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ABSTRACT 

In this paper we show that complex thermal physics of non-trivial geometries can be encoded into deep 

neural networks (DNNs). These networks can then be used to help characterize space objects given observations of 

their electro-optical signatures.  We will detail: the physics-based models used to generate training data, the 

architecture of our DNN and the test and evaluation environment of the models. 

1. INTRODUCTION

Physics-based models provide representative data from which concepts can be developed constructively or 

evaluated against realistic environments. These models typically have computation times that scale with fidelity. 

This computational overhead makes it hard to use such models as kernels for estimation engines, especially over 

large dimensional domains. Characterization of space object attributes can be used to predict future behavior and 

deviations from this expected behavior may involve estimating small changes in target attributes with limited data. 

Meaningful estimation of changing target attributes with paucity of data requires representative high-fidelity models. 

The computational burden of these models, however, is prohibitive for two reasons: proliferation assets in the near-

earth space environment and lack of precise physical representation of targets of interest. 

To bridge the gap between fidelity and run time we have developed narrow digital twins (NDTs) that 

encode the physical response, such as observed infrared signature of a specific target configuration, into deep neural 

networks. These machine learning (ML) models provide a high-fidelity response without the need for large volumes 

of training data. This reduction of data is also beneficial due to the large run-times of the physics-based models. To 

make our models robust, we use a reinforcement learning test environment called Harnessing Artificial Intelligence 

to Develop and Evaluate Systems (HADES) to perform adversarial attacks on our NDT. This testbed maps out the 

relationship between the input physical model and the outputs of the NDT, specifically where the NDT is failing or 

producing large errors. This paradigm of training limited but precise models and testing with adversarial 

reinforcement learning is extensible and can provide a path for the Space Community to perform precision 

estimation of changes which will facilitate Space Situational Awareness (SSA). 

We create our NDT by training inferential deep neural networks to predict the temperatures on the faceted 

representation of two classes of satellites: cube satellite and cylindrical satellite with panels. The algorithm consists 

of a base model and an upsampler. The base model predicts the temperatures on a carefully selected subset of the 

facets, roughly 5% of the total facets. We then use convolutional neural networks to upsample these subset facet 

temperatures to the rest of the body. The complete thermal profile of the target is then used to generate an Electro-

Optical Infra-Red (EO/IR) signature from the perspective of a user defined sensor. This model generates 

temperatures at rates of 1000-10000x of the physics-based models. 

The algorithm is then used as the kernel of an optimization engine that ingests a trajectory estimate as well 

as a time series of EO/IR signatures of known wavebands and performs a least squares minimization on predicted 

and ingested radiometric signal. The optimizer searches target geometry space: size scaling, stretching, and segment 

removal for the case of the satellite with panels for the best fit. If the attitude of the target satellite is known this 

solution will determine the temperature profile and shape that best fits the incoming data set. This technique is 

shown to work for one sensor and improves when more sensors are added. If we have sufficient viewing diversity 

the attitude of the target can be estimates alongside the geometry and thermal profile. In this case the optimizer must 

now search a space that includes five motion parameters associated with the attitude of the body: angular momentum 

vector and precession rate and angle about this vector. We will provide examples of extracting geometric and 

attitude solutions and determine limits on precision as a function of sensor viewing diversity. 
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2. METHODOLOGY 

 

2.1 OVERVIEW 

 

 The purpose of our analysis is twofold. First, we want to quantify the performance of our trained Artificial 

Intelligence (AI) models – the NDTs. Models are graded on accuracy as well as speed. We use our AI testbed 

HADES to characterize the 

performance of the NDTs. Fast 

accurate models have utility for 

SSA applications that involve 

edge processing and/or 

traversing large dimensional 

domains. We explore the utility 

of our trained models by using 

them to classify satellite classes 

and determine their sizes. We 

characterize the class and size of 

a small set of satellite targets as 

observed from satellite sensors. 

Our sensors collect light curves 

in the infrared: Mid Wave Infra-

Red (MWIR, [3 5] micron) and 

Long Wave Infra-Red (LWIR, [7 

9] micron). The sensors are in 

low earth orbit satellites in a 

Walker constellation as 

shown in the Fig. 1.  

 

The constellation is three rings with four satellites per ring (3x4) with inclination 45o and altitude of 800 km. 

Sensors detect targets when they are not obstructed by earth and the tangent height is greater than 80 km to avoid 

most of the earth limb. Sensor sensitivity is given be NEI (noise equivalent irradiance) of 5e-17 W/cm2 in MWIR 

(medium wave infrared) and 1e-17 W/cm2 in LWIR(long wave infrared). There are other sensor types such as Radar 

and Ladar that can be used to facilitate characterization, but we focus on passive EO/IR sensing. Every sensor that 

can detect our target provides a multiband signature to be used in characterizing the target. These signals are 

generated using out thermal model HiRTSS (High Rate Thermal and Signature Solver) and our AI models are the 

kernel for target characterization via simple EO/IR signal least squares fitting. First, we show that satellite target 

class can be determined using the AI model. We will then show that the AI model can be used to estimate the size of 

the satellite. This work is the first in a longer project that will create AI models able of simultaneously 

characterizing target shape as well as motion solution. Ultimately, we believe these models can be used to detect and 

characterize changes in these target attributes in support of SSA. 

 

2.1.1 TARGET MODELS 

 

We have three target classes: cube sat with panels, cylinder sat with panels and cube sat without panels. Our models 

are simple but meant to capture the relevant phenomenology in EO/IR signatures of space objects. The figures 

below show the mesh grids for our targets. Materials for the objects are Teflon, carbon phenolic, aluminum and 

silicon solar sail material.  

Our satellite models are comprised of two components: panels and instrumented payload. In controlled flight, the 

panels attempt to maintain pointing to the sun and the body maintains pointing to the earth. In uncontrolled flight, 

the panels do not point to the sun. 

Fig 1: Sensor constellation 
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Fig. 2: Satellite Target Classes and Geometries 

  

 

 

2.1.2 Target Classification 

We will use our AI model to determine the class of the satellite given multisensory signature. First, we fly a target of 

a chosen class but randomized size on a trajectory and determine which satellite sensor has line of sight (LOS) to 

this target. We then generate EO/IR signals for all observing sensors in MWIR and LWIR. For each sensor 

collection we run our target classifier. This classifier ingests these multiband signals and makes predicted signals 

using the NDTs for a single target class. We use the Levenberg-Marquardt algorithm to solve for the best fit target 

dynamics as determined least squares residuals between predicted and ingested signals across all sensors. This 

process is repeated over the three classes and the target class with the smallest chi squared value is chosen as the 

class correct class. We parameterize this analysis across number of sensors observing and sensor viewing time and 

record results.  

 

2.1.3 Target Size Estimation 

We will use our AI model to determine the optimal size and attitude of a satellite given multi-senor signal data. 

The characterization will first involve identifying the class of the target to ensure no gross changes in target 

geometry have occurred since the last observation. Given a satellite class we will determine its orientation: motion 

solution assuming two different modes of motion: controlled and uncontrolled. We will quantify the accuracy of our 

motion solution. The final analysis will, and we will assume centralized processing so that multiple sensor data can 

be processed by our characterization algorithm. To address potential of edge processing, we will highlight single 

sensor performance when possible.  

 

2.2 MODELS 

In this section we discuss the physics-based model used to generate training data and the AI model we use to 

generate our NDT. Given that the NDT is only as good as the data it is trained on, we provide a detailed discussion 

of HiRTSS. We also discuss the architecture of our AI model and the methodology for training our AI model.  

 

2.2.1 PHYSICS-BASED THERMAL MODEL 

 

2.2.1.1 Introduction 

Modern Technology Solutions, Inc. (MTSI) developed a High Rate Thermal and Signatures Solver (HiRTSS) in 

support of a Small Business Innovative Research program effort.  This software was developed to meet the needs of 

in-line signature generation on complex and diverse objects.  The baseline features are: 

1) In-line rapid Thermal computations supporting emissive signature calculations for both thermally massive 

and thermally light objects 

a. Supports all dynamics types and shapes of objects 

2) In-line Reflection computations for solar and earth reflections 

3) In-line obscuration/shadowing computations 
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4) Ingesting of Missile Defense Agency Threat models into HiRTSS target model libraries to maintain rigor in 

object definitions 

5) Ingesting of mesh files from external computer-aided design (CAD) sources: Satellites, Missiles, Aircraft, 

Ground and Naval Targets 

6) High accuracy and high throughput, typically running at 50x real time in the current MATLAB prototype. 

7) Full Monte Carlo capabilities over all major optical signature drivers including the ability to morph targets 

and create new objects without having to create new Target Model Libraries (TMLs) 

8) The code can be run stand-alone through a graphical user interface (GUI) or command-line interface or it can 

be configured to run in-line within a larger simulation to provide on demand stimulation for sensor models 

or algorithms. 

9) Morphing capabilities include: 

a. Target surface deformation (wrinkles) 

b. Shape and size changes (e.g. sphere to ellipse, radius increase or decrease, length increase or 

decrease etc.) 

c. Orientation changes of portions of the body including rotations of parts of the target, retractions of 

solar panels, modeling of transient events etc. 

HiRTSS achieves this throughput, not by sacrificing accuracy but by a combination of dimensional reduction of key 

functions and precomputations based on full spectral characteristics of the target materials and geometry. HiRTSS has 

been used to train and test combat ID algorithms and to support AI-driven algorithm testing and reverse engineering 

of remotely sensed objects in space. 

The HiRTSS signature solver uses a set of TMLs which contain geometric, material, environmental and reflection 

information.  There are two paths to create these TMLs.  Since HiRTSS was originally developed to complement the 

standard EO/IR threat signature generation tool used by the Missile Defense Agency (as well as various Intel 

centers), one path leverages the databases and input files that are part of the Optical Signatures Code (OSC) toolkit.  

This gives us access to the substantial databases of material properties and environmental models as well as direct 

traceability to the legacy and current approved threat models.  The second path to creating TMLs will be discussed 

in a following section. 

The pre-processor has the job of extracting the target model information from the Optical Signatures Code (OSC) 

input and geometry files and translating that into HiRTSS TMLs.  There are currently 4 TMLs which contain not 

only the geometry 

and material 

information in the 

OSC input file but 

also the absorbed 

fluxes for each 

material, the target 

obscuration 

(shadowing) 

information and the 

full reflection 

computation for the 

object.  Once these 

TMLs are created, 

then the solver can 

execute on any 

scenario without 

having to recompute 

any of these 

quantities.  The 

process of creating 

TMLs is illustrated 

in Fig. 3. 

 

To create the target model libraries there are several steps: 

1) The target model geometry is read in from the OSC geometry file, geom_b 

Fig. 3: TML formation for HiRTSS using the Optical Signatures Code databases and input files 
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2) The materials designated in the input file are assigned to the appropriate parts of the target 

3) The material thermos physical and optical properties are read in from the OSC databases 

4) The spectra of the earth, albedo and sun and then convolved with the reflection properties of each material 

as a function of wavelength and angle to create an ‘absorbed flux’ for each material as a function of angle 

5) The angle dependent solar absorptivity and temperature dependent emissivity of each material is derived 

from the optical data and stored 

6) The target obscuration is computed as a function of viewing angle to the body, each facet gets a viewing 

factor from 0 to 1 indicating its relative visibility to the source or sensor 

7) Finally, the reflected signature (including obscuration) is computed for 9 million combinations of sensor 

and illuminator viewing to allow for on-the-fly reflection calculation in the solver 

A key benefit of HiRTSS is contained here: we leverage the highest fidelity data and methods so that no accuracy is 

sacrificed, and the precomputations of obscuration and reflection provide dramatic increases in throughput over 

traditional methods. 

 

2.2.1.2 Overview of HiRTSS Solver 

Once a TML is created, the HiRTSS solver can be run using that TML for any scenario needed.   A scenario would 

include the time of day, day of year, trajectory, sensor location and initial temperature. There are essentially two sets 

of computations done by HiRTSS during a run.  

 First, the trajectory is used to generate an incident flux history for every thermal node on the target.  This flux is 

summed at each time point for all the sources (Earth, Albedo, Solar, internal interactions and Aerothermal) and a 1-

D thermal calculation is performed for each node (a 3-D conduction model for nosetips and leading edges has been 

prototyped but not yet implemented).  From that temperature the emissive signature is directly computed from 

Plank’s law using the measured 

reflectance properties of the 

materials.  

The second set of calculations 

is done to interpolate the total 

reflected signature for the 

target for each time point.  

Since the target reflection 

depends on both the relative 

position of the sensor and 

observer as well as the 

orientation of the body, it is 

necessary to reduce the 

dimensionality of the 

computation to create a matrix 

which is compact enough for 

rapid interpolation and finely 

gridded enough for accuracy.  

Those time-consuming 

calculations are in the pre-

processor so that only a one-

dimensional interpolation is 

done within the solver proper. 

This process contrasts with the standard serial process where each item is computed from geometry meshing to 

intensity summation.  Fig. 4 and Fig. 5 show the differences in the flow through a standard code like the OSC (Fig. 

4) and through the HiRTSS solver (Fig. 5). 

 

                                             

 

Fig. 4 Typical serial path for target signature generation as used in OSC and other 

legacy codes 
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Fig. 5 HiRTSS process showing the minimal needed in-line calculations 

2.2.1.3 Validation 

Since HiRTSS is designed to provide a fast-running complement to the high-fidelity tools used by the Missile 

Defense Agency (MDA), the initial implementation leveraged the same input files to maintain a 1-to-1 relationship 

with the approved threat models.  As a result, validating HiRTSS has taken the form of validating the output against 

the high-fidelity source (typically the OSC) from which the inputs were taken.  The ‘validation’ is essentially 

inherited from historical and current validation of the OSC against measured data from flight and ground testing.  

There are currently well over 100 validation comparisons available between HiRTSS and OSC in wavebands 

ranging from visible to Infra-Red (IR).  Many of these are classified and have been presented in various briefings 

across MDA.  Currently, we are planning to collate all the validation examples in a separate report.  Fig. 6-8 are 

unclassified examples showing both thermally massive and thermally light targets being compared between the OSC 

and HiRTSS.  The differences seen are typical of those seen across the full test set (classified and unclassified). 

 

 
Fig. 6 Comparison of OSC and HiRTSS for a Thermally Light Cone 
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Fig. 7 Comparison of HiRTSS and OSC for a thermally massive cone 

 
Fig. 8 Comparison of OSC and HiRTSS for a full Rocket Body with fins 

2.2.1.4 Aerothermal Heating 

One of the principal activities in our recent development efforts was to enhance the aerothermal modeling 

capabilities of the HiRTSS solver and to apply that heating to the challenge of predicting the temperatures and 

signatures of hypersonic glide vehicles (HGV) in the terminal phase of flight.  In keeping with the structure of 

HiRTSS it was necessary to create a dimensionally reduced data set of incident aerothermal fluxes.  There were 

several challenges involved in taking the information from OSC and creating such a flux table.  Note that the use of 

the OSC to generate the flow field data was done out of expediency and that other sources (such as Computational 

Fluid Dynamics (CFD)) could also be used in future upgrades.   

Fig. 9 is a plot of all the OSC aerothermal fluxes distributed on our test target body in our reduced coordinate 

system.  The data spans 5 orders of magnitude with the highest fluxes occurring near the stagnation point and when 

the node points directly into the wind (0 degrees angle to the wind).     
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Fig. 9 Unscaled OSC Aerothermal Fluxes Used to create the HiRTSS aerothermal databases 

To use this as a flux table the data was scaled to reduce the dependency on specific trajectories.  The scaling 

variables were based on the dynamic pressure, and effective Mach number at each station.  Since the dynamic 

pressure accounts for both density (effectively altitude) as well as velocity this scale greatly collapsed the flux 

magnitudes and created a more well defined ‘surface’ to interpolate the fluxes. 

Fig. 10 shows the collapsed data as well as the surface grid which we fit through that data to create the flux table.  

Since the data still has some span in the z dimension there is a range of possible fits through the data (upper edge, 

center lower, edge of the distribution etc.).  This provides us with 2 fitting coefficients we can use to optimize the 

temperatures when we compare to the OSC if needed.  

 

 
Fig. 10 Scaled Fluxes from OSC and the fitted surface used to create the flux terms within HiRTSS (the fluxes are then 

'unscaled' to produce the proper incident values) 
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2.2.1.5 Ingestion of mesh models – the second path to TMLs in HiRTSS 

To address winged bodies as well as allowing HiRTSS to operate on models where no OSC input file is available, 

we developed a process to translate a range 

of CAD-type mesh files and create HiRTSS 

TMLs.  From the standpoint of the solver 

and pre-processor this requires a flag to be 

set in the system adjustable parameters 

(SAP) file and for the user to create two 

text files which define the material mapping 

to the body.  Currently, we have 

implemented a few different conversions to 

allow for the ingestion of a wide range of 

target meshes.  Again, we make use of the 

Blender toolset to help with this process 

and to assign the target material sections to 

the body.  Fig. 11 is an example of a simple 

satellite model that was downloaded from 

Turbosquid.  The colors on the model are 

material lay-up areas defined by the user in 

Blender and represent the material lay-ups 

that are defined in the target material files. 

 

Fig. 12 is a mosaic of some other models 

that have been ingested and turned into 

HiRTSS models.  This process allows us to rapidly create HiRTSS models out of complex geometries without 

having to worry about how to represent those shapes in the optical signatures code input files.  One key script we 

have developed for this allows us to incorporate Radar Cross Section (RCS) facet models, like those used by the 

XPATCH RCS prediction code, and create optical models that are 1 to 1 with the geometry of the RCS models. 

 

 
Fig. 12 Several Mesh Models that have been translated into HiRTSS mesh files 

2.2.1.6 Hypersonic Glide Vehicles 

This section presents an example of many of the developments over the course of this effort using a notional 

hypersonic glide vehicle target.  To construct this model, we first downloaded a simple unclassified HGV model 

from the internet.  The model was pulled into Blender where some of the facets were cleaned up and redundancies 

removed.  While in Blender the material layup areas were identified and mapped to be body.  A set of reasonable 

materials and thicknesses were created for each of the material layers and the model was then run through HiRTSS.  

The process models and results are shown in Fig. 13 and Fig. 14 below.  At this time, we are developing a classified 

model to that we will compare to both the OSC predictions and collected data.  The time from download to 

completion of the run was less than 1 workday.  This stands in contrast to the current multi-stage processes that 

takes week to build up for an OSC-based model for this class of target. 

Fig. 11 HiRTSS satellite model 
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Fig. 13 Creating a Hypersonic Glide Vehicle Model in HiRTSS 

 
Fig. 14 Intensity outputs from the HiRTSS HGV model for two different flight profiles 

2.2.2 AI MODEL 

 

Our AI model architecture is composed of two neural networks. We have a base network that infers temperatures 

from a given satellite trajectory and an additional upscaling network that gives more resolution to the temperatures 

in relation to the target model. Both neural networks are transformers, a state-of-the-art network architecture that 
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excels in many machine learning tasks, including natural language processing and computer vision. We train an AI 

model for each target model shown in section 2.1.1. 

 

2.2.2.1 BASE MODEL ARCHITECTURE 

 

The base model architecture used is based 

on the original transformer proposed by 

Vaswani et al [1]. Slight modifications to 

the traditional transformer architecture 

were made to better fit this application such 

as the use of convolutional embedding for 

the inputs/outputs. Layer Normalization is 

also used at the start of the transformer 

encoder and decoder blocks to improve 

model stability and convergence. The 

outputs of the convolutional decoder are 

put into a 1-D Convolutional layer with a 

sigmoid activation function. Since the input 

data has been scaled to values between 0 

and 1, this makes sure that the model can 

only output values within the training 

data’s bounds. There are 4 encoder blocks 

and 4 decoder blocks, each with Multi 

Head Attention layers consisting of 1 head. 

 

 

2.2.2.2 CONVOLUTIONAL EMBEDDING 

 

Although transformers are extremely proficient at tasks that deal with sequential data, they are often limited by the 

computer hardware. Specifically, large transformers use vast amounts of memory to make inferences. To help offset 

this limitation, we use convolutional embedding on the inputs to shorten the input sequences and reduce the memory 

load during model training and inference. The use of convolutional embedding on the inputs also allows for the 

model to learn more meaningful patterns of the input data. To perform this convolutional embedding, we “encode” 

and “decode” input sequences with a series of convolutional layers and pooling/upsampling layers. Input sequences 

are put through 1-D Convolutional layers followed by 1-D Average Pooling layers until a desired shorter input 

sequence containing key features of the data is achieved. 

 

 

Convolutional decoding works in a similar fashion: inputs of the decoder are put through 1-D transposed 

convolutional layers followed by 1-D upsampling layers until the original sequence length is achieved. 

Fig. 16 Convolutional Embedding “Encoder” Architecture 

Fig. 15 Base Model Architecture 
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2.2.2.3 TEMPERATURE UPSCALING 

 

To further reduce model size and improve performance, only temperatures at selected facets are computed from 

trajectories using the adopted base model architecture. The remaining facet temperatures are interpolated using an 

upsampler model. This paradigm of base model outputs being given to an upsampler model is adopted from 

OpenAI’s work on multi-modal generative models [3]. The upsampler model’s architecture is derived from the 

Hybrid Attention Transformer (HAT) architecture proposed by Xiangyu Chen et al. [2]. To fit this application, the 

2-D convolutional and Upsampling layers are replaced with their 1-D counterparts. Other aspects of the HAT such 

as Residual Hybrid Attention Group (RHAG) are foregone in our application. In our implementation, inputs are first 

put through a convolutional embedder to obtain shallow features from the data. Those shallow features are then fed 

into multiple transformer encoder blocks to extract deep features. The shallow features and deep features are then 

combined through an additive layer. The result of the additive layer is then fed into a convolutional decoder to 

retrieve the upsampled temperatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Upsampler Model Architecture 

Fig. 19 Example of Upsampler Usage 

Fig. 17 Convolutional Embedding “Decoder” Architecture 
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2.2.2.4 AI MODEL TRAINING   

 

Base models and upsamplers for each satellite target were 

trained on the target trajectories and corresponding 

temperatures. The trajectories and temperatures were 

generated using the kinematic and target models discussed in 

the sections 2.1 and 2.2.1. Fig. 20 Shows a table of the 

trajectory state values and their corresponding units used to 

train the model. Of note, the satellite body’s direction cosine 

matrix (DCM) and panels’ DCM are included in the training 

data. Along with the sun vector, or the direction of the sun, 

these values should theoretically allow for the model to learn 

a target’s thermal response to environmental heating from the 

sun. Also of note, morphing factors are included in the 

training data for just the cube satellite with panels. These 

morphing factors describe the scale of the model. This allows 

the AI model to learn the thermal response for a target model 

of varying sizes. For training, the mean absolute error 

between the predicted and truth temperatures was used as the objective function during training. Models were 

initially trained with an Adaptive Moment (ADAM) optimizer and, after sufficient convergence, finetuned with a 

Stochastic Gradient Descent (SGD) optimizer. 

 

2.4 HADES 

 

2.4.1 INTRODUCTION 

MTSI has developed a proven and robust enabling technology to address critical test and evaluation (T&E) 

engineering challenges which addresses a wide range of critical missions using a process and toolset we call 

HADES (Harnessing AI for the Development and Evaluation of Systems). Our approach leverages the strengths of 

AI and machine learning by using them within the testing element where overtraining (that is learning the behavior 

surface of the test subject) is desired rather than an issue. We have successfully adapted this technology to several 

key DoD challenges.  This history of success provides evidence of robustness, confidence in the process, as well as a 

broad set of modeling capabilities which can be used on addressing key interest areas such as: Warfare Analysis, 

Test and Evaluation Engineering, AI/ML, providing fast analysis and testing of ‘intelligent’ systems.  

 

2.4.2 HADES STRUCTURE 

Fundamentally, HADES consists of an adversarial ‘Agent’ that drive the test, evaluation, or training/development 

process by leveraging modern ML and AI capabilities coupled with a flexible and fast generator to create new data 

specifically in response to the performance of the system under test (SUT).  Regions of poor performance that may 

be opaque to humans are discovered naturally by the Agent’s learning algorithms.  In this way, the SUT itself drives 

the test/training data and regions of unexpected or poor algorithmic performance are mapped into the physical 

domain.  Data from these regions can be used for retraining/hardening of the system or capturing as areas of 

concern.  This fundamental mapping of the high-dimensional and abstract space of the SUT into the physical 

domain or the real world is a key contribution of the HADES testbed.  Fig. 22 is an overview of the HADES 

approach. 

The nature of the generator function is flexible, we have used several different tools to create the on-demand data.  

For our HGV thermal applications, the tool we leverage is called HiRTSS (High Rate Thermal and Signature Solver 

– see section 2.2.1 on HiRTSS for more details).  

Fig. 20 Trajectory State Values Used for Training 
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Fig. 21 Overview of the HADES testbed, functions, and benefits 

 

As shown above, the overall HADES structure is modular and straightforward.  An Agent drives a Generator to 

create data specifically to explore the SUT and 

toxic regions within the performance domain 

where the SUT behaves in an unexpected or 

unwanted manner.  The ability to identify 

potential emergent behavior is a core value 

HADES provides. 

HADES testbeds can be constructed for a wide 

range of applications if we can develop a 

Generator to create the high-throughput, high-

quality data required to adaptively test the SUT.  

This points to another strength of our proposal, 

the generators themselves are powerful 

modeling and simulation tools which can be 

delivered as products.   

Fig. 22 shows prior successful applications for 

MDA, the Space Force (SF), the Missile and 

Space Intelligence Center (MSIC) and 

Hypersonic test and evaluation.  

 

Fig. 23 is a listing of applications, and generators that can be leveraged or provided as products. 

 

Domain Generator/Possible Product Description 

Optical Sensing based systems 

(UAV, interceptors etc. anti-ship 

missiles etc.) 

HiRTSS (High Rate Thermal and 

Signature Solver) 

Full-fidelity, fast-running, EO/IR 

signature and scene generation for 

space or terrestrial applications 

Hypersonics PIA-HGV (Physics Informed AI for 

HGV) 

An encoding of a full physics model 

for an HGV which provides high 

fidelity with extremely high 

throughput. 

Fig. 22 Existing HADES applications for Defense 
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Fig. 23 Potential testbeds and simulation products 

 

At the government’s direction, the testbed can be redirected towards EO/IR sensors, enemy Radar typing, because 

the HADES testbed is highly flexible.  The structure of the proposed HADES testbed for an electronic warfare (EW) 

application and its key benefits are provided in Fig. 24 below as an exemplar. 

 

  
Fig. 24 Proposed Product and Benefits for EW 

 

3. RESULTS 

 

3.1 AI MODELS 

 

After training and finetuning, the AI models were tested to properly gauge their performance on data within training 

data distribution. The AI models were evaluated on a set of 1000 trajectories and temperatures. HiRTSS was used to 

calculate temperatures and signatures for generated trajectories. The AI models were then run on the same 

trajectories, with HiRTSS using the AI models’ outputted temperatures to generate signatures. The satellite 

trajectories were simulated with the methods detailed in section 2.1. For the trajectories, no rotational forces were 

applied to the main bodies of the satellite target models. The satellite target models with panels had a mixture of 

trajectory data in which the panels faced the sun and a random direction away from the sun.  Mean Absolute 

Percentage Error (MAPE) was recorded as the test metric. MAPE is calculated by the following equation: 

 

𝑒𝑟𝑟𝑀𝐴𝑃𝐸 = |
𝑦 − 𝑥

𝑦
| ∗ 100 

Fig 25 – 39 show the final test metrics for each AI model as well as example trajectories with model predictions. 

Fig. 40 shows the results from using our test and evaluation toolkit, HADES, to test the cylinder satellite model for 

robustness.  
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CUBE SATELLITE WITHOUT PANELS 

 

CYLINDER SATELLITE WITH PANELS 

 

CUBE SATELLITE WITH PANELS 

   
 

 

 

Fig. 25 Target and Sensor Fig. 28 Facet Temperatures Fig. 31 Signatures 

Fig. 26 Target and Sensor 

  

Fig. 29 Facet Temperatures Fig. 32 Signatures 

Fig. 27 Target and Sensor Fig. 30 Facet Temperatures  Fig. 33 Signatures  
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Fig. 25 – 27 shows an example target and sensor trajectory for the target models, both being satellites. Fig. 28 – 33, 

show the corresponding temperatures and signatures, respectively, for the target and sensor trajectories. As shown in 

Fig. 28 – 33, for a given target trajectory, the AI model’s outputs for all target models align very closely with the 

HiRTSS outputs. This suggests that the model can properly learn the target model’s thermal response given 

trajectory and constellation information. 

 

CUBE SATELLITE WITHOUT PANELS 

 

CYLINDER SATELLITE WITH PANELS 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 34 AIFM Temperature Errors Fig. 37 AIFM Signature Errors 

Fig. 35 AIFM Temperature Errors Fig. 38 AIFM Temperature Errors 
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CUBE SATELLITE WITH PANELS 

  

Fig. 34 – 39 show the test metric averages for the entire dataset of 1000 trajectories. Trajectories and temperatures 

were interpolated to 2000 time points for analysis of errors in relation to the progression of trajectories. Fig. 34 – 36 

show the AI models’ temperature errors when compared to the temperatures outputted by HiRTSS. Fig. 37 – 39 

show the AI models’ signature errors when compared to the signatures outputted by full HiRTSS runs. As shown in 

Fig. 34 – 39, the AI model’s outputs consistently align with the HiRTSS outputs in the thermal and signature 

domain throughout the trajectory, with the AI model maintaining < 20% in the signature domain for all target 

models. The AI model also seems to accrue more error over the course of the trajectory until reaching errors of 10-

20%. This suggests that shorter trajectories would yield more accurate temperatures than longer trajectories.  

 

HADES, our test and evaluation toolkit, was used to test 

the AI model of the cylinder satellite with panels. The AI 

model’s signature MAPE for trajectories was used to 

calculate the HADES reward, with high rewards being an 

indicator of larger errors. Only two trajectory parameters 

were varied during trajectory generation: orbital 

inclination and orbital altitude. Also, panels were rotated 

to face the sun for all trajectories. As seen in Fig. 40, 

HADES result maintains low values for most of the 

performance. However, there are noticeable trends at 

constant values of orbital inclination. This suggests that 

the model’s performance is more influenced by the orbital 

inclination than the orbital altitude. More specifically, it 

seems the model’s performance suffers at orbital 

inclination values of approximately [50 90] deg. This 

trend could be due to several reasons such as lower 

frequency of trajectories with those characteristics in the 

training data. Nonetheless, with this performance space information gained from HADES, the model can be 

retrained to be more robust. 

 

3.2 APPLICATION OF AI MODELS 

 

We used our AI models to characterize satellite targets. The satellite targets were placed in trajectories using the 

following orbital parameters for circular orbits: inclination ∈ [0,30,60,90] deg and altitude ∈ [400,600,800,1000] km 

and three different noise levels: NEI ∈ [1e-15, 1e-16, 1e-17] W/sr/cm2 in MWIR with LWIR being 5x higher. The 

true class of the target was a cube satellite with panels. We observed with the constellation mentioned in section 2.1. 

We performed least squares fit to the truth signals using our three satellite models and selected the one with the 

smallest chi squared vale. Results are shown in Fig 41 

Fig. 36 AIFM Temperature Errors Fig. 39 AIFM Temperature Errors 

Fig. 40 HADES Results 
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The last result involves employing the AI model to find the size of the cube satellite with panels using the same 

infrared signals we used to characterize the satellite target class. Results are shown below. Both results show that an 

NEI < 1e-16 may be needed to correctly classify and characterize the satellite targets we have examined. 

 
 

 

 

 

4. CONCLUSIONS 

 

Fig. 41: Target classification results 

Fig. 42: Target size estimation 
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We have trained deep neural networks to generate a physical thermal response for satellite targets in space. These 

models were used to classify target using their infrared light curves. Our models are accurate enough to support 

simple size estimation as well. We will continue to improve our models so that we can detect changes in attitude as 

well as changes in signatures. We plan to train across a larger domain of target properties including materials and 

thicknesses.  
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