Integrated Synthetic Tracking + CNN Pipeline
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The potential for false positives and star confusion drives classic synthetic tracking algorithms to adopt high signal
to noise requirements. In this work, we demonstrate that convolutional neural networks can significantly relax the
SNR constraint while maintaining performance on dim signals. The research demonstrates the efficacy of the pro-
posed methodology in localizing and detecting unknown objects with high precision. By leveraging CNNs alongside
synthetic tracking, the study advances the state-of-the-art in satellite detection and identification, offering a promising
framework for applications requiring accurate and robust object localization in satellite imagery.

Studying NEOs, such as satellites and asteroids, is crucial for planetary protection and space domain awareness (SDA).
This study hopes to improve the detection rate of especially dim satellites and NEOs moving at unknown velocities.
More specifically, we utilize sidereal data to confirm and localize objects with precise astrometric measurements.

2. RELATED WORK

2.1 Astrometric Localization

Astrometric Localization—as stated prior—is the ability to take an image of stars and match it to a known set of real-
world stars. This process allows for us to track satellites based off of the set of stars which is critical in space domain
awareness (SDA) and plays a vital part in future protection against threats from space.

2.2 SatSim

SatSim [2] is an open-source software that can simulate moving objects in the sky projected on real world starfields.
This software is critical for our approach as it allows for generating synthetic data which is still usable on a massive
scale whilst providing annotations. SatSim played a significant role in allowing us to experiment and train our ar-
chitecture whilst retaining integrity with real-world cases. We selected the parameters and configurations to mimic
ground based sensors and telescopes to best ensure our results could be used in the field. In this study, we will be using
6 sequential frames taken 0.5 seconds apart with an exposure time of 0.2 seconds each. This results in a cumulative
exposure time of 1.2 seconds.

Parameter Value

Spatial Oversampling Factor 15

Temporal Oversampling Factor 100

FOV (x,y) 0.308, -0.308

Dark Current Random Log-normal

Gain 1

Bias 0

Zero Point 20.666

A2D Response Linear

A2D Bias 1500

Read Noise 9

Electronic Noise 0

PSF Mode Gaussian

Exposure Time 0.2 sec

Exposure Gap 0.5 sec

Number of Frames 6

Objects per Image 1

Object Apparent Magnitude Variable

Star Mode SSTRC7 5 :
Table 1: SatSim Configurations Fig. 2: 6 sidereal frames generated by SatSim

2.3 Synthetic Tracking

Synthetic tracking involves taking several short exposure frames and stacking the images based on potential velocities
[8]. After stacking the images, based on the signal-to-noise ratio (SNR), we can then see which velocity shifts were
successful, thus identifying the object’s speed and location. There are more complicated methods of calculating SNR,
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but for our study we define SNR as:
Brightest Pixel

Median Pixel
where we define the brightest pixel as the signal, and the median pixel as the noise.

SNR =

2.4 Convolutional Neural Networks

CNNs are a commonly used architecture used to help find overarching patterns in images. CNNs provide not only the
backbone for YOLOVS, but are also used in our custom task-specific head mentioned later on. Past literature indicates
that CNNs succeed at identifying NEOs in rate tracked images, but have yet to be proven in synthetically tracked
images [3].

3. FORMALIZATIONS

3.1 Detection

We will be measuring detection by comparing the reported object coordinate by the detection algorithm with the an-
notation provided by SatSim. For this, we will be allowing 3 pixel allowed error for correct classifications to prevent
over-saturated signals from being reported incorrectly. The definition of the pixel coordinate of detection is defined
separately for the bounding box learned approach and the synthetic tracking algorithm.

In this study, (Xtre, YTree) 1S the ground truth (x,y) pixel coordinate of an object provided by SatSim annotations.

For all reported objects, a detection is marked as a true positive (TP) if \/ (XTrue — XReported)> — (VTrue — YReported)> < 3,
and false positive (FP) otherwise. Any remaining objects that were not reported are marked as false negatives (FN).
True negatives (TN) are not applicable to object detection tasks.

3.1.1 Synthetic Tracking Detection

For the synthetic tracking portion of the pipeline, the algorithm reports the highest SNR pixel as the detected object’s
location on the image. Intuitively, by applying a starmask, the brightest object left on the image should be an object of
interest. We use objects with SNR greater than 7.5 as a detection and report the coordinate for comparison.

3.1.2 YOLOVS Detection

For our custom YOLOv8 model, the detection coordinate is defined as the center of the bounding box of a reported
detection. YOLOVS provides each detection with a bounding box. These bounding boxes have a center coordinate,
height, and width. We use the center coordinate as the detection coordinate.

3.2 Performance Metrics

For this study, we will be measuring object detection performance using the following metrics: precision, recall, and
F1 score.

Precision (also called Positive Predictive Value) is the ratio of true positives to the sum of true positives and false
positives.
Nrp

Precision = ————
Nrp+ Nrp

Recall (also called Sensitivity or True Positive Rate) is the ratio of true positives to the sum of true positives and false

negatives.
Nrp

Recall = ————
Nrp+ Nrn
The F1 score is the harmonic mean of precision and recall.

F1 Score — 2 x Precision X Recall

Precision + Recall
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In this study, we place high emphasis on minimizing Ngp which correlates to enhanced precision. We hope to improve
detection rates of dim objects without sacrificing low false positive rates. For this study, we set the threshold for an
acceptable precision to be greater than 0.8.

4. METHODOLOGY

4.1 Preprocessing

The preprocessing stage is crucial for preparing the raw astronomical images for analysis. This stage includes back-
ground correction to enhance the visibility of celestial objects and astrometric localization coupled with star masking
to accurately identify and mask stars. These steps are foundational for effective synthetic tracking and deep learning
processes that follow.

4.1.1 Background Correction

The objective of background correction is to mitigate the effects of ambient light and other artifacts that may obscure
the detection of NEOs. This process begins with a median estimator to calculate the background light level across
the image. The median is chosen due to its robustness against outliers, such as anomalously bright pixels that could
represent stars or cosmic rays, providing a stable baseline for background light levels.

After determining the median background, it is subtracted from the entire image using the photutils library [1], a
Python package specifically designed for astronomical image processing. This subtraction effectively removes the
uniform background noise, enhancing the contrast between celestial objects and the now flattened background. This
step is critical for isolating the signals of NEOs and other celestial bodies from the diffuse light and noise inherent in
raw astronomical images.

Fig. 3: Raw image (left), background corrected image (right).

4.1.2 Astrometric Localization and Star Masking

Astrometric localization and star masking use an integrated Gaussian point spread function (PSF) to model the stars,
accounting for the blurring effects of the atmosphere and telescope optics [4]. Each star is identified based on its
Gaussian profile, a method that enables the accurate determination of its position.

Once stars are detected, they are matched against the GAIA star catalogue using a triangular matching algorithm. This
approach matches detected stars with those in the catalogue by identifying unique patterns formed by triangles of three
stars, facilitating precise astrometric alignment with known celestial coordinates. With this alignment, we can localize
objects, if detected, down to the arcsecond [6].
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Misalignments between the image and the star catalogue are corrected using an inverse transformation matrix, imple-
mented through skimage’s transform module. This correction ensures that the positions of detected stars are accurately
aligned with their known coordinates in the sky, essential for reliable subsequent analysis.

Furthermore, a star mask is applied to suppress the signals from stars in the image. This is achieved by creating masks
over the positions where stars have been localized, effectively removing their light from the image. The purpose of this
star mask is to prevent the bright signals of stars from interfering with the detection of NEOs, allowing for a clearer
analysis of objects of interest without the distraction of stellar light.

Fig. 4: Image before star suppression (left), image after star suppression (right). In the rightmost image, without stellar
noise, a NEO streak across the aperture becomes visible (red box)

These preprocessing steps lay the groundwork for successfully applying synthetic tracking and deep learning tech-
niques in the detection and analysis of NEOs, by ensuring the input images are optimally prepared for the subsequent
complex analysis.

5. SYNTHETIC TRACKING

The challenge in detecting unknown NEOs is that their velocities are unknown. To address this, we use a synthetic
tracking approach with a wide array of potential velocities. Specifically, we initialize a velocity grid designed to
explore approximately 1000 distinct potential velocities, establishing a comprehensive search space.

We developed a stacking algorithm that uses the ndimage module from SciPy, which is useful for manipulating mul-
tidimensional arrays. This algorithm shifts each frame according to a set of predetermined velocities and stacks the
frames on top of each other.

NEA track
frame 1

frame 2

frame 3

shift/add
velocity vector

Fig. 5: Visual Representation of Synthetic Tracking. Figure from Shao et al. (2018) [8]
The core idea behind synthetic tracking is accumulating the signal from the moving object across multiple frames.

When the applied velocity vector aligns with the actual motion of the object, the stacking process overlays the object’s
signal across the frames. As a result, the object’s brightness and detectability is enhanced. To efficiently identify
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the optimal velocity vectors that maximize the object’s signal, we generate a heatmap of the maximal signal for each
velocity vector.

Afterward, we apply maximal filters from SciPy to the heatmap to isolate peaks, which represent the velocities that
align the best with the object’s motion. This allows us to identify the velocities that maximize signal enhancement,
thus determining both the speed and the precise location of dim, previously undetectable objects. Combined with
results from astrometric localization, we have all the information we need to document the NEO.

Because it is important to detect these objects in a timely manner, we employ CuPy, a library that allows common
functions from the NumPy and SciPy libraries to access and utilize CUDA subroutines. On CUDA compatible GPUs,
we significantly improve runtime where 6 frames can undergo background correction, astrometric localization, and
1000 experimental velocities with synthetic tracking analysis in around 5 seconds [7].

This synthetic tracking method not only broadens the scope of detectable NEOs by incorporating those with dim sig-
nals but also enhances the precision of location and speed estimation.

5.1 Synthetic Tracking Performance Metrics

Apparent Object Magnitude Precision Recall FI1 Score Synthetic Tracking Recall vs. Visual
6-7 1.000  1.000 1.000 Magnitude

7-8 1.000  1.000 1.000 1

8-9 1.000  1.000 1.000 g:

9-10 1.000  1.000 1.000 07

10-11 1.000  0.826 0.905 T gi

11-12 1.000  0.569 0.733 € 04

12-13 1.000 0.154 0.266 gz

13-14 - 0.000 0.000 01

1451_12 B 8888 8888 ’ 6 7 8 9 10 11 12 13 14 15 16

Aparent Visual Magnitude

Table 2: Synthetic Tracking performance with SNR threshold 7.5 Fig. 6: Recall vs. Visual Magnitude

Note that larger apparent object magnitude correspond to dimmer objects. As depicted by our results in table 2,
we observe that standalone synthetic tracking does not detect objects dimmer than SNR 7.5, as expected due to the
threshold setting. For objects brighter than 7.5, synthetic tracking is extremely robust with little to no error and
maintains high precision for brighter objects.

6. CUSTOM YOLOVS

Given the limitations of traditional synthetic tracking methods, particularly in detecting objects with low SNRs, we
integrated a custom version of YOLOVS8 (specifically, the YOLOv8 medium model), a state-of-the-art deep learning
model known for its efficiency and accuracy in object detection tasks [5]. This integration aims to enhance the detection
capabilities for dim objects that synthetic tracking alone may fail to identify confidently.

6.1 Model Customization and Training

To adapt YOLOVS for the unique challenges posed by astronomical data, we augmented the model with a task-specific
head designed to distinguish between NEOs and the vast array of celestial and atmospheric phenomena captured in
astronomic observations.

Our training dataset consisted of 2500 images synthesized using SatSim. This dataset was instrumental in providing
a controlled environment to train our model, ensuring a diverse range of examples including objects with SNRs lower
than 7.5, the threshold below which traditional synthetic tracking methods struggle. More specifically, we used a
uniform distribution of visual magnitudes from 10 to 20. The rest of of the configurations were identical to those
mentioned in table 2.

We formatted the data to include annotations of the NEOs, specifying their bounding boxes and velocities. This
preprocessing step was critical for training our model to detect the presence of an object a sequence of sidereal images.
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Fig. 7: Data retrieval pipeline (left), pipeline for low SNR objects through YOLOvVS8 and task-specific head (right)

Training parameters were chosen to optimize the model’s performance:

* Epochs: 25, to balance between underfitting and overfitting.

* Optimizer: AdamW, selected for its effectiveness in handling sparse gradients and adaptive learning rates.
* Learning Rate: Initiated at 0.01, with adjustments based on performance metrics.

* Weight Decay: Set to 0.0005, to regularize and prevent overfitting.

 Batch Size: 16, to ensure a manageable memory footprint while maintaining sufficient granularity for gradient
updates.

* Dropout: Not applied, to maximize the model’s learning capacity from the limited dataset.

Training Losses
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Fig. 8: box area loss (left), classification loss (middle), box anchor loss (right)

6.2 YOLOVS Performance Metrics

Initial experiments with synthetic tracking alone, decreasing the SNR threshold resulted in high false positive rates
and low precision. The limitations of synthetic tracking in isolating dim objects were evident, underscoring the need
for a more robust detection method.

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) — www.amostech.com



For visual magnitudes below 11, our custom model struggles with false positives, resulting in inadequate precision
measurements. This is expected, as the model was trained to localize dimmer objects with visual magnitudes 10-20.
For visual magnitudes 11-14, this learned method demonstrates acceptable precision levels while enhancing recall
beyond what synthetic tracking with SNR threshold 7.5 is able to provide. For enhancing recall levels beyond visual
magnitude 14, we likely need to increase our cumulative exposure time. Mathematically, the signal emitted from
NEO:s is undifferentiatable from background noise without longer exposure times.

Apparent Object Magnitude Precision Recall FI Score YOLOv8 Recall vs. Visual

6-7 0.594 0.388 0.459 Magnitude
7-8 0.623  0.360 0.462 A
8-9 0.520  0.591 0.552 0s
9-10 0.550  0.647 0.595 07
10-11 0.667  0.833 0.741 Tos
11-12 0.833  0.833 0.833 < 04
12-13 0.833  0.714 0.769 ot
13-14 0.933  0.466 0.622 01
14-15 - 0.000 0.000 0

6 7 8 9 10 11 12 13 14 15 16

15-16 - 0.000 0.000

Apparent Visual Magnitude

Table 3: YOLOVS Performance Fig. 9: Recall vs. Visual Magnitude
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Fig. 10: Example Outputs from our Custom YOLOvVS model

7. SYNTHETIC TRACKING + YOLOVS8 COMBINED PIPELINE

As demonstrated in the prior results, both synthetic tracking and YOLOVS8 succeed at different SNR levels. In order to

combine the success of these two detection algorithms, we assemble a pipeline for preprocessing data with synthetic
tracking for YOLOVS.

For a set of sidereal frames, we explore 1000 possible velocities, resulting in 1000 images to analyze. For velocities
that result in an SNR higher than 7.5 after stacking, the brightest pixel’s location is reported. For every other velocity,
it is analyzed by the custom model. When the object within a reported bounding box has an SNR higher than 2, it is
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reported as a detection. This threshold is designed is to prevent excessive false positives.

7.1 Synthetic Tracking + YOLOvS8 Combined Pipeline Performance Metrics

Apparent Object Magnitude Precision Recall F1 Score ST + YOLOV8 Pipeline Performance
6-7 1.000  1.000 1.000 1
7-8 1.000  1.000 1.000 09
8-9 1.000  1.000 1.000 o
9-10 1.000  1.000 1.000 _ 06
10-11 1.000  0.826 0.905 § 0
11-12 0.833  0.833 0.833 -
12-13 0.833 0.714 0.769 0.2
13-14 0.933  0.466 0.622 01
14-15 - 0.000 0.000 ’ 6 7 8 9 10 11 12 13 14 15 16
15-16 - 0000 OOOO Apparent Visual Magnitude
Table 4: Synthetic Tracking + YOLOvV8 Performance Fig. 11: Recall vs. Visual Magnitude

These results underscore the efficacy of combining synthetic tracking with deep learning, particularly in overcoming
challenges associated with low SNR NEO detections.

Integrating synthetic tracking with the Custom YOLOv8 model significantly enhanced our ability to detect unknown
NEOs with low SNRs. Through testing and validation, our methodology demonstrated substantial improvements in
detecting and accurately localizing NEOs in the lower SNR ranges. Introducing the Custom YOLOvS model corrected
star confusion that occurred for in cases where the star mask was only partially complete. Overall, this pipeline
demonstrates high precision while detecting more objects than synthetic tracking or deep learning would alone.

8. REPRODUCIBILITY

Synthetic tracking experiments were performed locally on Python 3.9.18, PyTorch 2.1.2, CUDA 11.2. Windows
Subsystem for Linux 2 was utilized for astrometry compatibility with 5200 LITE indices.

Data was generated with SatSim 0.18.0 with the SSTRC7 for accurate real-world starfield generation.
Models were trained on NVIDIA T4 GPU on Google Cloud Platform.

9. CONCLUSION AND FUTURE WORK

This research illustrates a significant advancement in the field of astronomical observation, specifically in the detection
and cataloging of NEOs. By integrating synthetic tracking with a Custom YOLOVS deep learning model, we have not
only expanded the scope of detectable NEOs but also significantly enhanced the accuracy and reliability of these
detections.

This approach addresses a critical gap in traditional astronomical detection methodologies, which often struggle to
identify objects with low SNRs. The combination of synthetic tracking to concentrate the signal of moving objects
and deep learning to accurately identify and classify these signals has proven to be a powerful tool for detecting dim
NEOs.

Future work will focus on further refining the deep learning model, expanding the dataset with additional simulated and
real-world observations, and exploring integrating this methodology with other astronomical detection and tracking
systems. The ultimate goal of this research is to provide a robust, reliable framework for detecting NEOs, thereby
contributing to planetary defense efforts and space domain awareness.

In conclusion, the successful application of this integrated approach represents a significant step forward in our ca-
pability to detect, track, and study NEOs of unknown velocities, offering promising implications for both planetary
defense and the advancement of astronomical research.
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