
A Decomposition Algorithm for Optimal Selection and Placement of Heterogeneous Sensors

to Holistically Satisfy Mission

Michael Bynum, Forest Danford
Sandia National Laboratories

Georgia Stinchfield, Carl Laird
Carnegie Mellon University

Cody Karcher
California State University, Long Beach

ABSTRACT

Optimal selection, placement, and scheduling of terrestrial remote sensing systems is critical for effective utilization
of valuable assets for space situational awareness missions. This problem is extremely challenging when selecting
from a set of heterogeneous sensors within realistic budget under scenarios where the number of active targets exceeds
the number of sensors. Scalable sensor placement algorithms are well established for the case where all sensors are
static [1]; however, optimizing sensor placement is far more challenging when both stationary and dynamic sensors
are candidates. Our exemplar considers both stationary and gimbaled sensors, which requires incorporating physical
scheduling constraints (e.g., slew times) within the sensor placement problem to properly evaluate the merits of each
type of sensor. The resulting problem is a large-scale mixed-integer linear program (MILP) that is intractable for
full-scale problems of interest. We present a temporal decomposition algorithm for efficiently and optimally selecting
both where to place sensors and the type of sensor(s) that should be selected at each location given a budget in order to
satisfy mission criteria. The decomposition algorithm exploits problem structure induced by the temporal aspects of
the scheduling constraints to solve a set of significantly smaller MILPs (in parallel) within a custom branch and bound
(B&B) algorithm. This approach is broadly extensible based on the formulation chosen and the B&B algorithm is
guaranteed to converge to the optimal solution. The decomposition algorithm can significantly improve computational
performance. For one test problem, the decomposition algorithm reduced the optimality gap from 429.6% to 1.6%
with a one-hour time limit.

1. NOTATION

Sets

J Set of jobs to be done
S Set of candidate sensors (location and technology)
Ss Set of static candidate sensors (location and technology)
Ts Set of candidate tasks for sensor s

Ts, j Set of candidate tasks for sensor s that can perform job j

Fs Set of tasks allowed to be the first task for sensor s

Ls Set of tasks allowed to be the last task for sensor s

As Set of feasible arcs (u,v) for sensor s where u,v ∈ Ts

Cs Set of jobs that can be completed by static sensor s

P Set of time partitions for decomposition

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

Parameters

Wj Weight or priority for job j

Cs Cost of sensor s

B Budget
H Time horizon of interest

Variables

y j 1 if job j is completed; 0 otherwise
ys, j 1 if job j is completed by sensor s; 0 otherwise
xs,t 1 if task t is selected for sensor s; 0 otherwise
zs,u,v 1 if task u immediately precedes task v for sensor s; 0 otherwise
fs,t 1 if task t is the first task for sensor s; 0 otherwise
ls,t 1 if task t is the last task for sensor s; 0 otherwise
qs 1 if sensor s is selected; 0 otherwise

2. INTRODUCTION

Optimal design of systems of sensors is crucial for effective utilization of valuable assets. Sensor system design
involves both selection of sensor technologies and sensor placement. Optimization can reduce the number of sensors
needed to achieve a particular objective or improve the utilization of a sensor system given a set budget. Given
its importance, sensor system design and optimization has been studied across many different applications, including
water contamination warning systems, gas detector placement for process safety, surveillance, and constellation design
[1–5]. The utility of such optimization frameworks has even led to the development of general-purpose software for
sensor placement optimization [6].

Mixed-integer programming (MIP) has proven to be an effective and scalable solution technique for many applications,
even when considering false negatives [7, 8]. These methods typically decouple the physics from the optimization
problem by pre-computing what each sensor can detect. For example, computational fluid dynamics (CFD) simulations
were run to generate gas leak scenarios under varying weather conditions in [1]. These CFD simulations can be used to
compute whether or not the concentration of the toxic gas reaches a high enough level at each candidate sensor location
to be detected. The CFD simulations could be run in parallel, and the input to the optimization problem then becomes
a list of scenarios each candidate location can detect. In this way, the CFD simulations do not need to be embedded
within the MILP formulation, enabling the optimization problem to be solved at scale. With this methodology, both
the types and locations of all sensors in the system can be simultaneously optimized. However, the majority of prior
research has only considered static sensors where no operational decisions have to be made after placement.

In this paper, we consider the design of space situational awareness (SSA) remote sensing systems, including both
static and gimbaled sensors. We consider scenarios with a set of jobs that may be completed by all or a subset of the
sensor technologies considered. The gimbaled sensors must be scheduled during operations (if selected). Because
the schedule of one gimbaled sensor depends on the types and locations selected for the other sensors, we cannot
pre-compute the set of jobs that may be completed by each gimbaled sensor. To properly differentiate between the
static and gimbaled sensors, we embed the scheduling problem inside of a mixed-integer linear program (MILP). The
resulting problem is much larger than the corresponding problem with only static sensors and can be computationally
challenging for some scenarios.

In order to solve the integrated sensor system design and scheduling problem, we propose a tailored decomposition
algorithm that exploits the problem structure to accelerate the solution process. The remainder of this paper is or-
ganized as follows. In section 3, we present an MILP formulation to optimally design a remote sensing system for
SSA given a budget, including both selection of sensor locations and selection of sensor technology at each location.

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

The MILP formulation considers both static and gimbaled sensors. In section 4, we detail the proposed decomposi-
tion algorithm. Section 5 contains computational results showing the advantages of the decomposition algorithm, and
Section 6 summarizes the paper with conclusions.

3. PROBLEM FORMULATION

In this section, we present an MILP to optimally design a sensor system, considering both static and gimbaled sensors.
We consider a representative time horizon, H. Let J be the set of jobs that need completed by at least one sensor
within H. For design problems like the one considered here, it is important that J be representative of the set of jobs
that may need to be done over any time horizon of equal length to H for the duration of the life of the sensors. If it is
not possible to create the set J to be sufficiently representative, then multiple sets of jobs can be considered within a
stochastic programming extension of the MILP presented here.

Each job j ∈ J must be completed within a specified time interval which is typically much shorter in length than H.
Figure 1 shows an example of a job interval. Finally, each job has a corresponding priority or weight, Wj.

Fig. 1: Example of a job interval. The job must be completed within this interval.

Let S be the set of candidate sensors. Each s ∈ S represents both the sensor technology and the sensor location.
Therefore, if one considers every sensor technology at every candidate location, the size of S is equal to the number of
sensor technologies times the number of candidate locations. For the remainder of the paper, we use the term sensor
interchangeably with sensor-location pair.

For each sensor, s, we generate a set of candidate tasks, Ts, that the sensor may do if selected. Each task, t ∈ Ts is
defined by a pointing direction and a task time. We represent the set of feasible sequences of tasks for each sensor using
a directed acyclic graph (DAG) known as a feasibility DAG [9]. Each node in the DAG corresponds to a candidate
task, t ∈ Ts. There is an edge between two nodes u and v only if it is possible to complete task u and transition to task
v before the start time of task v. The DAG is directed because the edges point from the task with the earlier time to the
task with the later time. The use of a feasibility DAG drastically simplifies the scheduling portion of the optimization
problem because the computations required to determine which edges should exist can be performed independently
from the solution of the optimization problem. Thus, the scheduling portion of the problem becomes a graph traversal
problem. To further reduce computational complexity, we remove any transitive edges in the graph. An edge from
node u to node v is said to be transitive if there exists another path from u to v. This transitive reduction does not
change the optimal objective value or the optimal selection of sensor technologies and locations.

Let xs,t be a binary variable that is one if task t is selected for sensor s and zero otherwise. Let zs,u,v be a binary variable
that is one if task u immediately precedes task v for sensor s and zero otherwise. Let fs,t be a binary variable that is
one if task t is the first task for sensor s and zero otherwise. Let ls,t be a binary variable that is 1 if task t is the last
task for sensor s and zero otherwise. Let ys, j be a binary variable that is one if job j is completed by sensor s and zero
otherwise. Let y j be a binary variable that is one if job j is completed and zero otherwise. Let qs be a binary variable
that is one if sensor s is selected and zero otherwise. Each sensor has an associated cost, Cs, and we assume an overall
budget of B. Let Ts, j be the set of candidate tasks for sensor s that can perform job j. With these definitions, our MILP
for optimal design of a sensor system with both gimbaled and static sensors is presented below.

max ∑
j∈J

Wjy j (1a)

s.t.

∑
s∈S

Csqs ≤ B (1b)

y j ≤∑
s∈S

ys, j ∀ j ∈ J (1c)

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

ys, j ≤ qs ∀ j ∈ J ∀s ∈ S (1d)

ys, j ≤ ∑
t∈Ts, j

xs,t ∀ j ∈ J ∀s ∈ S (1e)

∑
t∈Fs

fs,t = 1 ∀s ∈ S (1f)

∑
t∈Ls

ls,t = 1 ∀s ∈ S (1g)

∑
v|(u,v)∈As

zs,u,v = xs,u− ls,u ∀u ∈ Ts ∀s ∈ S (1h)

∑
u|(u,v)∈As

zs,u,v = xs,v− fs,v ∀v ∈ Ts ∀s ∈ S (1i)

0≤ y j ≤ 1 ∀ j ∈ J (1j)
0≤ ys, j ≤ 1 ∀ j ∈ J ∀s ∈ S (1k)
xs,t ∈ {0,1} ∀t ∈ Ts ∀s ∈ S (1l)
0≤ zs,u,v ≤ 1 ∀(u,v) ∈ As ∀s ∈ S (1m)
0≤ fs,t ≤ 1 ∀t ∈ Ts ∀s ∈ S (1n)
0≤ ls,t ≤ 1 ∀t ∈ Ts ∀s ∈ S (1o)
qs ∈ {0,1} ∀s ∈ S (1p)

The objective (equation (1a)) is to maximize the weighted sum of the jobs that get completed. Constraint (1b) ensures
that the overall budget is not exceeded. Constraint (1c) ensures that job j is only considered completed if there is at
least one sensor that can complete job j. Constraint (1d) ensures that job j is only considered completed by sensor s if
sensor s is selected. Similarly, constraint (1e) indicates that sensor s can only complete job j if at least one candidate
task for sensor s that can complete job j is selected. Note that the set Ts, j is pre-computed by running simulations to
determine which sensors can complete each job. Constraints (1f) and (1g) ensure that each sensor has exactly one first
task and one last task, respectively. Constraint (1h) ensures that each selected task is followed by exactly one other
task unless it is the last task. Constraint (1i) ensures that each selected task is preceded by exactly one other task unless
it is the first task. Constraints (1j) - (1p) restrict the domains of the decision variables.

Note that only xs,t and qs must be specified as binary. The remaining variables will solve to either zero or one due to
properties of the problem. Constraints (1c) - (1e) will force ys, j and y j to zero if the corresponding right-hand-side of
the constraint is zero. Otherwise, the objective will push them to one. Similarly, if all xs,t are set feasibly, then zs,u,v,
ls,t , and fs,t must all be either zero or one. Consider node a. If xs,a is zero, then the right hand side of Constraints (1h)
and (1i) are at most zero because ls,a and fs,a are required to be positive. However, the left hand sides of Constraints
(1h) and (1i) must be positive because of the bounds on zs,a,v. Therefore, both the left and right hand sides must be
zero. For this to be true, ls,a, fs,a, zs,a,v ∀ v|(a,v) ∈ As (outgoing edges for a), and zs,u,a ∀ u|(u,a) ∈ As (incoming
edges for a) must be zero. Now consider the earliest selected node, b. In other words, xs,b = 1 and the task time for
node b is earlier than any other selected node. Two situations are possible. Either node b has no incoming edges,
or zs,u,b = 0 ∀ u|(u,b) ∈ As because all of the incoming nodes have xs,u = 0. As a result, fs,b = 1 by Constraint (1i).
According to Constraint (1f), fs,t = 0 for any t ∈ Ts that is not b. Similarly, if node c is the latest selected node, then
zs,c,v is zero for all of the outgoing edges (see argument above) and ls,c = 1. Now let node d be the second earliest
selected node. We have zs,b,d = 1 according to Constraint (1i) because all nodes prior to d except b were not selected.
Due to Constraint (1h), zs,b,v = 0 except when v= d. In other words, exactly one outgoing edge from node b is selected,
which is the edge connected to d. A similar argument holds for the next earliest selected node, and so on.

There are many ways to generate candidate tasks for the gimbaled sensors, and the most appropriate approach is likely
application dependent. Static sensors can be considered either by using candidate tasks that all have the same pointing
direction (which results in a simple graph where every node except the first and last have exactly one incoming and
one outgoing edge after the transitive edges are removed) or by pre-computing the set of jobs that may be completed
by the sensor and excluding the scheduling constraints for that sensor. In the latter case, Constraints (1d) - (1i) may be
replaced by

ys, j ≤ qs ∀ j ∈ Cs ∀s ∈ Ss (2)

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

ys, j = 0 ∀ j /∈ Cs (3)

where Cs is the set of jobs that can be completed by sensor s and Ss is the set of static sensors.

If the MILP presented in (1) is solved with a branch and bound (B&B) solver such as Gurobi or HiGHS, the solution
provides the sensor system that provably maximizes the objective [10, 11]. The optimal solution accounts for the
fact that the gimbaled sensors must be scheduled by embedding the scheduling problem for each sensor within the
MILP. Because the MILP is solved with all sensors simultaneously, the schedule for each sensor accounts for the tasks
selected for the other sensors. Therefore this MILP can correctly distinguish between the static and gimbaled sensors.
The optimal solution may contain all static sensors, all gimbaled sensors, or a mix of static and gimbaled sensors.

Note that the use of the feasibility DAG makes the MILP formulation remarkably generic. This formulation could be
directly used for other applications such as constellation design. Most approaches to constellation design maximize
geometric coverage [12]. While this is the correct objective for some applications, it is only a proxy objective for
others. The MILP presented here could enable the design of constellations targeting specific sets of jobs. In this case,
the set S would include the sensor technology and the candidate orbit instead of a candidate fixed location.

While the MILP presented above is extremely useful, it is computationally challenging to solve. Embedding a schedul-
ing problem within the design problem makes the MILP much larger, and the problem can be intractable when consid-
ering both long time horizons and large sets of jobs. In the next section, we describe a decomposition algorithm that
can significantly improve computational performance.

4. DECOMPOSITION ALGORITHM

In order to reduce the computational complexity of the MILP presented in the previous section, we partition the overall
time horizon (H) into a number of smaller time intervals and use a custom B&B algorithm that solves significantly
smaller MILPs representing the portion of the problem corresponding to these time paritions. The B&B algorithm
is based on the one proposed in [13] for global solution of stochastic nonlinear optimization problems. We use a
customization of this algorithm where we decompose the problem by time instead of scenario.

For the purposes of explanation, suppose we divide H into two time partitions. In order to partition the feasibility DAG,
we introduce a number of candidate tasks at the boundary between the two partitions. We denote these candidate tasks
as boundary tasks. The boundary tasks do not necessarily complete any jobs. Instead, they represent the pointing
direction of the sensor at the boundary time. We use these candidate tasks to partition the graph into two parts. The
last task for the first graph must be the first task of the second graph, both of which must be one of the boundary tasks.
If enough boundary tasks are included (i.e., the space of pointing directions is discretized finely enough), the optimal
solution will not change. Using these concepts, we rewrite the MILP from Section 3 as follows.

max ∑
p∈P

∑
j∈Jp

Wjy j,p (4a)

s.t.

∑
s∈S

Csqs,p ≤ B ∀p ∈ P (4b)

qs = qs,p ∀p ∈ P ∀s ∈ S (4c)

y j,p ≤∑
s∈S

ys, j,p ∀ j ∈ Jp ∀p ∈ P (4d)

∑
p∈P j

y j,p ≤ 1 ∀ j ∈ J (4e)

ys, j,p ≤ qs,p ∀ j ∈ Jp ∀p ∈ P ∀s ∈ S (4f)

ys, j,p ≤ ∑
t∈Ts, j,p

xs,p,t ∀ j ∈ Jp ∀p ∈ P ∀s ∈ S (4g)

∑
t∈Fs,p

fs,p,t = 1 ∀s ∈ S ∀p ∈ P (4h)

∑
t∈Ls,p

ls,p,t = 1 ∀s ∈ S ∀p ∈ P (4i)

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

fs,p,t = ls,p−1,t ∀t ∈ Fs,p ∀p ∈ {i ∈ P|i > 1} ∀s ∈ S (4j)

∑
v|(u,v)∈As,p

zs,p,u,v = xs,p,u− ls,p,u ∀u ∈ Ts ∀p ∈ P ∀s ∈ S (4k)

∑
u|(u,v)∈As,p

zs,p,u,v = xs,p,v− fs,p,v ∀v ∈ Ts ∀p ∈ P ∀s ∈ S (4l)

0≤ y j,p ≤ 1 ∀ j ∈ Jp ∀p ∈ P (4m)
0≤ ys, j,p ≤ 1 ∀ j ∈ Jp ∀p ∈ P ∀s ∈ S (4n)
xs,p,t ∈ {0,1} ∀t ∈ Ts,p ∀p ∈ P ∀s ∈ S (4o)
0≤ zs,p,u,v ≤ 1 ∀(u,v) ∈ As,p ∀p ∈ P ∀s ∈ S (4p)
0≤ fs,p,t ≤ 1 ∀t ∈ Ts,p ∀p ∈ P ∀s ∈ S (4q)
0≤ ls,p,t ≤ 1 ∀t ∈ Ts,p ∀p ∈ P ∀s ∈ S (4r)
qs,p ∈ {0,1} ∀p ∈ P ∀s ∈ S (4s)
qs ∈ {0,1} ∀s ∈ S (4t)

Here, P is the set of time partitions used for decomposition, P j is the set of partitions that have at least partial overlap
with the time interval for job j, and Jp is the set of jobs with time intervals that at least partially overlap with partition
p. Figures 2 and 3 illustrate the last two sets. In Figure 2, the time interval in which the job must be completed lies
completely within a single partition. In this case, |P j|= 1, P j = {2}, j /∈ J1, j ∈ J2, and j /∈ J3. In Figure 3, the time
interval in which the job must be completed crosses a partition boundary. In this case, |P j| = 2, P j = {2,3}, j /∈ J1,
j ∈ J2, and j ∈ J3.

Fig. 2: Example job interval that lies completely within one time partition (|P j|= 1).

Fig. 3: Example job interval that crosses a partition boundary and, therefore, overlaps with two partitions (|P j|= 2).

Formulation (4) is mostly the same as (1) except that it has additional indices for many of the variables and sets to
indicate which time partition each is associated with. However, we have included three additional constraints: (4c),
(4e), and (4j). Constraint (4c) ensures that the same sensors are selected across all partitions. Note that y j,p is a binary
variable indicating whether job j is completed in partition p. Constraint (4e) ensures that a job can only be completed
once even if the interval for that job overlaps with multiple time partitions. Constraint (4j) forces the last task selected
for one partition to be the first task selected for the following partition.

If we drop constraints (4c), (4e), and (4j), problem (4) completely decomposes by partition and can be solved in paral-
lel. Furthermore, because we have only modified the problem by dropping constraints, we have created a relaxation of
the problem. Every feasible solution for the original problem is feasible for the relaxation. As a result, the solution to
the relaxation gives an upper bound on the optimal objective value. On the other hand, any feasible solution to problem

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

(4) gives a lower bound to the optimal objective value. This idea provides the basis of our custom B&B algorithm
which is outlined in Algorithm 1.

The algorithm starts by solving the root node of the branch and bound tree in parallel (line 1). The root node is
constructed by dropping Constraints (4c), (4e), and (4j). When these constrains are removed, the problem decomposes
by partition. As a result, we may solve the node by solving the MILP for each partition independently (and in parallel).
The MILP for a partition is the same as Problem (4), except |P| = 1. To compute the objective for the node, fn, we
sum the objectives obtained for each partition. As the algorithm proceeds, we ensure the problem remains separable
by partition.

Like any B&B algorithm, our algorithm proceeds by computing lower (L) and upper (U) bounds on the optimal
objective. We then attempt to increase the lower bound and decrease the upper bound until the optimal solution is
found. Because our problem is a maximization problem, the lower bound at any point in the algorithm is the objective
value of the best feasible solution found so far. The upper bound is initialized to the objective value of the root node,
fn0 . The upper bound is decreased by branching on a variable or a set of variables (lines 18 - 32). The process of
branching creates new nodes in the B&B tree. Branching is done in a way that guarantees that the objective of each
node is less than or equal to the objective of its parent node. Furthermore, the optimal solution (y∗j,p, y∗s, j,p, x∗s,p,t ,
z∗s,p,u,v, f ∗s,p,t , l∗s,p,t , and q∗s,p) at a node should be infeasible for all of its descendant nodes.

The set of unexplored nodes in the B&B tree, N, is initialized with the root node on line 2. The lower bound is
initialized to negative infinity on line 3 because no feasible solution has been found yet. The upper bound is initialized
to the objective of the root node on line 4. The main loop of the algorithm starts on line 5, and the algorithm continues
until the lower and upper bounds are sufficiently close. On line 6, we select the next node to be explored by popping
the node with the largest objective from the set of unexplored nodes. The node with the largest objective is selected
with the hope that this will reduce the upper bound.

On lines 7 - 10, we check if the solution found when solving the selected node satisfies Constraints (4c), (4e), and (4j).
All other constraints are guaranteed to be satisfied because they are included in each subproblem solved on lines 1, 33,
and 34. Therefore, if the solution for a node satisfies Constraints (4c), (4e), and (4j), then all constraints in Problem
(4) have been satisfied, and a feasible solution has been found. Furthermore, this solution is the optimal solution and
the algorithm can terminate. This is guaranteed because, at this point, fn =U and U is always greater than or equal to
L. This will be explained more below. If this is the case, we update the lower bound and optimal solution on lines 8
and 9, respectively, before exiting the while loop on line 10.

If the solution for node n is not feasible, then we use a heuristic to find a feasible solution at node n on line 12. The
heuristic ensures that the feasible solution found abides by any restrictions imposed on the node through the branching
process. Our heuristic begins by computing the average value of qs,p found at the solution of the node for each sensor
across all partitions:

qs =
1
|P| ∑p∈P

qs,p ∀s ∈ S (5)

We select a subset of the sensors, Ŝ⊆ S, such that ∑s∈Ŝ qs is maximized while constraining ∑s∈ŜCs ≤ B. For each s in
Ŝ, we fix qs,p = 1. For each s not in Ŝ, we fix qs,p = 0. Next, we relax xs,p,t and qs,p to be continuous variables between
zero and one instead of binary variables so that the next sequence of problems solved in the heuristic are linear
programs (LPs) instead of MILPs. Then, we solve the problem with these changes applied, check for jobs where
Constraint (4e) is violated, fix y j,p to zero for all partitions except one, and repeat until Constraint (4e) is satisfied for
all jobs. We fix y j,p for ten jobs each iteration. At this point, we continue to iteratively solve LP relaxations while
fixing fs,p,t and ls,p,t so that Constraint (4j) is satisfied. Finally, we make xs,p,t binary again and solve the resulting
MILP. This provides a feasible solution and completes the heuristic. After the heuristic is complete, we check if the
feasible solution found is better than the best feasible solution found so far. If so, we update L and q∗s on lines 14 and
15, respectively.

After the heuristic is finished, we begin the branching process on line 18 by creating two new nodes that inherit all
restrictions (generated on lines 22, 26, and/or 30-31) applied to any of their ancestors (i.e., the new nodes are “copied”
from their parent node). We prioritize Constraint (4c) and then Constraint (4e) for branching. If we find any sensor
where Constraint (4c) is violated (line 19), we select the sensor whose average qs,p value is closest to 0.5 for branching
(lines 20 - 21). For the selected sensor, we fix qs̃,p to zero for all partitions in node n1 and to one for all partitions in

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

Algorithm 1 Parallel branch and bound algorithm for solving Problem (4). Given a convergence tolerance, ε , and the
root node, n0, which is the relaxation of problem (4) generated by dropping Constraints (4c), (4e), and (4j). Produces
the optimal sensor system, q∗s and the optimal objective value, L.

1: Solve n0 in parallel and set fn0 to the optimal objective value
2: N←{n0}
3: L←−∞

4: U ← fn0

5: while (U−L)
L > ε do

6: Pop node n from N with the largest objective, fn
7: if constraints (4c), (4e), and (4j) are feasible at the optimal solution for node n then
8: L← fn
9: Let q∗s be the values of qs at the optimal solution for node n

10: break
11: else
12: Use a heuristic to find a feasible solution for node n; let gn be the objective value, and q̂s be the values of qs

selected by the heuristic
13: if gn > L then
14: L← gn
15: q∗s ← q̂s
16: end if
17: end if
18: Create two new nodes, n1 and n2, both copied from node n
19: if Constraint (4c) is violated then
20: Let qs =

1
|P| ∑p∈P qs,p

21: Select s̃ = argmins∈S |qs−0.5|
22: Fix qs̃,p = 0 in n1 and qs̃,p = 1 in n2.
23: else if Constraint (4e) is violated then
24: Select j̃ = argmax j∈J ∑p∈P y j,p
25: Split P j̃ into two sets, P1 and P2 such that P1∪P2 = P j̃, P1∩P2 = /0, and ∑p∈P1

y j,p ≈ ∑p∈P2
y j,p

26: Fix y j,p = 0 ∀p ∈ P1 in node n1 and y j,p = 0 ∀p ∈ P2 in node n2
27: else
28: Select a sensor-partition pair (s̃, p̃) where Constraint (4j) is violated.
29: Create a plane (c = ax+by+ cz+d = 0) that separates the pointing directions associated with the last task

selected for partition p̃−1 and the first task selected for partition p̃.
30: Fix ls̃,p̃−1,t = 0 and fs̃,p̃,t = 0 for every task with a pointing direction on one side of the plane (c > 0) in node

n1.
31: Fix ls̃,p̃−1,t = 0 and fs̃,p̃,t = 0 for every task with a pointing direction on the other side of the plane (c < 0) in

node n2.
32: end if
33: Solve n1 in parallel and set fn1 to the optimal objective value
34: Solve n2 in parallel and set fn2 to the optimal objective value
35: N← N∪{n1,n2}
36: U ←maxn∈N fn
37: end while
38: return q∗s , L

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

node n2. If Constraint (4c) is satisfied, then we check for jobs where Constraint (4e) is violated. If there are multiple
jobs where Constraint (4e) is violated, we select the job, j̃, where Constraint (4e) is violated by the largest amount
(line 24). We then split the set of partitions that overlap with the time interval for job j̃ into two sets as described
on line 25. For nodes n1, we fix y j,p to zero for all partitions in the first set. For node n2, we fix y j,p to zero for
all partitions in the second set. If Constraints (4c) and (4e) are both satisfied, then Constraint (4j) must be violated.
We select a sensor-partition pair on line 28 where Constraint (4j) is violated. If the constraint is violated for multiple
sensor-partition pairs, we select the pair that has the largest discrepancy in the pointing directions selected by the last
task of the previous partition and the first task of the current partition. Let v⃗1 and v⃗2 be the unit vectors describing
the pointing directions associated with the last task selected in partition p̃− 1 and the first task selected in partition
p̃, respectively. We create a plane to split the space of pointing directions in two (not necessarily equal) parts. The
origins of v⃗1 and v⃗2 both lie on the plane, and the distance from the end of v⃗1 to the plane equals the distance from the
end of v⃗2 to the plane. For node n1, we set ls̃,p̃−1,t = 0 and fs̃,p̃,t = 0 for every task with a pointing direction on the
same side of the plane as v⃗1. For node n2, we set ls̃,p̃−1,t = 0 and fs̃,p̃,t = 0 for every task with a pointing direction on
the same side of the plane as v⃗2. This completes the branching process.

After creating the new nodes n1 and n2, the MILPs defined by each node are solved on lines 33 - 34. The new nodes
are then added to the set of unexplored nodes on line 35. Finally, the upper bound is updated on line 36 based on the
maximum objective value of all unexplored nodes before processing another node on line 6.

By using a decomposition algorithm that solves a sequence of smaller MILPs, we can exploit the problem structure
while still utilizing commercial or open-source MILP solvers (e.g., Gurobi or HiGHS) for the subproblems. These
solvers are extremely effective at handling binary variables and have advanced B&B algorithms that integrate presolve
and cutting planes [14–16]. Our decomposition algorithm does not need to worry about binary variables and, instead,
only needs to ensure consistency between the different partitions. In the following section, we present computational
results for a number of test problems that demonstrate the benefit of Algorithm 1.

5. COMPUTATIONAL RESULTS

Here, we present computational results demonstrating the benefit of the decomposition algorithm described in Section
4. We constructed a number of test problems with varying numbers of jobs, job interval sizes, partition sizes, and
budgets. Our test problems considered two sensor technologies. The first is a gimbaled sensor with cost 1. The
second is a static sensor that is more capable but has cost 2. We consider 20 candidate locations for every problem.
Note that it is possible for the optimal solution to contain a gimbaled sensor and a static sensor in the same location.
For all problems, we consider a time horizon of 500 time units. We consider budgets of 3, 5, and 7. For the largest
budget, there are 95,534 possible sensor system designs (i.e., qs), even without considering the scheduling problem.
We consider partition intervals of 25 time units and 50 time units and job intervals with 25 time units and 50 time
units. Therefore, we have test problems where the job interval is less than, equal to, and greater than the partition
interval. We consider sets of jobs ranging from 2,000 jobs to 10,000 jobs. The jobs are split evenly across the overall
time horizon. For example, the test problem with 2000 jobs and job intervals of 50 time units has 200 jobs that must
be completed within the first 50 time units, 200 jobs that must be completed between time 50 and 100, and so on.
As a result, when the length of the job interval equals the length of the partition interval, the two intervals align, and
Constraint (4e) will never be violated because |P j|= 1 for all jobs.

We implemented our algorithm in Python and used Pyomo to model the MILPs [17]. We used Gurobi to solve all
MILPs. All computational experiments were run on a linux server with 32 3.6 GHz cores. We set a 1-hour time
limit for each test problem. The results are presented in Table 1. Here, “FS” represents the full-space approach
where Problem (4) is solved directly with Gurobi without any decomposition. “D” represents the decomposition
algorithm described in Section 4. The “Bound” column shows the upper bound (U) obtained by the 1-hour limit. The
“Incumbent” column shows the objective of the best feasible solution (L) found after 1 hour. The optimality gap is
computed as 100(U−L)

L . Each row shows the results for a different test problem. For the decomposition algorithm,
we limited Gurobi to three threads for each subproblem. For the full-space approach, we did not limit the number of
threads Gurobi could use.

The results clearly show the benefit of the decomposition algorithm. The decomposition algorithm outperforms the
full-space approach for all problems with more than 5,000 jobs. For one problem, the optimality gap was reduced
from 429.6% to 1.6%. For many problems, Gurobi did not even find a feasible solution within the time limit for the

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

Table 1: Computational results comparing the decomposition algorithm described in Section 4 (denoted “D” in the
table) and the full-space approach (dentoed “FS” in the table) where Problem (4) is solved directly with Gurobi without
any decomposition. The “Bound” column shows the upper bound obtained after 1 hour. The “Incumbent” column
shows the objective of the best feasible solution found after 1 hour. The “Gap (%)” column shows the optimality gap
after 1 hour, computed as 100(U−L)

L .

Jobs Job
Interval

Partition
Interval Budget Bound Incumbent Gap (%)

FS D FS D FS D
2000 50 25 3 1013 1130 985 911 2.8% 24.0%
2000 50 25 5 1652 1812 1451 1345 13.9% 34.7%
2000 50 25 7 1818 2376 1736 1559 4.7% 52.4%
2000 50 50 3 1019 1005 992 980 2.7% 2.6%
2000 50 50 5 1564 1514 1453 1432 7.6% 5.7%
2000 50 50 7 1822 1812 1733 1704 5.1% 6.3%
3000 50 25 3 2037 1623 1320 1322 54.3% 22.8%
3000 50 25 5 2724 2697 2094 2057 30.1% 31.1%
3000 50 25 7 2916 3597 2600 2546 12.2% 41.3%
3000 50 50 3 1985 1361 1353 1349 46.7% 0.9%
3000 50 50 5 2682 2154 2079 1653 29.0% 30.3%
3000 50 50 7 2920 2770 2374 2371 23.0% 16.8%
4000 25 25 3 1163 1195 1129 1088 3.0% 9.8%
4000 25 25 5 2313 1898 1714 1710 34.9% 11.0%
4000 25 25 7 2894 2495 2156 2121 34.2% 17.6%
4000 25 50 3 1173 1155 1138 1111 3.1% 4.0%
4000 25 50 5 2073 1850 1769 1735 17.2% 6.6%
4000 25 50 7 2890 2429 2197 2150 31.5% 13.0%
5000 50 25 3 4019 2623 T/O 2205 T/O 19.0%
5000 50 25 5 4771 4559 T/O 3484 T/O 30.9%
5000 50 25 7 4933 6589 T/O 3676 T/O 79.2%
5000 50 50 3 3846 2298 1441 2250 166.9% 2.1%
5000 50 50 5 4745 4448 T/O 3516 T/O 26.5%
5000 50 50 7 4931 4883 T/O 3945 T/O 23.8%
6000 25 25 3 2449 1694 1420 1640 72.5% 3.3%
6000 25 25 5 3832 2752 2201 2699 74.1% 2.0%
6000 25 25 7 4639 3735 2664 3120 74.1% 19.7%
6000 25 50 3 2432 1679 1551 1656 56.8% 1.4%
6000 25 50 5 3736 2775 2166 2707 72.5% 2.5%
6000 25 50 7 4549 3995 2483 3120 83.2% 28.0%
10000 25 25 3 5116 2673 966 2631 429.6% 1.6%
10000 25 25 5 7158 4945 T/O 4432 T/O 11.6%
10000 25 25 7 8300 7502 T/O 5457 T/O 37.5%
10000 25 50 3 5130 2749 1562 2632 228.4% 4.4%
10000 25 50 5 7187 6213 T/O 3301 T/O 88.2%
10000 25 50 7 8323 7993 T/O 4484 T/O 78.3%

full-space problem. For smaller problems, decomposition is less beneficial, but significant improvements can still be
seen for some test problems. For example, the decomposition algorithm reduced the optimality gap from 34.9% to
11.0% for the test problem with 4,000 jobs, job intervals equal to 25 time units, partition intervals equal to 25 time
units, and a budget of 5.

On the other hand, the results show that the decomposition algorithm performs better when the job interval is shorter
than the partition interval. To illustrate this more clearly, we solved a sequence of problems where, within a single

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

problem, some jobs had job intervals of 25 time units and some jobs had job intervals of 50 time units. We fixed the
total number of jobs to 10,000 and varied the number of jobs with job intervals of 25. The results are shown in Figure
4. The x-axis shows the number of jobs with time intervals of 25 time units, n25, and the y-axis shows the optimality
gap. The decomposition algorithm works better as n25 increases, as shown by the decreasing optimality gap. The
reason for this is that, when the job intervals are shorter, |P j| is smaller, and Constraint (4e) is less likely to be violated
at a given node in the B&B tree.

0 2000 4000 6000 8000 10000
Number of jobs with time intervals of 25 time units

0

5

10

15

20

25

30

35

Op
tim

al
ity

 G
ap

 (%
)

Fig. 4: Effect of job interval on the decomposition algorithm. The test problem has a budget of 3 and a partition
interval of 25. The number of jobs with time intervals of 25, n25, is shown on the x-axis. The total number of jobs
is 10,000. The resulting optimality gap for each problem is shown on the y-axis. For a fixed partition interval, the
optimality gap improves as the average job interval gets shorter because |P j| decreases.

6. CONCLUSION

We presented a mixed-integer linear programming (MILP) formulation to optimally design a sensor system for space
situational awareness, including selection of both sensor technology and sensor location. The MILP formulation
properly distinguishes between static and gimbaled sensors by embedding a scheduling problem for each gimbaled
sensor in the MILP. Additionally, the MILP formulation is remarkably generic and can be applied to related problems
such as constellation design. Because the MILP can be computationally challenging for large numbers of jobs and long
time horizons, we presented a decomposition algorithm that partitions the overall time horizon into a number of smaller
intervals. As a result, we can solve a number of smaller MILPs within a parallel branch-and-bound (B&B) algorithm.
The B&B algorithm ensures consistency between the different time partitions (e.g., each partition needs to select the
same sensors). Our computational results showed that the decomposition algorithm can significantly outperform the
full-space approach, where the original MILP is solved directly without any decomposition. Additionally, we found

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

that the decomposition algorithm performs better when the majority of the job intervals lie entirely within a single
partition. Future work could consider extending the MILP formulation to a stochastic programming problem, which
would enable consideration of multiple sets of jobs and provide a design that is more reliable across scenarios not
considered directly in the optimization problem.

7. ACKNOWLEDGEMENTS

We would like to thank Cindy Phillips for helping to prove that zs,u,v, fs,t , and ls,t do not need to be binary variables.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA0003525.

This written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest
in and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed
in the written work do not necessarily represent the views of the U.S. Government. The publisher acknowledges that
the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this written work or allow others to do so, for U.S. Government purposes. The DOE will provide
public access to results of federally sponsored research in accordance with the DOE Public Access Plan.

8. REFERENCES

[1] SW Legg, AJ Benavides-Serrano, John D Siirola, Jean-Paul Watson, SG Davis, Are Bratteteig, and Carl D
Laird. A stochastic programming approach for gas detector placement using cfd-based dispersion simulations.
Computers & Chemical Engineering, 47:194–201, 2012.

[2] Jonathan Berry, William E Hart, Cynthia A Phillips, James G Uber, and Jean-Paul Watson. Sensor placement in
municipal water networks with temporal integer programming models. Journal of water resources planning and
management, 132(4):218–224, 2006.

[3] Ashley D Biria and Belinda G Marchand. Constellation design for space-based space situational awareness
applications: an analytical approach. Journal of Spacecraft and Rockets, 51(2):545–562, 2014.

[4] Yuri Ulybyshev. Satellite constellation design for complex coverage. Journal of Spacecraft and Rockets, 45(4):
843–849, 2008.

[5] Ali Ahmadzadeh, James Keller, George Pappas, Ali Jadbabaie, and Vijay Kumar. An optimization-based ap-
proach to time-critical cooperative surveillance and coverage with uavs. In Experimental robotics: The 10th
international symposium on experimental robotics, pages 491–500. Springer, 2008.

[6] Katherine A Klise, Bethany L Nicholson, Carl D Laird, Arvind P Ravikumar, and Adam R Brandt. Sensor
placement optimization software applied to site-scale methane-emissions monitoring. Journal of Environmental
Engineering, 146(7):04020054, 2020.

[7] Jianfeng Liu and Carl D Laird. A global stochastic programming approach for the optimal placement of gas
detectors with nonuniform unavailabilities. Journal of Loss Prevention in the Process Industries, 51:29–35,
2018.

[8] AJ Benavides-Serrano, MS Mannan, and CD Laird. Optimal placement of gas detectors: Ap-median formulation
considering dynamic nonuniform unavailabilities. AIChE Journal, 62(8):2728–2739, 2016.

[9] Xinwei Wang, Guohua Wu, Lining Xing, and Witold Pedrycz. Agile earth observation satellite scheduling over
20 years: Formulations, methods, and future directions. IEEE Systems Journal, 15(3):3881–3892, 2020.

[10] Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method. Mathematical Programming
Computation, 10(1):119–142, 2018.

[11] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.gurobi.com.

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

[12] Martin W Lo. Satellite-constellation design. Computing in science & engineering, 1(01):58–67, 1999.

[13] Yankai Cao and Victor M Zavala. A scalable global optimization algorithm for stochastic nonlinear programs.
Journal of Global Optimization, 75(2):393–416, 2019.

[14] Tobias Achterberg, Robert E Bixby, Zonghao Gu, Edward Rothberg, and Dieter Weninger. Presolve reductions
in mixed integer programming. INFORMS Journal on Computing, 32(2):473–506, 2020.

[15] Ralph Edward Gomory. An algorithm for the mixed integer problem. Report No. P-1885, The Rand Corporation,
Santa Monica, CA., 1960.

[16] Hugues Marchand and Laurence A Wolsey. Aggregation and mixed integer rounding to solve mips. Operations
research, 49(3):363–371, 2001.

[17] Michael L Bynum, Gabriel A Hackebeil, William E Hart, Carl D Laird, Bethany L Nicholson, John D Siirola,
Jean-Paul Watson, David L Woodruff, et al. Pyomo-optimization modeling in python, volume 67. Springer, 2021.

Copyright © 2024 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com

