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1. INTRODUCTION

It is widely acknowledged that the space domain is contested and congested. [1] Owing to high dollar outcomes and 
negative impact to critical missions, agents in the space domain rarely accept data from untrusted sources (i.e. 
commercial and non-traditional). To this end, methods to speed the timeline for integration of new sensor sources are 
being proposed based upon tiered approaches to trust but they do not present a general formalism to compute with 
trust. [2] In the meantime, agents continue to rely on “vetted” sensors to independently assess complex events and 
then make consequential decisions. “Vetted” sensors typically are those that agents have control over and have been 
calibrated to their own specifications. [3] Therefore, the agent’s belief that correct decisions are being made is strictly 
shaped by the hard evidence (i.e. metric data plus uncertainty) provided by these sensors. 

Unity of effort is ‘the product of successful unified action’ and consists of ‘coordination and cooperation toward 
common objectives, even if the participants are not necessarily part of the same command or organization.’ [4, 5] The 
barrier to cooperative decision making is the lack of a mechanism to incorporate soft evidence (i.e. subjective opinions) 
or perceived trust in the agent’s decision-making process. Therefore, a framework is needed for operational decision-
making that maps both hard and soft evidence to belief and certainty of action. Further, assessing the trustworthiness 
of something based upon the supplied evidence (i.e. another agent, a sensor source, individual data elements, etc.) is 
separate and distinct from the decision to trust, which is influenced by the agent’s own experience (i.e., prior beliefs), 
knowledge (i.e. current evidence), and trust propensity (i.e., willingness to make yourself vulnerable). [6] 

For the sake of discussion, let’s examine a common problem in space domain awareness (SDA) that requires trust and 
cooperation. Our tracking systems have indicated that two objects are potentially on a collision path with a close 
approach distance below some keep-out threshold. We want to compute probability of collision between two objects. 
Each object could be tracked by one or more sensors together or separately. That is, there could be one track per object 
from the same sensor, one track per object from different sensors, or multiple tracks of each object from two or more 
sensors. In each of these cases, we can easily compute the probability of collision (Pc) using the uncertainty of the 
provided tracks. Yet even then, data from a trusted sensor could still have problems ranging from systemic errors 
intrinsic to hardware or even operator idiosyncrasies. In a collaborative environment, consider a situation where 
Country A tracks all space objects and identifies a conjunction between Country A and Country B assets. Country B 
supplies their own best track of their own object. Does Country A use their own track or the track provided by Country 
B to assess the collision risk and potentially maneuver out of the way? Does Country A trust the data that has been 
provide from an external source to make consequential decisions? Should Country A use the data in aggregate or 
separately to compare results?  

The answer to these questions is twofold. First, one must evaluate trustworthiness of the source and/or the data itself. 
Second, one must actively make the decision to trust considering the trustworthiness assessment. Further 
complications often arise in SDA given that we don’t usually know until after the raw data has been exploited to 
generate object tracks if there was an issue identified - particularly in a collaborative sensor setting. For example, there 
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is a notion of “closely spaced objects” in the sensor field of view leading in some cases to cross-tagged or mis-tagged 
data association labels. For this scenario, we posit that trust in the data should be highest when the objects are clearly 
separable but worst when they are closest together. From one sensor’s geometric perspective, it has a clear view of 
the two conjuncting objects but a different sensor may not. While each sensor may itself be assessed to be trustworthy, 
the data could be untrustworthy, or less valuable, based upon geometry for example. This scenario indicates we need 
a methodology to formulate and manage trust on an observation-by-observation basis not just a sensor-by-sensor basis.  

Trust has been implemented as a computational framework in multiple fields – most notably in the field of wireless 
networks and cyber security where we are interested to know, for example, if a network node has been compromised 
with malicious code. [7, 8, 9] The space domain has yet to take advantage of recent advances in multi-agent trust 
frameworks where trust is no longer implicit but rather explicitly defined. For our purposes in SDA, we have 
discovered in review of the literature that there are several major theories that have been loosely coupled together 
through subject matter experts (SME) in a human-in-the-loop formulation. The goal of this paper is to provide an 
overview of the various techniques and theories in the literature that could be brought together to form and proposes 
an automated, rigorous, human-on-the-loop, end-to-end trust framework for SDA. This paper explores what is required 
to construct a formal trust framework where a decision-making agent must assess the trustworthiness of multiple 
information agents independently observing the same type of space domain event. We require that the decision-making 
agent be presented with potentially conflicting information from two or more information agents that have a variable 
history length of observations. 

2. TRUST AND DECISION MAKING OVEREVIEW 

In this section, we survey the current literature on the various theories required to achieve a fully realized trust 
framework. Trust formalisms provide a mechanism to compute with trust. However, we also need mechanisms to 
establish that data and sensors are trustworthy, which implies that we also require a model for quality and value of 
data. These trustworthiness models should be implemented in a way that allows us to flexibly reason with statistical 
rigor. Finally, we need a rigorous decision theory that connects the trust formalisms with our trustworthiness models 
and generates an explainable and prioritized set of courses of action in which a human decision maker has full 
confidence. 

To begin, there are various methods to compute trustworthiness beginning with the seminal work of Marsh in 1994 
who described a first formalism for trust. [10] A contemporary of Marsh, Jøsang went on to produce the first 
comprehensive treatment of subjective logic and its operations in 2016. [11] Of particular note is the work of Wang 
and Singh which provided a rigorous framework for assessing trustworthiness as the probability of a positive outcome 
following the early work of Jøsang. [12, 13] Additionally, Wang and Singh defined a probability certainty density 
function (PCDF) that assesses the strength of an agent’s belief that the trustworthiness is a specific value. For the 
formalism to hold, it is required that certainty increases as evidence increases while certainty decreases as conflict 
between agents increases in the supplied evidence. For complex events involving multiple responsible parties with 
various subjective opinions and imperfect understanding, there are a variety of methods to fuse agent opinions and 
address conflicting opinions (i.e. soft evidence) as well as social distance of opinions (i.e. gossip) through discounting 
trustworthiness. [14, 15, 16]  

To model trustworthiness, there is a significant body of work around the concepts of quality of information (QoI) and 
value of information (VoI) provided by sensor networks spearheaded by Bisdikian at IBM Corporation for the US 
Army Research Laboratory in 2009. The central idea is that data has quality that can be defined via ontologies 
independent of any situational context including not only uncertainty measures but also timeliness, completeness, and 
reliability measures. However, data only has value when it is assessed in context of its intended use as a function of 
its quality. Bisdikian et al. presented a first of its kind taxonomy categorizing QoI and VoI that were implemented 
using Unified Modeling Language (UML) constructs allowing for graphic representations of object-oriented data. [17, 
18, 19] While QoI and VoI have been presented as a computational mechanism for things like sensor selection in 
tactical networks, [20] we assert that the underlying framework of UML, which seems to be the current standard in 
the literature, is ill suited for probabilistic and uncertain representations of the various taxonomy elements and their 
relationships to each other. An alternative to the UML framework found in the literature is probabilistic programming 
using Scruff, which will be discussed in detail later in the paper. 
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Lastly, a significant body of work has been established on the agent decision process as it pertains to trust. Once we 
have established the trustworthiness of something based upon evidence and assessed our certainty in this belief, we 
still must actively decide to trust by accepting the various risks and consequences of such a decision in context with 
the situation at hand. [10] Decision making has largely been the domain of the human operator of machine systems 
either in- or on-the-loop. As the complexity of systems, data, and consequences of decisions have grown, there has 
been a need to formulate the decision-making process in a rigorous algorithmic manner. A variety of methods broadly 
called Multi-Criteria Decision Making (MCDM) methods have been explored including Simple Additive Weightage 
(SAW), Analytic Hierarchy Process (AHP), Elimination Et Choice Translating Reality (ELECTRE), Preference 
Ranking organization Method for Enrichment Evaluations (PROMETHEE), and Technique for Order Preference and 
Similarity to Ideal Solution (TOPSIS), to name a few. Further there are “fuzzy” variations of many of these approaches 
that try to account for uncertainty in the decision-making process whether it be overall objectives or relative evaluation 
of importance criteria. [21, 22]  

Out of all MCDM methods, the Analytic Hierarchy Process (AHP) developed by Saaty in 1980, is perhaps the most 
well studied and broadly utilized. AHP prioritizes alternatives (e.g., courses of action) based upon paired comparison 
of criteria relative to a goal. [23, 24] The pairwise assessments are placed into a square comparison matrix with 1’s 
on the diagonal. For each off-diagonal element, 𝑥𝑥𝑖𝑖𝑖𝑖∀ 𝑖𝑖 > 𝑖𝑖, assign a value from 1 to 9, where 1 represents equal 
importance and 9 represents extreme favoritism of one over the other. Likewise, the corresponding element, 𝑥𝑥𝑖𝑖𝑖𝑖, is the 
reciprocal value 𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖−1. Saaty was able to demonstrate that the principal eigenvector of such a comparison matrix 
is a vector of prioritization weights that forms the basis for a rigorous decision process. We will describe AHP in 
further detail below. While AHP has criticisms and detractors, AHP has been used in many real-world fields including 
government acquisition, marketing, resource allocation, policy making, and economics. [25] Prima facie, AHP is 
relatively straightforward to implement but typically requires a SME to properly assign the pair-wise comparison 
weights and AHP is typically used for single instance decision making with a single agent. [26]  For decision making 
in near real time systems, AHP can be extended with a finite state machine and a scheduler model to facilitate dynamic, 
short-term decision making but it still does not accommodate multiple agents in the mix. [27]  

With AHP as the technical backbone for decision making, various attempts to bring together these key concepts into 
a rigorous computational trust framework have been attempted over the last several decades. We initially focused on 
the work of Chan et al. who combined the QoI model of Bisdikian with the AHP process of Saaty and applied it to the 
tactical sensor source selection problem. [20] In our review of this and similar papers, as best as we can determine, 
there is no direct connection between the QoI hierarchy representation and AHP. Chan et al took the more detailed 
and complex QoI taxonomy from Bisdikian [19] and reshaped it into the layered relationship of criteria and results 
needed to conform to the basic AHP construct. There does not appear to be a direct way to connect an arbitrarily 
complex QoI and VoI taxonomy with AHP. Lastly, the output of AHP is a set of priority weights but guidance in the 
literature is thin on how to choose between similarly weighted options with unequal influencing criteria. Even if we 
were able to map a more complex QoI and VoI model into the AHP framework, it would still be a single instance 
decision mechanism, albeit one that may be useful for certain situations like evaluating on a granular level whether to 
act based upon multiple probability of collision calculations.  

In order to extend trust to more complex scenarios where multiple agents are cooperating and sometimes competing 
to achieve a goal, we must turn to techniques like the Partially Observable Markov Decision Process (POMDP) which 
has only recently been explored in the context of trust-based decision making. A POMDP allows for a single agent to 
leverage their memory about previous actions and observations to determine current states and predict future rewards 
across various courses of action. A decision policy must be formulated that maps the agent’s behavior as a function 
of the current state but solving for this policy is an undecidable infinite horizon problem that requires approximation 
techniques to determine a reasonable decision in near-real time. Expanding the POMDP to multiple agents, the 
decentralized POMDP (DEC-POMDP) allows for decision policies that depend upon all the policies and states of all 
the agents. [28] The Interactive POMDP (I-POMDP) extends the DEC-POMP framework to include the beliefs an 
agent has about other agents. [29] Fortunately for our purposes, Richard Seymour introduced the trust-based I-POMDP 
(TI-POMDP) in 2019, which is a novel approach to multi-agent cooperation that allows a group of agents to reason 
about the trustworthiness of each other and apply that trust to the decision policy. Seymour’s testing showed a 3.8 
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times increase in average award for agents using the TI-POMDP decision model. [30] While the TI-POMPD closely 
aligns with our needs, one still must provide it with a functional trust model. 

3. TRUST FRAMEWORK 

Here we present a system view of a trust framework based upon the work of Govindan and Mohapatra on trust 
computations within mobile ad hoc networks (MANETs). [9] This paper will not address all of these services as 
they extend beyond the scope of our present work, but it is useful to understand all of the needed trust mechanisms 
that should be in place for a fully realized system. What we have done differently is to frame this as a modern 
microservice based architecture where both external and internal data streams first pass through a QoI and VoI 
annotator before being published on the data as a service (DaaS) common transport layer. Trust is established 
through various services, which will be briefly explained here.  

1. QoI and VoI Services: Annotate incoming data streams with data quality assessments like bias 
determinations, uncertainty quantification, reliability, timeliness etc. Assess value in context with system 
mission intent defined by the user and microservices needing to consume the data products.  

2. Trust Evaluator: Centralized or decentralized trust computations based upon metrics, definitions, and 
recommendations from inside and outside the system 

3. Trust Propagator: Synchronize common operating picture (COP) for trust across system nodes 
4. Trust Aggregator: Before and during trust propagation, combine trust assessments using weighted means and 

gossip aggregation across the system into a consolidated trust COP view that can be archived 
5. Trust Recorder: Manage the Trust Store and consume trust data products for archival purposes 
6. Trust Prediction: Predict situational trust given past history based upon state vector machines and/or Kalman 

filter based approaches 
7. Security Services: In addition to trust informed data processing, this would be the most likely point of 

interface with the larger system where output products of the trust framework could include access control 
adjudication and nefarious/anomalous behavior detection 
 

 

The QoI and VoI microservices depicted in Figure 1 are not necessarily serial microservices but rather are drawn in 
order of their annotation precedence. Figure 2 depicts the interaction between the QoI and VoI microservices. All data 
entering the Data-as-a-Service layer, whether from internal or external sources, will have some sort of quality metrics 
that can be independently assessed and annotated. From there, data products can have value assessments levied in 
context with specific uses coming from end users or other applications and microservices within the trust framework. 

 

Figure 1: Notional Trust Framework 
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4. TRUST MODELING 

When we say that we “trust” someone or something, we are combining both our assessment of that thing and our 
decision to trust all in one turn of phrase. At this point it is worth reinforcing some key definitions as it is common to 
use the word “trust” in a variety of contexts as both a noun and a verb. [31] The act of trust is a decision that must be 
made to become vulnerable to someone (i.e. taking a risk) even when they are already deemed to be trustworthy. We 
will cover the decision to trust in a later section on the analytic hierarchy process. In this section, we are interested in 
determining trustworthiness, which are the characteristics and behaviors of an agent’s honesty, fairness, and/or 
benevolence that inspires positive expectations by another agent. For our purposes, trustworthiness is the belief that 
another agent will behave as expected, which includes things like fulfilling a contract governed by an interface control 
document (ICD) in a timely and reliable fashion. We are focused on evidence-based approaches that allow for multi-
agent systems to accept trust reports from multiple sources. From a systems architecture perspective, it is conceivable 
that a reputation agency could be developed to manage trust on behalf of all the agents. The reputation agency would 
be responsible for sharing the internal opinions of agents with each other so that they can potentially adjust their own 
opinion accordingly. This is the basis of rating systems like Yelp and eBay where potential customers can see the 
ratings of established customers to inform their decision to purchase. However, at this level of formalism, we are 
focused on direct agent to agent interactions so that we can minimize any confusion surrounding referred evidence or 
“gossip.” This is what we will measure as the probability of a positive outcome given a situation and a set of evidence 
represented by a history of positive and negative experiences with a given agent.  

Table 1 presents the basic trust notation and equations that we will employ following [10, 11, 32]. We assume for the 
sake of notation a set of events or situations, 𝜆𝜆𝑖𝑖 ∀ 𝑖𝑖 > 0, along with a set of agents, 𝐴𝐴 = {𝑥𝑥,𝑦𝑦, 𝑧𝑧, … }, that will have 
their own trust assessment of each situation as well as each other. Each situation will have some level of 
importance, 𝐼𝐼𝑥𝑥(𝜆𝜆𝑖𝑖), to the agent that will influence decision making later in the paper. We will generally leave off the 
situational notation as long as it’s clear that we are referring to a singular event or situation throughout.  Each agent, 
noted with a subscript, will have a basic trust level, 𝑇𝑇𝑥𝑥, that represents its trust propensity as a function of the agent’s 
entire life experiences. A value of 0.5 would represent no trust (i.e. no opinion one way or the other) while 1 is 
complete trust and 0 is complete distrust. The higher an agent’s basic trust level, the more likely they will trust in the 
absence of other evidence. Here you would find terms like pessimism (𝑇𝑇𝑥𝑥 < 0.5), optimism (𝑇𝑇𝑥𝑥 > 0.5), and realism 
(𝑇𝑇𝑥𝑥 = 0.5) appropriate to reflect how much and how often this basic trust level changes with evidence. For our 
purposes, we will assume that base trust is a uniform uninformed prior of 0.5. Updates to base trust to reflect optimism 
and pessimism are beyond the scope of this paper but we refer you to the literature for details on how to evaluate trust 
deltas as a function of world view.  

 

Figure 2: Interaction between QoI and VoI microservices 
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For the sake of discussion, assume we have a situation 𝜆𝜆𝑖𝑖 representing a potential collision between two satellites and 
this will occur with probability  𝑝𝑝 ∈ [0,1].  We know from the Space Flight Safety Handbook for Satellite Operators 
how the United States Space Command (USSPACECOM) computes the probability of collision between two 
conjuncting satellites. [33] However, this is reliant upon specific methodologies and best practices along with the 
Space Surveillance Network (SSN) data, which is generally not available to anyone outside the US military. Other 
space actors might use different methods and have different data to compute a probability of collision about the same 
situation. We will call USSPACECOM as agent x. Consider the situation where an external observer, agent y, provides 
agent x with their opinion regarding the potential conjunction. A subjective binomial opinion regarding the truth of 
this situation is tuple comprised of belief that the situation is true, disbelief in the situation, and the uncertainty, 
𝜔𝜔𝑥𝑥(𝜆𝜆𝑖𝑖) = (𝑏𝑏𝑥𝑥,𝑑𝑑𝑥𝑥,𝑢𝑢𝑥𝑥). We can say that the agent x’s trust has a trust space in variable p regarding situation 𝜆𝜆𝑖𝑖, which 
is modeled as a three-dimensional space of reals in [0, 1] represented by weights assigned to belief, disbelief, and 
uncertainty (i.e. 1 – certainty) where unity and zero in trust space represent perfect knowledge and ignorance, 
respectively.  

𝑇𝑇𝑥𝑥(𝜆𝜆𝑖𝑖) = {(𝑏𝑏𝑥𝑥,𝑑𝑑𝑥𝑥,𝑢𝑢𝑥𝑥)    |    0 < 𝑏𝑏𝑥𝑥,𝑑𝑑𝑥𝑥,𝑢𝑢𝑥𝑥 < 1,       𝑏𝑏𝑥𝑥 + 𝑑𝑑𝑥𝑥 + 𝑢𝑢𝑥𝑥 = 1} 

Binomial opinions are graphically represented as a triangle with belief, disbelief, and uncertainty on each vertex as 
shown in Figure 3a. A base rate equivalent to an agents’ basic trust level, 𝑇𝑇𝑥𝑥, is shown on the base line with a director 
line pointing at the uncertainty vertex. In some parts of the literature, an opinion is expressed as the opinion tuple plus 
the base rate, 𝜔𝜔𝑥𝑥(𝜆𝜆𝑖𝑖) = (𝑏𝑏𝑥𝑥,𝑑𝑑𝑥𝑥,𝑢𝑢𝑥𝑥,𝑇𝑇𝑥𝑥).   For this paper, we will stick with the core opinion tuple. For any opinion, we 
can find the expected belief by projecting it onto the baseline in the direction of the director line using the definition 
𝐸𝐸𝑥𝑥 = 𝑏𝑏𝑥𝑥 + 𝑇𝑇𝑥𝑥𝑢𝑢𝑥𝑥. When uncertainty is zero, we say that the belief is dogmatic. When the belief or disbelief is unity, 
we have the equivalent to a binary logical TRUE or FALSE, respectively. 

A probability density function (pdf) of the probability of a positive experience (i.e. the agent’s belief regarding the 
situation is true), 𝑓𝑓(𝑝𝑝), is defined such that ∫ 𝑓𝑓(𝑝𝑝)𝑑𝑑𝑝𝑝 = 11

0 . This probability density function can be conditionally 
updated given the agent’s table of situational evidence with our initial pdf being the uninformed uniform prior without 
evidence. From Subjective Logic, [11] this binomial opinion has a distribution equivalent to the Beta or Dirichlet, as 
shown in Figure 3b, which is defined on the range [0,1]. Notice that Beta(1,1), implying balance in positive and 
negative evidence, corresponds to the uniform distribution on [0,1] and zero elsewhere. The agent’s current trust level, 
therefore, corresponds to increasing deviation from the uninformed prior (i.e. uniform) distribution. An agent’s trust 
is also a function of how strongly the agent believes a positive experience will occur. Following [11], this is called a 
probability certainty density function (PCDF) given by 𝑐𝑐𝑓𝑓 = 1

2 ∫ |𝑓𝑓(𝑝𝑝) − 1|𝑑𝑑𝑝𝑝1
0 , which represents the deviation of the 

agent’s trust from the mean absolute deviation. 
 

 
 ( a )  ( b ) 

Figure 3: Pictorial representation of trust metrics. (a) Opinion tuple (belief, disbelief, and uncertainty) represented 
as a triangle (b) Beta distribution with various choices of positive and negative parameters (α,β)  
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Table 1: Basic Trust Notation and Equations [10, 11, 31] 

 Description Representation Value 
Range 

1 Set of Situations  Λ = {𝜆𝜆𝑖𝑖 ∀ 𝑖𝑖 > 0}  

2 Set of Agents 𝐴𝐴 = {𝑥𝑥,𝑦𝑦, 𝑧𝑧, … }  

3 Importance 
 (e.g. of 𝜆𝜆𝑖𝑖 to x) 𝐼𝐼𝑥𝑥(𝜆𝜆𝑖𝑖) [0, 1] 

4 Basic Trust (e.g. of 
x w/o evidence)  𝑇𝑇𝑥𝑥 [0, 1] 

5 General Trust  
(e.g. of x in y) 𝑇𝑇𝑥𝑥(𝑦𝑦) [0, 1] 

6 Evidence  
(positive, negative) (𝑟𝑟, 𝑠𝑠), t = r + s 𝑟𝑟, 𝑠𝑠 > 0 

7 Beta PDF 𝑓𝑓(𝑝𝑝,𝛼𝛼,𝛽𝛽) =
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)

𝑝𝑝𝛼𝛼−1(1 − 𝑝𝑝)𝛽𝛽−1 [0,1] →[0,∞) 

8 

Probability of a 
Positive Outcome 
for x given the 
Evidence (r,s) 

𝛼𝛼 = 𝑟𝑟 + 2𝑇𝑇𝑥𝑥,𝛽𝛽 = 𝑠𝑠 + 2(1 − 𝑇𝑇𝑥𝑥) 

𝑓𝑓�𝑝𝑝�(𝑟𝑟, 𝑠𝑠)� =
Γ(𝑟𝑟 + 𝑠𝑠 + 2)

Γ(𝑟𝑟 + 2𝑇𝑇𝑥𝑥)Γ(𝑠𝑠 + 2(1 − 𝑇𝑇𝑥𝑥))
𝑝𝑝𝑟𝑟+2𝑇𝑇𝑥𝑥−1(1 − 𝑝𝑝)𝑠𝑠+2(1−𝑇𝑇𝑥𝑥)−1 

=
𝑝𝑝𝑟𝑟+2𝑇𝑇𝑥𝑥−1(1 − 𝑝𝑝)𝑠𝑠+2(1−𝑇𝑇𝑥𝑥)−1

∫ 𝑝𝑝𝑟𝑟+2𝑇𝑇𝑥𝑥−1(1 − 𝑝𝑝)𝑠𝑠+2(1−𝑇𝑇𝑥𝑥)−1𝑑𝑑𝑝𝑝1
0

 

[0,1] →[0,∞) 

9 Certainty  
(1 – Uncertainty) 

𝑐𝑐𝑥𝑥 = 1 − 𝑢𝑢𝑥𝑥 =
1
2
� |𝑓𝑓(𝑝𝑝) − 1|𝑑𝑑𝑝𝑝
1

0
 

𝑐𝑐𝑥𝑥(𝑟𝑟, 𝑠𝑠) =
1
2
� �

𝑝𝑝𝑟𝑟(1 − 𝑝𝑝)𝑠𝑠

∫ 𝑝𝑝𝑟𝑟(1 − 𝑝𝑝)𝑠𝑠𝑑𝑑𝑝𝑝1
0

− 1�
1

0
𝑑𝑑𝑝𝑝 

𝑐𝑐𝑥𝑥(𝑡𝑡) = 𝑐𝑐𝑥𝑥((𝑡𝑡 + 2)𝐸𝐸𝑥𝑥 − 1, (𝑡𝑡 + 2)(𝐸𝐸𝑥𝑥 − 1) − 1) 

[0,1] 

10 

Expected 
Probability of a 
Positive Outcome 
(Situational Trust) 

𝐸𝐸𝑥𝑥(𝑓𝑓(𝑝𝑝,𝛼𝛼,𝛽𝛽)) =
𝛼𝛼

𝛼𝛼 + 𝛽𝛽
 

𝐸𝐸𝑥𝑥(𝜆𝜆𝑖𝑖|(𝑟𝑟, 𝑠𝑠)) =
𝑟𝑟 + 2𝑇𝑇𝑥𝑥
𝑟𝑟 + 𝑠𝑠 + 2

 

𝐸𝐸𝑥𝑥(𝜆𝜆𝑖𝑖|(𝑏𝑏,𝑑𝑑,𝑢𝑢)) = 𝑇𝑇𝑥𝑥(𝑦𝑦, 𝜆𝜆𝑖𝑖) = 𝑏𝑏 + 𝑇𝑇𝑥𝑥𝑢𝑢 

[0,1] 

11 Opinion Tuple 
(e.g. of x for 𝜆𝜆𝑖𝑖) 

𝜔𝜔𝑥𝑥(𝜆𝜆𝑖𝑖) = (𝑏𝑏𝑥𝑥,𝑑𝑑𝑥𝑥,𝑢𝑢𝑥𝑥) 
𝑏𝑏,𝑑𝑑,𝑢𝑢 > 0  
𝑏𝑏 + 𝑑𝑑 + 𝑢𝑢
= 1 

12 Opinion Tuple 
Given Evidence 

𝜔𝜔𝑥𝑥(𝜆𝜆𝑖𝑖|(𝑟𝑟, 𝑠𝑠)) = (𝑏𝑏𝑥𝑥(𝑟𝑟, 𝑠𝑠),𝑑𝑑𝑥𝑥(𝑟𝑟, 𝑠𝑠),𝑢𝑢𝑥𝑥(𝑟𝑟, 𝑠𝑠)) 
= (𝐸𝐸𝑥𝑥𝑐𝑐(𝑟𝑟, 𝑠𝑠), (1 − 𝐸𝐸𝑥𝑥)𝑐𝑐(𝑟𝑟, 𝑠𝑠), 1 − 𝑐𝑐(𝑟𝑟, 𝑠𝑠)) 

𝑏𝑏,𝑑𝑑,𝑢𝑢 > 0 
𝑏𝑏 + 𝑑𝑑 + 𝑢𝑢
= 1 

13 

Discounted 
Opinion (e.g. of x 
in y for 𝜆𝜆𝑖𝑖 because 
of  𝑇𝑇𝑥𝑥(𝑦𝑦)) 

𝜔𝜔𝑥𝑥:𝑦𝑦(𝜆𝜆𝑖𝑖) = 𝜔𝜔𝑦𝑦(𝜆𝜆𝑖𝑖) ⊗𝑇𝑇𝑥𝑥(𝑦𝑦) 
= (𝑏𝑏𝑦𝑦𝑇𝑇𝑥𝑥(𝑦𝑦),𝑑𝑑𝑦𝑦𝑇𝑇𝑥𝑥(𝑦𝑦), 
1 − 𝑇𝑇𝑥𝑥(𝑦𝑦) − 𝑢𝑢𝑦𝑦𝑇𝑇𝑥𝑥(𝑦𝑦)) 

𝑏𝑏,𝑑𝑑,𝑢𝑢 > 0  
𝑏𝑏 + 𝑑𝑑 + 𝑢𝑢
= 1 

14 Evidence Given an 
Opinion 

𝐸𝐸 =
𝑏𝑏

𝑏𝑏 + 𝑑𝑑
, 𝑡𝑡1 = 0, 𝑡𝑡2 = 𝑟𝑟𝑚𝑚𝑚𝑚𝑥𝑥 + 𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑥𝑥 
𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝑡𝑡2 − 𝑡𝑡1) ≥ 𝜖𝜖 {  

𝑡𝑡 =
𝑡𝑡2 + 𝑡𝑡1

2
 

𝑖𝑖𝑓𝑓 𝑐𝑐(𝑡𝑡) < 1 − 𝑢𝑢 ∶  𝑡𝑡1 = 𝑡𝑡 𝑖𝑖𝑖𝑖𝑠𝑠𝑖𝑖 𝑡𝑡2 = 𝑡𝑡 } 
𝑟𝑟 = �(𝑡𝑡 + 2)𝐸𝐸 − 1�, 𝑠𝑠 = 𝑡𝑡 − 𝑟𝑟 

𝑟𝑟, 𝑠𝑠 > 0 

15 Opinion Fusion ⊕ �𝜔𝜔𝑥𝑥,𝜔𝜔𝑦𝑦 ,𝜔𝜔𝑧𝑧, … � = 𝜔𝜔(𝜆𝜆𝑖𝑖|��𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=0

,�𝑠𝑠𝑖𝑖

𝑛𝑛

𝑖𝑖=0

�) 
𝑏𝑏,𝑑𝑑,𝑢𝑢 > 0  
𝑏𝑏 + 𝑑𝑑 + 𝑢𝑢
= 1 
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Each agent will also have a trust level, 𝑇𝑇𝑥𝑥(𝑦𝑦), for each of the other agents representing the history of their pair-wise 
interactions. If agent y provides an opinion to agent x on the potential collision, we can write trust as   

𝑇𝑇𝑥𝑥(𝑦𝑦, 𝜆𝜆𝑖𝑖) = {(𝑏𝑏𝑥𝑥(𝑦𝑦),𝑑𝑑𝑥𝑥(𝑦𝑦),𝑢𝑢𝑥𝑥(𝑦𝑦))    |    0 < 𝑏𝑏𝑥𝑥(𝑦𝑦),𝑑𝑑𝑥𝑥(𝑦𝑦),𝑢𝑢𝑥𝑥(𝑦𝑦) < 1,       𝑏𝑏𝑥𝑥(𝑦𝑦) + 𝑑𝑑𝑥𝑥(𝑦𝑦) + 𝑢𝑢𝑥𝑥(𝑦𝑦) = 1} 

However, we may not want to directly use this opinion because our opinion of the reliability of agent y needs to be 
taken into account. We do this via a discounting operator ⊗ for agent x’s trust in agent y, 𝑇𝑇𝑥𝑥(𝑦𝑦), as follows. [11] 

𝜔𝜔𝑥𝑥:𝑦𝑦(𝜆𝜆𝑖𝑖) = (𝑏𝑏𝑥𝑥(𝑦𝑦),𝑑𝑑𝑥𝑥(𝑦𝑦),𝑢𝑢𝑥𝑥(𝑦𝑦)) = 𝜔𝜔𝑦𝑦(𝜆𝜆𝑖𝑖) ⊗𝑇𝑇𝑥𝑥(𝑦𝑦)  

= (𝑏𝑏𝑦𝑦𝑇𝑇𝑥𝑥(𝑦𝑦),𝑑𝑑𝑦𝑦𝑇𝑇𝑥𝑥(𝑦𝑦), 1 − 𝑇𝑇𝑥𝑥(𝑦𝑦) − 𝑢𝑢𝑦𝑦𝑇𝑇𝑥𝑥(𝑦𝑦)) 

For the satellite conjunction situation and based upon our current SDA practices, we use a two or three dimensional 
probability of collision theory as appropriate and assign that value as follows: 𝑏𝑏𝑥𝑥 = 𝑝𝑝𝑐𝑐, 𝑑𝑑𝑥𝑥 = 1 − 𝑝𝑝𝑐𝑐 ,𝑢𝑢𝑥𝑥 = 0. Our trust 
then is a dogmatic belief that the probability of collision is a specific value, 𝑝𝑝𝑐𝑐.  The SDA community has traditionally 
not computed a belief uncertainty to go along with our probability of collision computations. Typically, the SDA 
community turns directly to risk assessment concepts to combine the probability of collision with some human centric 
assessment of collision consequence to determine if we want to act. [34] It is important to note that while we leverage 
object track uncertainty in the calculation of 𝑝𝑝𝑐𝑐, metric uncertainty is not the same thing as belief uncertainty. In a 
trust framework, our belief uncertainty should encapsulate positive and negative experiences related to the ultimate 
outcome of potential conjunctions. For example, if we believed a collision would not occur leading to a decision to 
not maneuver and subsequently there was no collision would be tallied as a positive experience. If a collision did occur 
in contravention to what our 𝑝𝑝𝑐𝑐 metric indicated, that would be a negative experience.   

Now consider an evidence space, 𝐸𝐸𝑥𝑥, is modeled for convenience as a two-dimensional space of reals corresponding 
to the number of positive (r) and negative (s) outcomes where these outcomes are based upon agent x’s table of 
evidence.  

𝐸𝐸𝑥𝑥 = {(𝑟𝑟, 𝑠𝑠)   |   𝑟𝑟, 𝑠𝑠 ≥ 0,      𝑡𝑡 = 𝑟𝑟 + 𝑠𝑠 > 0} 

Generally, our trust evidence would be supplied via the trust computations described in the system framework above. 
For example, one could produce a trust report populated with metadata on data quality interactions like compliance 
with ICDs, timeliness, and responsiveness in a C2 context, for example. From our review of the literature, there is an 
open question of how to map a complex mixture of metadata representations into a simplistic positive or negative 
tally. For this paper, we will assume that these reports can be converted into equally weighted positive and negative 
interactions through our QoI model presented below and that the positive and negative reports can then be counted as 
r and s, respectively, with r and s typically represented as integers. We will discuss in the next section how to map 
QoI and VoI into evidence and certainty of belief. 

Now we must map trust to evidence, and vice versa, with respect to opinions. The transformation between Evidence 
and Trust spaces is a bijection given by the following: 

𝑍𝑍𝑥𝑥𝛼𝛼(𝑟𝑟𝑥𝑥(𝑦𝑦), 𝑠𝑠𝑥𝑥(𝑦𝑦)) = (𝑏𝑏𝑥𝑥(𝑦𝑦),𝑑𝑑𝑥𝑥(𝑦𝑦),𝑢𝑢𝑥𝑥(𝑦𝑦)) ∴ 𝑍𝑍𝑥𝑥𝛼𝛼(𝑦𝑦) = �𝑏𝑏(𝑟𝑟, 𝑠𝑠),𝑑𝑑(𝑟𝑟, 𝑠𝑠),𝑢𝑢(𝑟𝑟, 𝑠𝑠)� 

Marsh and Jøsang present a simplified closed form solution for 𝑍𝑍−1 as (𝑏𝑏,𝑑𝑑,𝑢𝑢) = � 𝑟𝑟
𝑡𝑡+1

, 𝑠𝑠
𝑡𝑡+1

, 1
𝑡𝑡+1
�. However, this 

approach assumes constant certainty, 𝑐𝑐 = 𝑡𝑡
𝑡𝑡+1

. The approach of Wang and Singh allows for computed uncertainty 
based upon the evidence for which there is no closed form solution. They provide an iterative algorithm which is 
shown in Table 1. [12] Agent trust in the probability of a positive outcome can then be represented by the following: 

𝑏𝑏(𝑟𝑟, 𝑠𝑠) = 𝑓𝑓(𝑝𝑝|〈𝑟𝑟, 𝑠𝑠〉) =
𝑝𝑝𝑟𝑟+2𝑇𝑇𝑥𝑥−1(1 − 𝑝𝑝)𝑠𝑠+2(1−𝑇𝑇𝑥𝑥)−1

∫ 𝑝𝑝𝑟𝑟+2𝑇𝑇𝑥𝑥−1(1 − 𝑝𝑝)𝑠𝑠+2(1−𝑇𝑇𝑥𝑥)−1𝑑𝑑𝑝𝑝1
0

 = 𝐸𝐸𝑥𝑥𝑐𝑐(𝑟𝑟, 𝑠𝑠) 

𝑢𝑢(𝑟𝑟, 𝑠𝑠) = 1 − 𝑐𝑐(𝑟𝑟, 𝑠𝑠) = 1 −  
1
2
� �

𝑝𝑝𝑟𝑟+2𝑇𝑇𝑥𝑥−1(1 − 𝑝𝑝)𝑠𝑠+2(1−𝑇𝑇𝑥𝑥)−1

∫ 𝑝𝑝𝑟𝑟+2𝑇𝑇𝑥𝑥−1(1 − 𝑝𝑝)𝑠𝑠+2(1−𝑇𝑇𝑥𝑥)−1𝑑𝑑𝑝𝑝1
0

− 1� 𝑑𝑑𝑝𝑝
1

0
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𝑑𝑑(𝑟𝑟, 𝑠𝑠) = 1 − 𝑏𝑏(𝑟𝑟, 𝑠𝑠) − 𝑢𝑢(𝑟𝑟, 𝑠𝑠)  = (1 − 𝐸𝐸𝑥𝑥)𝑐𝑐(𝑟𝑟, 𝑠𝑠) 

The mapping from opinion evidence to the beta distribution is 𝛼𝛼 = 𝑟𝑟 + 2𝑇𝑇𝑥𝑥,𝛽𝛽 = 𝑠𝑠 + 2(1 − 𝑇𝑇𝑥𝑥). Having defined a 
mechanism to go from evidence reports to trust distributions, once the posterior trust distribution has been generated, 
it may be desired to notify the agent of any “significant” change in trust based upon the supplied evidence. The 
question becomes how to quantitatively decide if the change between the prior and posterior trust distributions is 
statistically meaningful. If an agent decides to create a change detection alert, how do they assess whether that alert is 
within a desired false alarm percentile? Fortunately, the authors have previously developed a truncated Sequential 
Probability Ratio Testing (TSPRT) method that relates information divergence to Type I and Type II errors. [35] The 
TSPRT method allows one to set a threshold for change detection based upon rigorous false alarm metrics. 

5. MODELING QUALITY AND VALUE OF INFORMATION 

Whether you are assessing the trustworthiness of someone or something or are making a decision to trust, we have a 
fundamental need to understand the quality and value of the data that we are basing our analysis upon. Even in 
situations of contractual trust where you have no choice but to use the data you are given, we can still monitor the 
quality of data over time to check for biases and inconsistencies that might influence results. For SDA purposes, we 
require automated systems for assessing sensor and data quality and value owing to large volumes of data produced 
by the SSN and supporting commercial data providers. Further, we need to be able to directly leverage the models for 
quality and value in our larger trust framework.    

Multiple definitions for data quality have been proposed [36] but it was only recently that it was recognized the models 
for data quality and value needed to be clearly delineated. Following the work of Bisdikian et al. along with Chan et 
al. [17, 18, 19, 20], we present one possible hierarchical model for data quality and another for data value in Figure 4. 
Because these models will necessarily change over time, we need a flexible mechanism to represent and reason with 
them.  Ruttenberg, Wilkins and Pfeffer demonstrated the use of the open-source Figaro probabilistic programming 
language (PPL), developed by Charles River Analytics, as applied to reasoning about resident space object (RSO) 
characterization based upon hard and soft evidence. [37] PPLs provide native probabilistic constructs and methods 
that encode the model complexity in the language, facilitating a more natural model building procedure. Because the 
probabilistic constructs are interwoven into the language, arbitrary data structures can be incorporated into models, 
and the object–oriented nature of some PPLs provides a natural means to express hierarchical models.  

While the use of the Figaro PPL as applied to hierarchical reasoning on RSOs was innovative in prior work, there 
were and still are representational challenges that had to be overcome to enable flexible and modular probabilistic 
hierarchies. Since that time, Charles River Analytics has made strides in their ability to compute with hierarchical 
models with the advent of Scruff. Fortuitously, Scruff not only can more easily represent and reason with hierarchical 
models, it also is squarely aimed at modeling of agents empowered by artificial intelligence (AI). The following is a 
brief overview of Scruff’s capabilities and its value for this purpose should be evident. 

Here were present Scruff, also developed by Charles River Analytics, which is an AI framework to build agents that 
sense, reason, and learn in the world using a variety of models. Scruff, in many respects a second-generation PPL that 
learned from the limitations of Figaro. Scruff aims to integrate many kinds of models in a coherent framework, provide 
flexibility in spatiotemporal modeling, and provide tools to compose, share, and reuse models and model components. 
Scruff is provided as a Julia package and is licensed under the BSD-3-Clause License. The value of the proposed 
framework to SDA will not only enable an agent to make more trustworthy decisions in the presence of conflicting 
information but also enable cooperation and coordination based on statistical measures.  

Scruff is a flexible framework for building AI systems to build agents that sense, reason, and learn in the world using 
a variety of models. [38] Although its roots are in probabilistic programming, it is not strictly speaking a probabilistic 
programming language. Instead, it is a framework for combining models of different kinds and reasoning with them. 
The name Scruff derives from the old debates in AI between the neats and the scruffies. Neats believed that unless 
systems were developed in a coherent framework, it would be impossible to scale development of AI systems to 
complex real-world problems. Scruffies believed that real-world problems require a variety of techniques that must 
be combined as best as possible, and forcing everything into a neat framework would hinder progress. We believe that 
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both camps have an element of the truth, and Scruff is an attempt to provide the best of both worlds. Scruff's philosophy 
is to allow a variety of representations and implementations to coexist side by side, and not every algorithm can be 
applied to every representation. However, they all coexist in a clean, well-defined and organized framework that 
enables scalable development of models and systems. Scruff is provided as a Julia package and is licensed under the 
BSD-3-Clause License. 

Scruff provides three main features: 

1. The ability to combine different kinds of models and reason with them using an algorithm in an integrated 
way. Scruff decomposes the representation of models from algorithms that work with them using operators. 
Any representation (the scruff word is sfunc (stochastic function, pronounced "essfunk")) that implements 
the operators can appear in algorithms. Using this approach enables us to generalize algorithms like belief 
propagation and importance sampling that have traditionally been applied to probabilistic models. A given 
sfunc does not have to support all operators and algorithms can use sfuncs in the appropriate way. For 
example, it is legal to have an sfunc that you can't sample from, which would not be possible in a typical 
probabilistic programming language. 

2. A flexible framework for inference using these representations. Scruff distinguishes between the notion of a 
variable, which represents a value that can vary over time, and an instance of that variable, which represents 
its value at a particular time. In Scruff, variables are associated with models, which determine which sfunc 
to use for specific instances. There is no requirement that instances follow a regular time pattern; if the model 
supports it, instances can appear at any time interval. It is also possible to combine instances appearing at 
different time intervals, for example slowly changing and rapidly changing variables. Scruff also provides 
the ability to perform iterative inference, where beliefs about instances are refined through repeated 
computation. 

3. Composition, reuse, and experimentation with different models, sfuncs, and algorithms. Scruff comes with 
an extensible and structured library of models, sfuncs, operators, and algorithms, making it easy to mix and 
match or extend with your own. For example, it is possible to implement alternative versions of an operators 
for an sfunc side by side and choose between them manually, or even automatically based on the 
characteristics of the specific instance. Another example is to compare accuracy and runtime between 
different time granularities on a variable by variable basis. Finally, as sfunc composition is highly structured, 
it is possible to experiment with specific sfunc choices in a systematic way. 

The central concepts of Scruff are: 

               

Figure 4: Example QoI and VoI Hierarchies 
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• Sfuncs, or stochastic functions, which represent mathematical relationships between variables (e.g., Cat for 
categorical, Normal for Gaussian, DiscreteCPT for discrete conditional, etc.) 

• Operators, which define and implement computations on sfuncs (e.g., sample, pdf, cpdf, etc) 

• Models, which specify how to create sfuncs in different situations (e.g., static for static behaviors, 
homogenous for behaviors that update at the constant time granularity, time variable for behaviors that 
change asynchronously) 

• Variables, which represent domain entities that may take on different values at different times  

• Networks, which consist of variables and the dependencies between them 

• Instances, which represent a specific instantiation of a variable at a point in time 

• Algorithms, which use operations to perform computations on networks (e.g., particle filter, belief 
propagation) 

• Runtimes, which manage instances as well as information used by algorithms 

6. DECIDING TO TRUST 

We present two theories in detail for trust-based decision making where our CoAs could be as simple as trust vs do 
not trust or more complicated choices where various actions are delineated as a function of trust in the data or not. Out 
of the many MCDM theories in the literature, AHP stands out for multiple reasons. First, AHP is widely studied and 
applied across many fields. Second, AHP is structured in a hierarchical manner (hence its name), which is conducive 
to our QoI and VoI modeling. Third, AHP has straightforward intuitive solutions that are easy to comprehend which 
aids in human on-the-loop confidence in the system. Fourth, AHP easily accommodates both metric and semantic 
criteria by conversion to ratio scales. [25] As mentioned above, while AHP has its detractors, it is still the go-to 
decision tool for single agent decision making like the collision avoidance problem in SDA. In that instance, we have 
a variety of courses of action to choose from that are influenced to various extent by criteria that can be expressly 
enumerated. We only need to move to a more complex decision tool like the TI-POMDP when we want to allow for 
multiple agents working cooperatively or for the case of near-real time decision making in-line with raw data 
processing like the case of closely spaced objects in the field of view. Both techniques appear to have their place in a 
holistic trust framework. 

6.1 Analytic Hierarchy Process (AHP) 

In AHP, all problems are structured as shown in Figure 
5. For any given objective, we establish the set of 
criteria, 𝐶𝐶𝑖𝑖, that affect/define the overall goal. We 
assume that this is an exhaustive list. Then, for each 
course of action (CoA) to achieve the goal, a human 
subject matter expert (SME) must assign a 
comparative judgement, 𝑎𝑎𝑖𝑖𝑖𝑖, of the relative importance 
of one criteria, 𝐶𝐶𝑖𝑖, over another, 𝐶𝐶𝑖𝑖, according to the 
scale provided in Table 2. By definition, 𝑎𝑎𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖−1 and 
𝑎𝑎𝑖𝑖𝑖𝑖 = 1. Saaty established the weights of the criteria 
can be calculated by solving for the principal 
eigenvector and associated eigenvalue according to 

𝐴𝐴𝐴𝐴 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥𝑤𝑤 

where 𝐴𝐴 is the matrix of comparative judgements and 𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 is the largest eigenvalue of 𝐴𝐴 associated with the real 
valued positive eigenvector 𝑤𝑤. When the eigenvector, 𝑤𝑤, is normalized, 𝑤𝑤� = 𝑤𝑤

‖𝑤𝑤‖� , it is the AHP vector of priorities 

with respect to the goal. Following this procedure for each CoA, generate the weights of alternatives for each criteria. 

 

Figure 5: AHP Decision Hierarchy 
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Note that the SME must make 𝑀𝑀(𝑀𝑀+1)
2

 judgements for each of the CoAs for a total of 𝑀𝑀(𝑀𝑀+1)𝑁𝑁
2

 judgements. One of the 
criticisms of AHP is that this can be fatiguing and unreliable for a human to make this many assessments. We can 
now compute the weighted ranking for each of the CoAs using a weighted sum of the weight of the 𝐶𝐶𝐶𝐶𝐴𝐴𝑖𝑖 with respect 
to 𝐶𝐶𝑖𝑖 multiplied by the weight of 𝐶𝐶𝑖𝑖 with respect to the objective. 

𝑤𝑤𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = �𝑤𝑤�𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖:𝐶𝐶𝑗𝑗 ×
𝑀𝑀

𝑖𝑖=1

𝑤𝑤�𝐶𝐶𝑗𝑗:𝑂𝑂𝑂𝑂𝑖𝑖𝑂𝑂𝑐𝑐𝑡𝑡𝑖𝑖𝑂𝑂𝑂𝑂 ∀ 𝑖𝑖 = 1, … ,𝑁𝑁 

Another criticism of AHP is that the relative comparison process can be inconsistent because of some redundancy in 
the process. For this, Saaty implemented a consistency check to determine if there is a reason to go back and double 
check the SME’s comparative assessments. For each and every A matrix, we calculate a consistency ratio, CR. High 
inconsistency indicates a lack of information or lack of understanding on the part of the SME. Generally, we want CR 
< 0.1 where RI is the random consistency index that is the average of 500 randomly filled in matrices provided in 
Table 3. [23, 24] 

𝐶𝐶𝐶𝐶 =
𝜆𝜆𝑚𝑚𝑚𝑚𝑥𝑥 − 𝑀𝑀
(𝑀𝑀 − 1)𝐶𝐶𝐼𝐼

< 0.10 

Using the AHP process above generates a ranked set of CoAs but the default choice is the highest rank CoA. This 
seems unsatisfying for our purposes in SDA particularly when the CoAs could have similar weightings but potentially 
unequal consequences. Going back to the seminal work of Marsh, he proposed that the decision to cooperate between 
agents can be thought of as a situational threshold that is a function of perceived risk, perceived competence among 
agents, our propensity to trust, and the trust one agent places in another. We propose that this same decision threshold 
could be applied to the AHP ranked choice problem. Marsh defines a cooperation threshold between agents as follows 
[10]  

𝑇𝑇𝑥𝑥(𝑦𝑦, 𝜆𝜆𝑖𝑖) > 𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝐶𝐶𝐶𝐶_𝑇𝑇ℎ𝑟𝑟𝑖𝑖𝑠𝑠ℎ𝐶𝐶𝑖𝑖𝑑𝑑𝑥𝑥(𝜆𝜆𝑖𝑖) → 𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖_𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖(𝑥𝑥,𝑦𝑦, 𝜆𝜆𝑖𝑖) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝐶𝐶𝐶𝐶_𝑇𝑇ℎ𝑟𝑟𝑖𝑖𝑠𝑠ℎ𝐶𝐶𝑖𝑖𝑑𝑑𝑥𝑥(𝜆𝜆𝑖𝑖) =
𝑃𝑃𝑖𝑖𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑑𝑑_𝐶𝐶𝑖𝑖𝑠𝑠𝑅𝑅𝑥𝑥(𝜆𝜆𝑖𝑖)

𝑃𝑃𝑖𝑖𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑑𝑑_𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝐶𝐶𝑐𝑐𝑖𝑖𝑥𝑥(𝑦𝑦, 𝜆𝜆𝑖𝑖) + 𝑇𝑇𝑥𝑥(𝑦𝑦)� × 𝐼𝐼𝑥𝑥(𝜆𝜆𝑖𝑖) 

Table 2: AHP Comparison Scale [22] 
Intensity of 
Importance Definition Explanation 

1 Equal Importance Two activities contribute equally to the objective 
2 Weak or Slight  
3 Moderate Importance Experience and judgement slightly favor one over another 
4 Moderate Plus  
5 Strong Importance Experience and judgement strongly favor one over another 
6 Strong Plus  

7 
Very Strong or 
Demonstrated 
Importance 

An activity is favored very strongly over another, and its 
dominance has been demonstrated in practice 

8 Very, Very Strong  

9 Extreme Importance The evidence favoring one over another is of the highest possible 
affirmation 

 

Table 3: Random Consistency Index [23] 

Random Consistency Index (RI)  
M 1 2 3 4 5 6 7 8 9 10 
RI 0 0 0.58 0.9 1.12 11.24 1.32 1.41 1.45 1.49 
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Where 𝐼𝐼𝑥𝑥(𝜆𝜆𝑖𝑖) ∈ [0, +1] represents the importance of situation (𝜆𝜆𝑖𝑖) as viewed by Agent x, and 𝑇𝑇𝑥𝑥(𝑦𝑦)�  is the mean trust 
that agent x places in agent y across any known set of situations. The basic idea behind the formulation is that the 
more important a situation is to the agent, the trust level required to cooperate will necessarily be higher. Likewise, an 
agent’s perceived risk is a subjective measure of the situational consequences of getting it wrong. We would expect 
that as the situational risk increases, that the trust threshold required to cooperate would increase. Risk is 
counterbalanced by the perceived competence of the other agent and the mean trust in that agent. While we can 
compute the basic trust based upon the agent’s table of evidence, we will need a model for the competence. For our 
purposes in SDA as applied to AHP, we propose to compute the perceived competence factor with our QoI model and 
the importance factor with VoI.  

𝐷𝐷𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝐶𝐶𝐶𝐶_𝑇𝑇ℎ𝑟𝑟𝑖𝑖𝑠𝑠ℎ𝐶𝐶𝑖𝑖𝑑𝑑𝑥𝑥(𝜆𝜆𝑖𝑖) =
𝑃𝑃𝑖𝑖𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑑𝑑_𝐶𝐶𝑖𝑖𝑠𝑠𝑅𝑅𝑥𝑥(𝜆𝜆𝑖𝑖)

𝑃𝑃𝑖𝑖𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑑𝑑_𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖𝑡𝑡𝑖𝑖𝐶𝐶𝑐𝑐𝑖𝑖𝑥𝑥(𝑄𝑄𝐶𝐶𝐼𝐼, 𝜆𝜆𝑖𝑖) + 𝑇𝑇𝑥𝑥(𝑦𝑦)� × 𝐼𝐼𝑥𝑥(𝑉𝑉𝐶𝐶𝐼𝐼, 𝜆𝜆𝑖𝑖) 

When assessing perceived risk, one must consider the agent’s experience with situation 𝜆𝜆𝑖𝑖. If the agent has no 
knowledge or experience with the situation, we can assign risk based upon the agent’s trust in itself during situational 
of ignorance, 𝑃𝑃𝑖𝑖𝑟𝑟𝑐𝑐𝑖𝑖𝑖𝑖𝑃𝑃𝑖𝑖𝑑𝑑𝑅𝑅𝑖𝑖𝑠𝑠𝑅𝑅𝑥𝑥(𝜆𝜆𝑖𝑖) = 𝑓𝑓(𝑇𝑇𝑥𝑥(𝑥𝑥, 𝜆𝜆𝑖𝑖)), which can then be updated after each decision outcome. On the 
other end of the experience spectrum, if the agent has considerable knowledge of 𝜆𝜆𝑖𝑖, we can enumerate known risks 
and use a Bayesian theory to arrive at a useable metric (i.e. use the expected probability of each outcome). [10] 
Following this threshold based decision process, we can establish a rigorous metric to choose between CoAs as well 
as establish a minimum criteria for action whereby the system knows to wait for more data of the right quality and 
value before proceeding. 

6.2 Trust Based Interactive Partially Observable Markov Decision Process (TI-POMDP) 

An alternative approach would be to formalize the problem in terms of Markov Decision Processes (MDPs). 
Groundwork by Seymour [30] provides an advanced framework for modeling decision-making in multi-agent 
environments where trust and cooperation are key factors. This framework called Trust-based Interactive Partially 
Observable Markov Decision Process (TI-POMDP) builds upon MDPs and Partially Observable MDPs (POMDPs) 
to incorporate trust. In an MDP, an agent makes decisions in a stochastic environment, aiming to optimize the decisions 
according to an underlying objective. MDPs are characterized by a tuple consisting of states, actions, transition 
probabilities, and rewards. However, MDPs assume that the agent has full observability of the current state, which is 
not always realistic. POMDPs extend MDPs to situations where the agent can not directly observe the state of the 
environment in its entirety. Agents instead receive observations, often noisy, that provide partial information about 
the state. The agent must then maintain a belief state—a probability distribution over possible states—to make 
informed decisions. The TI-POMDP further extends the POMDP framework by incorporating the dimension of trust 
into multi-agent interactions. In cooperative systems, agents work towards a common goal but may face the risk of 
other agents being faulty or intentionally deceitful. The TI-POMDP allows agents to reason about the trustworthiness 
of their peers and decide whether to cooperate based on trust levels.  

The TI-POMDP is defined by a tuple of six elements 〈𝐼𝐼𝑆𝑆𝑖𝑖 ,𝐴𝐴,𝑇𝑇𝑖𝑖 ,Ω𝑖𝑖 ,𝐶𝐶𝑖𝑖〉 where, 

• 𝐼𝐼𝑆𝑆𝑖𝑖 is the set of interactive states 𝑆𝑆 × 𝑀𝑀𝑖𝑖, with 𝑆𝑆 being the set of environment states, and 𝑀𝑀𝑖𝑖 the set of 
models of agent 𝑖𝑖. This is an exhaustive representation of the underlying state space and an overlaying set 
of beliefs consisting of the different models the agents have for one another.  

• 𝐴𝐴 is the joint set of actions from all agents 
• 𝑇𝑇𝑖𝑖 is the transition model 
• Ω𝑖𝑖 is the set of all possible observations that agent 𝑖𝑖 can make  
• 𝑂𝑂𝑖𝑖 is the probability that agent 𝑖𝑖 makes an observation predicated on its state and actions 
• 𝐶𝐶𝑖𝑖 is the reward function   

For example, let’s compose this tuple for a two agent SDA conjunction scenario to show how the TI-POMDP 
framework can aid in providing a rigorous approach to modeling complex decision-making scenarios. In this scenario, 
two agents have differing beliefs regarding the states of the objects in conjunction leading to differences in subsequent 
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probability of collision 𝑃𝑃𝑐𝑐 calculations. To incorporate trust let’s assume that the agents have a predetermined set of 
guidelines that define who will maneuver in instances of conjunction. Agents need to decide either to adhere to 
guidelines or to deviate from them to minimize 𝑃𝑃𝑐𝑐. In this scenario,  

• 𝑆𝑆 = 𝐶𝐶𝑛𝑛 where 𝐶𝐶 = 6, for each state dimension, specifying the underlying possible positions and velocities 
of the Resident Space Objects (RSOs). Each agent maintains two “catalogs” – multi-target pdfs – one 
representing their understanding of the environment and another representing their understanding of the 
other agent’s belief 

• 𝐴𝐴 is the joint set of actions consisting of each agent adhering to guidelines or deviating from guidelines.  
• 𝑇𝑇𝑖𝑖 each agents transition model consisting of non-linear orbital dynamics to include potential maneuver 

models according to the predefined guidelines 
• Ω𝑖𝑖 = 𝐶𝐶𝑚𝑚 where 𝐶𝐶 is the dimension of the measurement space 
• 𝑂𝑂𝑖𝑖 is the probability of the measurements occurring given the underlying state beliefs and transition 

models. These observations, although uncertain, allow agents to infer whether other agents are following 
guidelines thus enabling trust models to be updated overtime 

• 𝐶𝐶𝑖𝑖 is then min
𝐶𝐶
𝑃𝑃𝑐𝑐 and can be tailored to incorporate VoI and QoI allowing for those values to maximized 

while minimizing 𝑃𝑃𝑐𝑐  

7. CONCLUSIONS AND FUTURE WORK 

Based upon our review of the literature, we believe that we have identified the core theories required to implement a 
rigorous, automated, trust framework. Referring to the notional framework diagram from Figure 1 and the various 
services needed, the following could be implemented: 

1. QoI and VoI Services: Use Scruff to reason regarding the hierarchical models for QoI and VoI and provide 
metadata tagging and annotation services 

2. Trust Evaluator: Use the probability of a positive outcome to evaluate trust in sensors and data. Provide 
mechanisms to discount trust based upon recorded evidence along with memory horizons to “forget” bad 
experiences 

3. Trust Propagator: Synchronize trust among agents by providing recommendations (i.e. gossip) to all agents 
in the form of opinion tuples on a periodic basis 

4. Trust Aggregator: Before and during trust propagation, use trust discounting techniques for combining 
opinion tuples based upon opinions of others 

5. Trust Recorder: Record positive and negative experiences based upon data exchanges (e.g. ICDs) and data 
processing (e.g. cross-tagging, mis-tagging) 

6. Trust Prediction: Use AHP and/or TI-POMPDP to monitor and predict trust based upon the available 
evidence, current state vector machines, the QoI and VoI metadata, and potential rewards 

7. Security Services: Use AHP and/or TI-POMPDP to evaluate decision policies based upon human-on-the-
loop context inputs 

Once the various microservices within the trust framework have been established, we plan to consider various test 
cases to illuminate the effect of incorporating trust into traditional SDA processing: 

1. Single sensor under our control (no possible disagreement) 
2. Single sensor not under our control 
3. Multiple sensors under our control (potential disagreement) 
4. Multiple sensors out of our control 
5. General case 

There are open questions that require additional study specific to the SDA problem space. The primary question being 
how to map complex scenarios like the collision avoidance problem into positive and negative experience tallies. It is 
conceivable that we could develop a functional relationship between the belief uncertainty and the metric uncertainties 
along with our knowledge of observation geometries, seeing conditions, sensor reliability, etc.  
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7.1 Scruff Future Work 

Scruff is open source, rapidly evolving, beta research software. Although the software already has a lot of 
functionality, we intend to expand on this in the future and cannot promise stability of the code or the APIs at the 
moment. Future work in Scruff will follow five main lines: developing more extensive libraries, including integration 
of other frameworks; developing a larger suite of algorithms using compositional methods; developing a more flexible 
framework of networks and recursive models; creating spatial and spatiotemporal models with the same flexibility as 
current temporal models; and operators for performance characterization and optimization. We welcome contributions 
from the user community. If any of these items catches your interest, let us know and we will be happy to help with 
design and development. 

7.1.1 Larger libraries and integration of other frameworks 

Scruff's current library, particularly of SFuncs, is fairly minimal, and needs to be extended to provide a fully functional 
probabilistic programming framework. Our intent is not to write sfuncs ourselves, but rather to wrap existing 
implementations wherever possible. An immediate goal is to wrap Distributions.jl, while will provide a wide range 
of Dist sfuncs. We also want to integrate with other probabilistic programming frameworks in Julia, such as Gen. In 
addition, the ability to use data-driven models that don't support sampling but do support inference is central to Scruff. 
We want to develop a library of such models, again by integrating with existing frameworks and wrapping with 
appropriate observations. Algorithms also need to be modified to take advantage of such models. 

7.1.2 More algorithms 

It is important that algorithms in Scruff are well-structured and compositional. The algorithms developed so far are a 
starter set that have been carefully designed with this philosophy. Noticeable by its absence is MCMC, which is 
common in many probabilistic programming frameworks. Gibbs sampling can be implemented as a message passing 
algorithm and fits well with the current framework. Metropolis-Hastings and reversible jump algorithms will take 
more thought, but experience with other probabilistic programming languages should show how to implement them 
in a consistent, compositional way. 

A very natural next step is to generalize our algorithms to use other semirings besides aum-product. Again, this should 
happen in a compositional way. It should be possible to say something like with_semiring(semiring, algorithm) and 
have all computations in operators invoked by the algorithm drawn from the appropriate semiring. If we do this, it 
will be natural to write learning algorithms like EM and decision-making algorithms using maximum expected utility 
using our instant algorithms. This will lead to powerful combinations. Would anyone like asynchronous online EM 
using BP? Similarly, BP is just one example of a variational method. We want to expand BP into a more general 
compositional variational inference library. Finally, we want to generalize our elimination methods to employ 
conditioning as well as elimination. 

7.1.3 More flexible networks and recursion 

The ability for networks to contain other networks is critical to structured, modular, representations as well as efficient 
inference through encapsulation and conditional compilation. In addition, the ability to generate contained networks 
stochastically supports open universe modeling. Scruff currently supports these capabilities through Expanders. 
However, Expanders were an early addition to Scruff and are not integrated all that well in the most recent Scruff 
development. NetworkSFuncs are better integrated, but do not currently support containment and recursion. We want 
to align Expanders and NetworkSFuncs to provide more general structured and recursive networks. 

7.1.4 Spatially flexible models 

Scruff currently has a flexible representation of variables that vary over time, but not of variables that vary over space, 
or space and time together. We want to provide spatiotemporal networks with the same flexibility as current 
DynamicNetworks. Moving beyond spatial models, we also want to create a framework for reasoning about variables 
that vary across graphs, such as social networks. 

7.1.5 Performance Characterization and Optimization 
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Scruff's design is intended to enable reasoning about performance characteristics of operators and to support 
algorithms making decisions about which operators to use. Multiple operator implementations can exist side by side 
for given sfuncs and algorithms can use policies to decide which ones to use. This capability is currently only exercised 
in very rudimentary ways. We want to take advantage of this capability to provide a wide set of performance 
characteristics and intelligent algorithms that use them. 
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