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ABSTRACT 

Bottom line up front (BLUF): our MBR and ML techniques correctly identified critical spacecraft subsystem 
anomalies in milliseconds in a wide variety of scenarios, while avoiding false alarms.  An important component of 
Space Situational Awareness (SSA) / Space Domain Awareness (SDA) is knowledge of the true status of friendly 
assets and whether any assets are under attack. Therefore, it is important to be able to detect faults and other 
anomalies, and determine the components involved and the root cause as well as whether that root cause is likely an 
external attack. During space conflict, communications to satellites may be disrupted, requiring them to intelligently 
and autonomously “take care of themselves,” i.e., effectively detect faults, diagnose their root causes, and develop 
and execute recovery plans, autonomously, without necessarily being able to communicate with ground controllers. 
This lack of communication is analogous to lunar rovers and power systems where communication can be disrupted 
by terrain and other factors or take too long for some catastrophic anomalies. Astrobotic, for NASA, is developing a 
rover, Vertical Solar Array Technology (VSAT), that traverses over the lunar surface to an advantageous position, 
then unfurls its 60’ high Roll Out Solar Array (ROSA) photovoltaic mast to provide power for other lunar systems.  
Given the height of the deployed/deploying ROSA, the rover is very unstable and must adhere to very strict leveling 
requirements to avoid tipping over, with catastrophic loss of mission, even just a few degrees of lean would be 
disastrous. Prior to ROSA deployment a gimbal levels the base of the ROSA and then locks.  As the solar array is 
unfurled inertial measurement units (IMUs) continuously monitor the array’s movement, including any lean, force 
sensors monitor the force on each of 4 wheels, and several side-facing and upward facing cameras observe the 
events.  A problem during or after ROSA deployment may be very dynamic, denying ground controllers enough 
time to correct any problem, given the round trip communication delays. It is therefore important that the VSAT be 
equipped with the means to quickly detect problems, perform diagnosis and root cause determination, and quickly 
safe the system.  

Traditionally, Fault Detection, Isolation, and Recovery (FDIR) systems have utilized Model Based Reasoning 
(MBR), which requires knowledge of the subsystem design and the behavior of components down to the desired 
level of diagnosis. To the degree this information is readily available, it is important to make good use of it. 
However, the field of machine learning (ML) has shown that systems can also learn, offline, the normal behavior of 
complex systems in many different environments and states, and then detect abnormal behavior in real time. These 
systems can also be trained with known abnormal states, and recognize these more specifically when they occur. 
With the new types of VSAT subsystems (such as mechanical components and related sensors) came new 
challenges to be overcome. Some concerns included quick reaction times needed to avoid tipping or buckling during 
mast deployment and, at the opposite end of the spectrum, detecting very gradual changes, hard to discern in sensor 
noise (the mast moves very, very slowly while tracking the Sun). In some cases, data is severely limited, reducing 
the applicability of a pure ML approach. In our previous work, we outlined our modular approach to fault detection 
and diagnosis utilizing MBR and ML as well as a third independent method called the Thermodynamic Reasoning 
and Intelligent Anomaly Detection (TRIAD) system. Similarly to how aggregate variables such as thermodynamic 
variables such as pressure and temperature can summarize microstate variables (e.g. the speeds of individual 
molecules), TRIAD utilizes aggregate quantities such as mean, minimum, maximum, and Fourier Transforms to 
characterize anomalies. We also described how this hybridization enables additional confidence in diagnosis, as the 
advantages of each approach are emphasized while the disadvantages are mitigated, and summarized how we 
planned to apply these methods on the VSAT platform and subsystems. This paper first quickly reviews the 
concepts then describes progress on this work since our last paper, presented at AMOS 2023. This includes 
validation of the hybrid approach to fault detection, diagnosis, and recovery via a physical simulation of the VSAT 
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platform as well as results from multiple fault detection modules. We enumerate many relevant scenarios, developed 
in conjunction with Astrobotic to best capture realistic, critical faults, as well as metrics from our approach. We 
show that the previously discussed methods are capable of both detecting and characterizing mechanical anomalies 
from simulated VSAT telemetry data within tens of milliseconds of the faults occurring, well below the allotted 
“reaction time” of 100 milliseconds. The paper will present quantitative results for a large range of fault scenarios, 
including soil collapse, soil slippage, ROSA levelling errors, and a wide variety of sensor faults. Both MBR and 
TRIAD were effective at detection and diagnosis and, as mentioned in our previous work, we identified several 
areas where hybridization of both techniques provides a significant advantage over the use of just one or the other. 
We will also present data gathered during slope testing of the actual ground VSAT physical prototype with some 
fore-shadowing of what we plan to present next year, based on testing with this (and more) actual data from the 
actual hardware prototype. We conclude with a discussion on the direction this work will take in the future. Based 
on these results, Astrobotic plans to include MAIFLOWER on the actual lunar VSAT, with integration beginning 
this Fall. 

1. HIGH-LEVEL MAIFLOWER ARCHITECTURE 

Stottler Henke’s VSAT anomaly detection and diagnosis system is called  MAIFLOWER (Modular Artificial 
Intelligence for Faults: Local Online Watch and Efficient Response). During normal operations, MAIFLOWER 
monitors onboard sensor values to automatically characterize subsystem components and to be prepared to detect 
failures.  During a failure scenario, MAIFLOWER 
very quickly detects and diagnoses the problem, 
then immediately sends the root cause to VSAT’s 
control system so that it can take immediate 
actions to stabilize the situation. 

Any intelligent, adaptive system must inherently 
be a closed loop system (i.e., in basic terms: the 
system must sense what is occurring and make 
appropriate decisions to take suitable actions). The 
first part of this “sense-decide-act” loop involves 
perception, understanding the situation from the 
raw sensor values. Over long time scales, this in 
turn involves characterization. The other 
perceptual function is detecting faults and 
diagnosing their causes.  MAIFLOWER is a 
specialization of our MEASTRO close loop 
architecture, shown at right, though 
MAIFLOWER is focused on the characterization, 
anomaly detection, and diagnosis, relying on 
VSAT’s control system to “close the loop” 

Model-based reasoning (MBR) systems are often used to detect and diagnose faults.  These systems encode the 
schematic information of subsystems, which includes the components (including sensors), their normal behavior and 
known abnormal modes of behavior, and the connections between components. During normal operations, the 
model is used to simulate the current behavior and compare the simulated sensor output values to the actual sensor 
outputs. Significant deviations are used to detect some kind of fault. Then the model is used to reason which 
component faults are most likely to lead to the currently deviating sensor values. The set of possible faults (possibly 
including sensor faults) which explain the sensor values is the MBR diagnosis engine’s output. The process of using 
the model to diagnose failures is considered somewhat analogous to the reasoning an electrical engineer would 
employ when using a schematic to try to diagnose the fault. The process can be made more efficient by various 
heuristics used by spacecraft engineers to quickly diagnose problems and include knowledge of which components 
are most likely to fail (and how, e.g., mechanical relays tend to fail open while solid state relays tend to fail closed) 
and/or are the most likely explanation for certain types of sensor values. MAIFLOWER takes advantage of these 
heuristics.  MBR engines may identify one specific fault and/or a set of possible faults.  For the most important 
scenarios (during and after ROSA deployment) the VSAT rover body should be stationary.  Therefore, an anomaly is 
anything that indicates movement in the data of any sensor (including any optical flow) in the cameras.  And 
because the rover is a rigid body with its wheels and gimbal locked, any movement will be seen in multiple sensors 

Fig. 1. MAESTRO/MAIFLOWER High-Level Architecture. 
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and with given mathematical relationships between the deviations across sensors, based on the type of movement 
(linear versus angular displacement) occurring. 

In addition to MBR, MAIFLOWER leverages an expansion of the TRIAD system developed within MAESTRO to 
synthesize an extensive model-free module to detect and diagnose faults. TRIAD has shown perfect performance in 
fault detection and classification across fault types in our project to develop for NASA, an intelligent Astronaut 
Agent based on the MAESTRO system. Beyond this, the TRIAD system constitutes an overarching framework that 
can intelligently incorporate and synthesize any set of additional feature-based anomaly detection systems. Feature-
based anomaly detection systems utilize deterministic functions to extract time series of low-dimensional features 
from incoming streams of sensor data and perform simple threshold-based anomaly detection on the extracted series. 
Nearly every prominent anomaly detection algorithm can be classified as feature-based anomaly detection, from 
state-of-the-art deep learning algorithms using Transformer and Convolutional Architectures [4][5][11][16] to more 
traditional algorithms making use of Hidden Markov Models or Self-Organizing Maps [6][10]. TRIAD is designed 
to intelligently synthesize these algorithms instead of running them in parallel.  

The advantages of TRIAD’s synthesis are twofold. First, TRIAD’s synthesis is significantly more accurate than any 
parallel implementation, for purposes of both detection and characterization. Second, TRIAD enables more 
wholistic modelling of the utility of each method’s individual contribution to the accuracy of the system. For 
example, a computationally slow/expensive anomaly detection method may outcompete cheaper methods, run 
individually or in parallel, but find itself redundant when incorporated into TRIAD’s system. By contrast, a cheaper 
method may fail to provide any novel detection when compared against already-implemented methods but 
significantly enhance expressivity when incorporated in intelligent concert with these methods within TRIAD.  

MAIFLOWER extends TRIAD with feature functions from cutting-edge time-series anomaly detection algorithms, 
including the state-of-the-art methods that utilize transformer and CNN architectures. Transformer and CNN 
architectures have broadly dominated the state-of-the-art for anomaly detection in recent years. Deep learning 
encoders are trained on a variety of downstream tasks, including detection of synthetic faults [11], the prediction of 
future data [5], and reconstruction accuracy [4]. The feature encodings are then subject to threshold-based detection. 
We are investigating a “mix-and-match” method of encoding architectures (transformers, CNNs) and downstream 
tasks, incorporating each into TRIAD in order to comprehensively assess and implement the most robust and 
efficient combinations of state-of-the-art techniques. 

2. MAIFLOWER BENEFITS 

MAIFLOWER is beneficial for the following reasons: 

● MAIFLOWER provides a generalized and modular fault management architecture that can be quickly spun 
up for any number of subsystems.  

● Autonomous, high-speed anomaly detection along with “root cause” analysis by correlating time-series 
data across subsystems, thereby capturing cascading impacts of single faults on a spacecraft as a whole. 

● Introduction of transformer-based anomaly detection to fault detection and space domain. 

● Astrobotic’s VSAT provides a real platform to prove MAIFLOWER’s feasibility for adaptation to other 
spacecraft. 

● Some anomalies, such as soil collapse and slippage, during or after ROSA deployment, can only be 
recovered from if an autonomous detection and diagnosis capability exists onboard. There is just 
insufficient time for ground controllers to save the VSAT mission under these circumstances, which is why 
Astrobotic considers MAIFLOWER critical to the success of their mission. 

● MAIFLOWER’s flexible, general, open architecture enables easy interfacing with other algorithms and 
other 3rd-party software. 

● As described below, the hybrid approach combines the strengths and mitigates the weaknesses of BMR or 
ML when applied alone. 

3. BENEFITS/DISADVANTAGES OF DIFFERENT APPROACHES COMPARED TO HYBRID 
APPROACH 

MBR for Detection and Diagnosis has several benefits and a few disadvantages: 
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• Benefits: 
• Detect and diagnose anomalies never before encountered 
• Effectively utilize existing design knowledge of subsystem engineers 
• Do not require large amounts of data 
• Can explain their reasoning and are human understandable 
• Have models and code that can be validated 
• Can diagnose down to the lowest modelled component level 
• Can handle rare (but modelled) operating conditions 
• Can reconfigure, recalculate resources, and replan 

• Disadvantages: 
• Time-consuming to develop 
• May have too-loose detection thresholds 
• Are limited, to known, designed, components and behaviors 

TRIAD and Machine Learning for Detection and Diagnosis have benefits and a few disadvantages: 

• Benefits: 
• Little development time required 
• Can learn new, unknown relationships and phenomena 

• Disadvantages: 
• Requires a lot of data for training 
• Cannot reliably extrapolate 
• Flight certification may be challenging 
• Susceptible to false alarms 
• Only useful for diagnosis if explicitly trained on the faults to be indicated 

 

4. HYBRIDIZING MBR AND TRIAD 

A hybrid fault detection system uses both TRIAD/ML and MBR to monitor sensor values in an effort to identify 
anomalous behavior.  Hybridizing MBR and TRIAD emphasizes the benefits of each while minimizing their 
disadvantages. Generally, the benefits of MBR coincide with the disadvantages of TRIAD, and vice versa, so the 
two complement each other well [3].  When an anomaly is detected, a few possibilities present themselves: both 
systems detect the anomaly, only TRIAD detects it, or it is only detected by the MBR system.  TRIAD detects all 
data streams that are “different” from the data on which it was trained, and as such it generates reports when 
encountering novel outside contexts, even when all systems are functioning effectively.  MBR is a good check on 
these false alarms, especially if a method exists to determine if TRIAD training data does not include data from the 
current operating state.  However, TRIAD’s model-free anomaly detection can also detect faults that escape the 
analytic limits of MBR.  Because MBR and TRIAD are very different technologies (especially in that one is model-
based while the other is model-free), when they agree, this consensus instills extra confidence in the result 
(compared to using MBR or TRIAD alone). 

The hybrid system to anomaly detection and diagnosis effectively combines the benefits and mitigates the 
weaknesses of the individual technologies.  Specifically the hybrid system has the following benefits: 

• Utilizes a priori design knowledge  
• Utilizes real or simulation sensor data 
• Very independent technologies  
• Can use its MBR model to diagnose, reconfigure, recalculate, and replan in reaction to newly 

detected faults and can explain its reasoning 
• Can discover unknown or unmodelled relationships 
• Can detect and diagnose anomalies never before encountered or trained for 
• Can use the ML component to disambiguate overlapping MBR states 

5. ASTROBOTIC’S VSAT SYSTEM 

Aa NASA intends to dramatically increase the number of manmade objects and systems on the Moon, it is essential 
to develop a grid to generate and distribute electrical power.  This grid will consist of several elements, from the 
generators to the intermediate distributors to the final recipients, and a multitude of faults could occur at any stage in 
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this process.  Astrobotic’s Vertical Solar Array Technology (VSAT) is an example of a generator platform.  At a 
high level, it resembles a rover with a large vertical solar array that can unfurl once the rover has reached a suitable 

area for solar power generation and that rotates to track the 
motion of the Sun.  The VSAT is likely to be deployed near the 
lunar south pole, which is why it is oriented vertically.  A graphic 
of the array is shown lower right, while the figure, left, provides a 
close-up view of the rover. 

 The VSAT platform will face 
several challenges.  First, the solar 
array is significantly larger than the 
base of the rover; as the array unfurls, 
the center of gravity eventually sits far 
above the rover’s base.  This means 
that if the array is not perpendicular 
(relative to the plum vector on the 
Moon), it may buckle, and worst of 
all, the entire system is susceptible to 
tipping over.  The operational window 

for the deployment of the array is thus very precise and any amount of leaning must be 
carefully tracked and adjusted for (or the deployment process must be cancelled and tried 
again).  A requirement for the unfurling to even begin is the settling of the wheels of the 
main rover body into the lunar regolith.  The VSAT platform will do this by wiggling its 
wheels (small motions in opposition to each other and opposite to that of the opposing 
wheel) to dig into the lunar regolith and make the platform more stable for the solar array 
deployment. 

6. FAULT SCENARIOS 

The most critical and catastrophic result of a fault is, of course, tipping.  In order to be 
rolled up when stowed, the booms on either side are similar to a plastic straw with a long 
vertical slit where the “straw” can be rolled up by flattening out the curvature of the 
straw but which snaps back to cylinder as it is unwound.  During stowing operations, the 
opposite effect occurs, the “straw” is flattened as it is rolled up.  Given the height of the 
center of mass of the deployed ROSA and the width of the wheel base, the maximum 
allowable tilt can be calculated and it is 3 degrees.   Most of the weight (because that is 
where the solar cells actually are) is in the upper half of the 60’ mast.  Combined with the fact that the booms act 
like a spring, it causes the mast to sag further in the direction out of vertical.  There is also a potential for an inverted 
pendulum effect.  This could be quite complex because the mast is less stiff in the direction normal to the surface of 
the mast and more stiff in the direction along the 
surface of the mast, from one beam toward the 
other.  The inverted pendulum can therefore have 
an elliptical motion.  The inverted pendulum 
effect, if it occurs, decreases the effective safety 
tolerance to less than the static value of 3 degrees.  

These failure scenarios can be a result of several 
causes.  The sensors used to determine 
“verticalness” may have too much error.  Energy 
could be added to the system, causing the inverted 
pendulum, possibly from rough gears or motors or 
other damage due to launch vibrations.  If the soil 
gives way during or after deployment, it would 
introduce both an off-angle and energy for the 
inverted pendulum.  The soil could give way as a 
result of vibrations during mast deployment, the 
very slow Sun-tracking process, during unwinding    Fig, 2. High-Level Architecture of MAIFLOWER Applied to 

VSAT 
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every 28 days (because the solar array cannot continue tracking in one 
direction more than one full revolution), or moonquakes. 

7. VSAT MODEL 

Several kinds of sensors are onboard the VSAT to help detect anomalies 
before they become catastrophic.  Unfortunately given the round-trip 
communications delays, it would not always be possible for humans on the 
ground to take effective action in time, such that the VSAT needs an 
onboard, autonomous, sense and react capability.  The types of sensors 
include load sensors at each of the wheels, inclinometers, gimbal joint angle 
sensors, mast deployment motor sensors, and up-facing and side-facing 
cameras.  The data these sensors collect are  processed with both the MBR system and TRIAD, which also includes 
the ML techniques discussed earlier.  A high-level architecture of MAIFLOWER applied to VSAT is shown to the 
right, followed by the model of the mechanical system components. 

Relationships are used to both sanity-check sensor values (i.e., identify faulty sensors) and to diagnose causes of 
anomalies.  An example of a relationship is that using the angle of the body from vertical, the angle of the platform 
and solar array base, and the state of the solar array (how far deployed, deployment motion, inverted pendulum 
motion, etc.), the wheel loads can be calculated and cross-checked against the wheel load sensors.  Another example 
is how the vertical motion of the IMU at the top of the mast can be checked against both the up-facing camera and 

motor sensors which can be used to also calculate the 
degree of deployment.  Cross-vertical motions of the top 
IMU (i.e., inverted pendulum motions) can be cross- 
checked against the up-facing cameras.  Angular velocities 
detected by the IMUs can be cross-checked against optical 
flows in the side facing cameras.  Small, very slow 
changes in attitude, below the noise thresholds of the IMUs 
can be found by attitude calculations with star-tracking 
from the up-facing cameras.  By detecting and diagnosing 
problems early, before they become so severe that disaster 
strikes, MAIFLOWER can greatly decrease mission risk.  
The primary safing mechanism is to stop the current 
operation and retract the mast (to improve its center of 
gravity).  For example, if during deployment, inverted 
pendulum motion is detected, stopping all motion would 
tend to decrease the problem.  If there is a danger of 
tipping, retracting the mast will improve the problem.  If 
the soil starts collapsing or sliding during deployment, 
solar tracking, or unwinding, halting the motion will stop 
the vibration.  For significant angular deviations of the 
rover, the gimbal will need to be quickly releveled. 

8. SIMULATION STUDY RESULTS 

The initial MAIFLOWER prototype comprises three independent sections: the physics simulation and two modules 
for anomaly detection: a model-based reasoning module and a data-driven module called TRIAD. We ensured a 
firewall between the development of the simulation component and that of the anomaly detection components so 
that the latter would not be unrealistically influenced or informed by the former. Specifically, the MBR module uses 
a model with lower fidelity than the simulation. Initially we focused on the mechanical aspects of the VSAT 
mission, in particular the scenario where the VSAT has navigated to the location of choice, settled into the lunar 
regolith, and is beginning to deploy the onboard Roll Out Solar Array (ROSA). After discussing this scenario with 
Astrobotic, it became clear that their primary concern was the danger of the entire platform tipping over due to one 
of several possible fault scenarios: 

Fig. 3. Model of Mechanical System Components 
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• Soil collapse underneath the wheels. In this scenario, the rover has dug in but a sudden shift in the regolith 
causes the entire platform to become unlevel with the surface. This sudden collapse has the potential to tilt 
the rover past the tipping point. 

• Soil slippage. Soil slippage involves translational movement of the VSAT itself on some slope. Due to the 
heightened center of gravity, this movement also poses a tipping threat.  

• Sensor error or mechanical launch damage that prevents the ROSA from leveling initially. This is a 
scenario where the gimbal that orients the ROSA such that its plane is parallel to the gravitational vector of 
the Moon is incorrectly positioned to be slightly off from level (due to launch damage or other issue(s)). In 
this configuration, deploying the ROSA may cause the weight of the VSAT to be unevenly shifted, which 
can become a tipping risk.  

We developed a low-fidelity physical simulation of the VSAT to model its kinematic behavior on the lunar surface. 
Our simulation fully models:  

• The slope of the lunar surface. 
• Equations of motion for the rover and attached ROSA. This includes the normal force from the surface, 

associated friction, and gravity.  
• Stabilizing and attachment interactions between the VSAT’s Mobility Platform and the ROSA. 
• Failures in sensors, soil, and leveling mechanism. 
• Realistic noise for all sensors. 
• ROSA solar array deployment process.  

Our simulation generated telemetry data for a list of sensors, which was selected after conversations with Astrobotic 
regarding which sensors were planned to be supported. These onboard sensors included inertial measurement units 
(IMUs), horizontal cameras to extract information on angular velocity, force sensors on the wheels, and upward-
facing cameras to determine the orientation of the ROSA as well as the overall attitude of the rover itself. For 
additional realism, we included sensor noise as part of the output telemetry as noise is a problem any real system 
would have to properly manage. Once the physics simulation was complete, we added a capacity to induce faults 
into the system at specific times, such as: 

• Soil collapse under specific wheels. 
• Soil slippage in a specific direction for a specified amount of time. 
• Errors in the ROSA leveling process. 
• Sensor faults of various kinds for a specified set of sensors. 

The MBR module was designed to ingest telemetry data from the physics simulation and was an implementation of 
the MBR techniques discussed above.  We designed this module as an enhancement of our previous work and 
specifically for the VSAT’s mechanical system. At a high level, MBR used a basic model of the VSAT’s 
mechanical components (explicitly including the underlying soil as a component) to compare incoming sensor data 
with expected telemetry data to determine if any sensors were reading anomalous values. Of those anomalous 
sensors, MBR performed crosschecking to determine if the issue was due to a sensor fault (reading random values, 
frozen at a single value, reading only zero values, etc.). In cases where no sensor fault was detected, MBR then 
invoked a diagnostic procedure to determine which of the components was the root cause of the anomaly and 
attempt to characterize the anomaly as one of the above known fault cases. MBR was able to effectively and quickly 
diagnose the above faults as well as faults in the sensors themselves. In actual operation, the model used by MBR 
will never reflect with perfect accuracy the reality of the device and its environment. To prove feasibility, therefore, 
it was important that we made sure that the model used by MBR was at a lower fidelity than the model that the 
simulation uses, which we did; furthermore, we showed that even with this realistic handicap, the model could 
always detect and diagnose the anomalies correctly and quickly. 

We also designed a data-driven module using a method developed by Stottler Henke called Thermodynamic 
Reasoning for Intelligent Anomaly Detection (TRIAD). TRIAD takes inspiration from thermodynamics to learn 
patterns in higher-level features that are emergent from the underlying sensor values. These features include 
standard statistical measures, such as mean and standard deviation, as well as Fourier transforms of the sensor data 
to leverage patterns in the frequency domain to detect anomalies that might be opaque to standard analysis, 
especially in the presence of noisy data. The online system consisted of two parts: the first was trained to detect 
anomalies while the second attempted to classify those anomalies by matching them to known specific types of 
faults. TRIAD learned from both nominal and anomalous data offline, but the anomaly detection framework is only 
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trained on nominal data and can detect faults on which it was not explicitly trained. TRIAD proved effective in 
finding anomalies in complex sensor data and matching them to specific faults, both when the faults originated due 
to a component and when the fault was due to sensor failure. Of specific note was TRIAD’s performance in anomaly 
detection: across a variety of faults, it overwhelmingly detected anomalies within several sensor readings of the fault 
origination, typically in under a fifth of a second. 

We demonstrated several capabilities of MAIFLOWER. These included: 

• Detection and characterization of soil collapse. The initial prototype was able to detect and characterize 
both symmetric and asymmetric soil collapses from the onboard sensors. Both MBR and TRIAD were 
efficient in finding faults, taking just 3.6 milliseconds and 30 milliseconds of processing time respectively. 
Even in catastrophic scenarios where the soil collapsed in a way that caused the rover to fall over, 
MAIFLOWER detected collapse several seconds before the point of no return.  

• Detection and characterization of soil slippage. Similar to soil collapse, MAIFLOWER was able to detect 
this fault in 3.5 milliseconds (MBR) and 30 milliseconds (TRIAD).   

• ROSA leveling errors. As the ROSA was to be leveled at the beginning of the simulation start, MBR and 
TRIAD were able to find this fault immediately.  

• A large variety of sensor faults: 
o Reading random values 
o Frozen at a singular value 
o Reading only zeros as output 
o Combinations of the above errors 
o Detecting soil collapse in spite of a sensor error 
o Finding anomalies despite a sudden increase in noise from a relevant sensor 

 

9. DETAILED SCENARIO RESULTS 

9.1 Prototype Scenario 1: Symmetric Soil Collapse 

In this scenario, soil collapses 1cm under both wheels on one side of the rover at 30 seconds. This induces 
oscillation in the ROSA but does not result in tipping.  

Fig. 4. Sketch of Soil 
Collapse 

 
 

Fig. 5. X and Z 
Position on Non-
Collapsed Corner 

 

 

Fig. 6. X and Z Positions 
of Top Of Panel 
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Fig. 7. X and Z Components of 
Panel Orientation 

 

 

9.1.1 Model-Based Reasoning Results 

Using the methodology described above, MBR first noticed anomalous values in each of the four leg sensors and 
proceeded to crosscheck these sensors against each other. Once determining that all four leg sensors were reading 

consistent values despite deviating 
from the expected values, MBR 
proceeded to component diagnosis. 
Here, MBR first checked the soil 
component for a fault. As mentioned 
above, we explicitly chose to model the 
soil as a component because, even 
though it is physically separate from 
the VSAT itself, faults such as collapse 
and slippage can still be attributed to it. 
During diagnosis, MBR inspected the 
list of anomalous sensors and found all 
four leg sensors were reading 
anomalous values (the cause of which 
cannot be attributed to some kind of 
sensor malfunction), which it 
recognized was indicative of a soil 
collapse.  

To date, MBR and TRIAD are 
decoupled from any downstream 
processing, so we routed all output to a 
file in place of this.  Figure 8, left, 
shows this entire process, from sensor 
crosschecking (first red box) to the final 
determination of a fault (second red 
box).  

9.1.2 TRIAD Results 

As shown in Fig. 9, TRIAD notices an anomaly .15 seconds after 
the collapse, guesses the nature of the anomaly correctly instantly, 
and confirms with confidence .27 seconds after collapse 

 

 

 

 

 

9.2 Prototype Scenario 2: Asymmetric Soil Collapse 

In this scenario, soil collapses beneath all wheels barring the front left wheel, triggering oscillations in the 
ROSA in both the X and Y directions. These oscillations are of varying frequencies, as the spring constants holding 

Fig. 8. From Sensor Crosschecking (1st Red Box) to Final Fault 
Determination (2nd Red Box) 

Fig. 9. TRIAD Notices Anomaly .15 Seconds After 
Collapse, Correctly Guesses Nature of Anomaly 

Instantly, and Confirms with Confidence .27 Seconds 
After Collapse 
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the ROSA in place along its stable and unstable axes are different. The back right wheel hits the ground first, and the 
VSAT briefly sways, held by two wheels, until the back left wheel makes contact with the ground at around 7.5 
seconds, stabilizing the system. Note that the normal force induced on each wheel post collapse oscillates—this is 
due to the swaying of the ROSA. 

9.2.1 Simulation Results 

 
Fig. 10. X, Y, Z Positions of ROSA Tip 

Fig. 11. X, Y, Z Position of the Back Left Corner 

 

 

Fig. 12. Normal Force (Newtons) on Each Wheel 
(Top Left Chart Corresponds to Front Left Wheel, 

Etc.) 

 

 

 

 

 

 

9.2.2 MBR Results 

Similar to the symmetric soil collapse scenario, MBR inspects the list of anomalous sensors (once crosschecking is 
complete) for any patterns it has been programmed to find. Here, it finds that four wheel force sensors and two 
gimbal accelerations are anomalous and determines that the soil must be undergoing an asymmetric collapse.  

Note that the final line of this output indicates how much time MBR took to run: 2.7 milliseconds. This time is 
measured from when the telemetry data is received to when the diagnosis for the current step has been made.  
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9.2.3 TRIAD Results 

TRIAD notices an anomaly .15 seconds after the collapse, guesses the nature of the anomaly correctly instantly, and 
confirms with confidence .3 seconds after collapse. 

 

9.3 Asymmetric Soil Slipping 

In this scenario, the rover slips backwards and to the left, at a 6-degree incline. In this scenario, friction is returned to 
the system faster (creating more dramatic oscillations in the ROSA), but is never fully recovered. This lower friction 
creates subtle slipping and more erratic normal force distributions even after the VSAT is no longer sliding, as the 
torque normally exerted by friction helps to counteract the oscillation of the ROSA. As a result of this, the VSAT 
itself briefly tilts at around 18 seconds—this corresponds two nearly simultaneous peaks along the two axes of the 
ROSA’s oscillation, which is enough to lift two of the legs up. Upon recovering, the VSAT briefly tips in the 
opposite direction as well. Note that the normal forces of each leg briefly reach 0 after these events—however, due 
to increased friction by this point, the VSAT no longer tips. Also note that the varying distributions of normal force 
on each leg as the rover slips lead to varying levels of friction. This causes the rover to rotate as it descends down 
the slope. This can be seen from the below charts in Figure 15, 16, and 17 in several ways. First, note that the 
changes in X and Y positions of the corner vary by about a factor of 2; as the slope has an even incline between the 

Fig. 13. Within 2.7 Milliseconds, MBR Finds Four 
Wheel Force Sensors and Two Gimbal Accelerations are 

Anomalous and Determines Soil Must be Undergoing 
Asymmetric Collapse 

 

Fig. 14. TRIAD Notices Anomaly .15 Seconds After 
Collapse, Correctly Guesses Nature of Anomaly 

Instantly, and Confirms with Confidence .3 Seconds 
After Collapse 
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X and the Y directions, in the absence of rotation, the X and Y positions would change by roughly the same amount. 
Secondly, note how the X and Y positions of the panel both contain both the high and low frequency oscillations 
corresponding to both steadying springs; this is because the steadying springs are no longer aligned with the global 
X and Y directions. 

9.3.1 Simulation Results 

 
                 Fig. 15. X, Y, Z Positions of Back Right Corner of VSAT 

 
                              Fig. 16. X, Y, Z Positions of the Panel Tip 

Fig. 17. Normal Force (Newtons) on Each of the Four 
Wheels (Upward Front Corresponds to Front Left, etc.) 

 

9.3.2 MBR Results 

In this scenario, MBR finds a long list of anomalous 
sensors. Of these sensors, it notices that four are 
sideways cameras, two are in upward facing cameras, 
and four are in the gimbal linear and angular 
accelerations. Because this specific set of sensors are 
showing anomalies, MBR diagnoses this problem as soil 
slippage in roughly 3.5 milliseconds.         Figure 18. MBR Finds a Long List of Anomalous Sensors 
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Fig. 19. MBR Diagnoses Problem as Soil Slippage in Roughly 3.5 Milliseconds 

9.3.3 TRIAD Results 

TRIAD detects the anomaly at .15 seconds, accurately guesses its nature, and classifies it successfully at .36 
seconds. Note that this is TRIAD’s feed in “Verbose Mode,” which lists out the anomalous sensor values associated 
with its diagnostics, which increase over time as the downstream effects of the slippage become more noticeable. 
The volume and relevance of anomalous sensors can serve as an additional metric of TRIAD’s confidence in its 
diagnoses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4 Random Sensor Error 

In this scenario, the portion of the upper gimbal IMU that measures position freezes. This type of random sensor 
scenario is maximally adversarial, as the random behavior is bounded by past nominal values, and as such it can be 
difficult to distinguish from simple noisy readings. 

9.4.1 MBR Results 

MBR processes and catches sensor errors as part of its crosschecking step. Here, MBR recognizes that a sensor is 
being inconsistent against the list of sensors that should be correlated. MBR is not particularly sure what has 
happened, so a general message is sent stating that the sensor is broken in an unknown way and that more data is 
needed.   

 

Fig. 20. TRIAD’s Feed in 
“Verbose Mode,” Listing Out 
the Anomalous Sensor Values 
Associated with Diagnostics; 
in this Scenario, TRIAD 
Detects Anomaly at .15 
Seconds, Accurately Guesses 
its Nature, and Successfully 
Classifies Anomaly at .36 
Seconds 
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Fig. 21. A General Message is Sent Stating that Sensor is Broken in Unknown Way and More Data Needed  

9.4.2 TRIAD Results 

TRIAD detects an anomaly in the frequency domain at .15 seconds after the error and pattern-matches the 
anomalous readings to soil slippage. At .27 seconds after the error, TRIAD’s high confidence prediction diverges 
from its original guess and correctly diagnoses that the error is sourced from a random sensor reading. The 
information TRIAD leverages is twofold—first, the anomalous sensor’s behavior loses consistency with slippage in 
any particular direction, and second, other sensor anomalies that would indicate slipping are not triggered in time. 

 

Fig. 22. TRIAD Detects Anomaly in the Frequency 
Domain at .15 Seconds After Error, Pattern-Matches 
Anomalous Readings to Soil Slippage; at .27 Seconds 
After Error, TRIAD’s High Confidence Prediction 
Diverges from Original Guess, Correctly Diagnosing 
that Error is Sourced from Random Sensor Reading 

 

 

 

9.5 Frozen Sensor Error 

In this scenario, the strain sensor on the back left leg freezes.  

9.5.1 MBR Results 

While MBR can catch sensor errors, this specific error is actually undetectable due to the scenarios we have 
selected. The Phase I MBR system only performs crosschecks on sensors it has found to be anomalous; in other 
words, if a sensor continues to read nominal values, MBR will not be able to tell if it has been tampered with in any 
way. For the scenarios that were selected, the VSAT platform was expected to be static and there were no 
commands to send it into motion of any kind. This means that a frozen sensor would always be reading nominal 
values as it is within the range of what MBR is expecting to see. A future iteration may improve this and instead 
monitor the standard deviation of the last several values to compare against the overall expected deviation. This, 
however, is already performed by TRIAD, demonstrating how MBR and TRIAD complement each other and can 
cover for each other’s weaknesses.   

9.5.2 TRIAD Results 

TRIAD detects and correctly classifies the 
anomaly .33 seconds after it is triggered. 

 

Fig. 23. Anomaly Detection and 
Classification Within .33 Seconds 
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10. DATA FROM THE ACTUAL PHYSICAL PROTOTYPE DURING SLOPE LAB TESTING 

Under their contract with NASA, Astrobotic built a 
ground test article of their VSAT design and tested 
in NASA’s slope lab, with simulated regolith to 
verify it met the stated requirements.  This picture 
shows the roughly 500 pound prototype in the lab 
with a 0 degree slope.  The arm and weight in the 
center of the picture represent the weight and 
horizontal location of a ROSA leaning at the edge 
of its 3 degree limit.  That arm is mover to different 
positions and force and position readings are 
recorded.  The next four graphs show the recorded 
weight on the two rear wheels, the simulated ROSA 
mass’s Z (forward/backward) location, ROSA 
mass’s X (port/starboard) location and, finally, the 
weight on the two forward wheels. 

 

 
The front two wheels are articulated in the roll direction (to cover rough terrain) so their forces, in a fairly static 
scenario, are synchronized. 
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11. FUTURE WORK 

The ultimate plan is to field MAIFLOWER on the VSAT that lands on the moon.  The next steps toward 
accomplishing that goal are to receive the full set of slope lab data, build out a high-fidelity simulation for testing 
and to generate training data, develop improved MBR models and software, test the system against the slope lab 
data, perform additional experiments where the actual physical rover undergoes soil collapse, soil slippage, ROSA 
leveling errors, and various sensor errors to confirm MAIFLOWER always behaves appropriately, and integrate 
MAIFLOWER with VSAT’s onboard software. 

12. CONCLUSIONS 

We have developed a prototype of the MAIFLOWER architecture and applied it to simulated data where the 
simulation was at a higher fidelity than the MBR models and showed, that even with this limitation, the MBR 
system could correctly responds (detects and diagnoses so the VSAT control system could compensate) to the most 
important scenarios in literally a few milliseconds.  This was Java code running on a modest desktop machine.  
Similarly, TRIAD  was shown to correctly respond within 10s of milliseconds.  The project is therefore proceeding 
toward its ultimate use on the lunar surface. 
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