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ABSTRACT 

Dependence on the Space Surveillance Network (SSN) or other monitoring networks that are comprised primarily of 
traditional sensing technologies complicates real-time object detection and classification. The quality of imagery 
emanating from these sources may be adversely affected by sensor age, physical location and/or orientation. Moreover, 
status quo artificial intelligence/machine learning (AI/ML) solutions alone are generally not well suited for high 
performance on blurred and otherwise degraded imagery, as they generally don’t bode well with obscure 
representations. We present a Super-Resolved Object Characterization in Low Earth Orbit (SROC LEO) approach that 
optimally exploits blurred imagery consistent with that made available from a significant number of SSN legacy 
sensors employing optical technology. By uniquely combining and adapting proven fast kinematic and super-
resolution methods, early indications are that our SROC LEO concept will surpass performance of status-quo satellite 
classification to achieve improvement by up to a factor of four (4) in each of the two (2) pixel plane dimensions. 

1.0 INTRODUCTION 

The application of super-resolution techniques to satellite-to-satellite imagery, and investigation of the effects of these 
approaches on object detection and characterization performance is scarce. Such interplay between super-resolution 
techniques and object detection frameworks is vastly enigmatic and consequently remains largely unexplored [1]. 
Notwithstanding, there is work in remote sensing Earth imagery, medical imaging and facial recognition from which 
a basis for super-resolution of non-Earth imagery (NEI) can be established. Examples include Landsat [2], Ground 
Video [3][4], UAS photogrammetry [5], Optical Coherence Tomography (OCT) [6], and facial recognition [7]. 

Detection and conclusive identification of satellites in an increasingly congested low Earth orbit (LEO) is complex, 
and while improving at an impressive rate, remains limited. This limitation impairs the ability to protect assets in space 
from bad or irresponsible actors and impedes ensuring in-space operations are free from interference or obstruction. 
For commercial operators, definitive object characterization in an operating region remediates damage of satellite 
constellations due to collision. In both military and industry scenarios, risk abatement starts with adroit situational and 
domain awareness. 

Dependence on the Satellite Surveillance Network (SSN) or other monitoring networks that are comprised primarily 
of traditional sensing technologies and infrastructure further limits object classification. Moreover, status quo artificial 
intelligence/machine learning (AI/ML) solutions alone may not be well suited for this non-native application as they 
generally don’t bode well in noisy or otherwise visually complicated environments such as that existing in low Earth 
orbit (LEO). 

Visually complicated environments with respect to an object in LEO can take on many forms. Some common forms 
include (1) objects that are a far range, (2) objects that are at far range with competing background, (3) partial objects 
in the field of view (FOV), (4) partial objects at very close range and various combinations thereof. 

(1) Objects at Far Range
Objects that are at far range introduce complexities primarily associated with low pixel count occupation. These
scenarios often lack distinction that is difficult to resolve and therefore a challenge to the classification processing.
Relative lighting (i.e., dim object versus background) may also be a significant factor.
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Fig. 1 Example Scenario – Object at Far Range (20OS2) 

 
(2) Objects at Far Range with Competing Background 
Objects that are at far range with competing backgrounds introduce two-fold complexities associated with low pixel 
count occupation and visually noisy areas in the FOV. These scenarios not only lack distinction difficult to resolve as 
it relates to the object of interest, but the object itself may appear to be indistinguishable from the noisy areas. Noisy 
areas may be of a variety of types such as lighting or contrast differences, weather, Earth perspective, or debris in the 
FOV. 
 

 
Fig. 2 Example Scenario – Object at Far Range with Background (20DS3) 

 
(3) Partial Objects within the FOV 
Objects that are not fully encapsulated in the FOV or frame do not provide the best opportunity for accurate 
classification as there is only partial representation available for processing. These scenarios may be a result of the 
object just entering or beginning to vacate the FOV. 
 

 
Fig. 3 Example Scenario – Partial Objects within the FOV (20DS15) 
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(4) Objects at Close range with Competing Background 
Objects that are at closer ranges occupy more of the full pixel plane. Moreover, those with textured backgrounds 
introduce processing that may not lend well to some timesaving filtering or predictive techniques. While the 
computational effort to conclusive classify these scenarios may be tedious, they are especially relevant when 
considering In-Space Servicing, Assembly and Manufacturing (ISAM) activity such as Rendezvous Proximity 
Operations (RPO), as well as Space Situational Awareness (SSA) efforts. Uneven or inconsistent illumination further 
complicates scenarios in this broad category.  
 

 
Fig. 4 Example Scenario – Object at Close Range with Textured Background (20DS13) 

 
There are of course countless variations as well as additional scenarios that can occur in low Earth orbit (LEO) with 
respect to objects. In this paper and the associated work, we examined a limited set of realistic scenarios as a point of 
departure for performing high fidelity object characterization under ideal and imperfect conditions. 
 
More specifically, we explore fast kinematic and machine learning approaches that with a specified order and a unique 
combination of adapted techniques, adds value in the present given the existing optical sensors currently deployed in 
LEO to capture non-Earth imagery (NEI). Moreover, our resulting Super-Resolution Object Characterization in Low 
Earth Orbit (SROC LEO) accommodates continuous improvement that positions it well for further contribution to 
object characterization as NEI optical sensing technologies advance in terms of image quality.  
 

2.0 SROC LEO OVERVIEW 
 

Super-Resolution Object Characterization in Low Earth Orbit (SROC LEO) is a deep learning adaptation and 
application of principles from a medical imaging solution to discover potential biomarkers (i.e., for Alzheimer’s 
diagnosis) using super-resolution [6] and facial recognition pose estimation concepts, combined with an innovative 
target chipping method specifically tailored for satellite pixel region determination. The purpose of SROC LEO is to 
significantly improve near real-time space object characterization for low Earth orbit (LEO) targets – most specifically 
satellites. SROC LEO builds upon, extends and modifies an existing GAN architecture proven to identify biomarkers 
and faces, incorporates novel and efficient chipping preprocessing, and includes several computational and processing 
adaptations from related deep learning concepts to yield superior space object characterization. Applying principles 
of an Optical Coherence Tomography (OCT) retinal Generative Adversarial Network (GAN) architecture [8][9] and 
pixel-plane image processing techniques in a prescribed order indicated promising measurable and visibly impressive 
performance with respect to the endgame of satellite classification.  
 
SROC LEO deep satellite image detection, super-resolution, and classification consists of three core modules. The 
satellite detection module detects and extracts the region of interest (ROI) referred to as a target (i.e., satellite) chip 
using novel algorithms that include edge detection (i.e., Innovative Target Chipping (ITC)). These satellite chips 
undergo an adapted super-resolution series by an up-scale factor of 8/16 using a further adapted Multi-scale (MS) 
SRGAN super-resolution module followed by a Resnet-18 satellite classifier to initially identify the type of the satellite 
in the region of interest. The multi-stage super-resolution network is jointly trained with the satellite classifier. The 
final classification step involves correlating features extracted during the process flow. The performance of 
SROC LEO has intrinsic dependencies between its core modules.  
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Fig. 5 SROC LEO Block Diagram w/core modules 

 
It is important to note that the datasets used for our investigation were synthetic imagery (i.e., computer-generated 
imagery (CGI)). This approach was both out of necessity and convenience. The amount of real non-Earth imagery 
(NEI) available through public and relational sources were and remain limited for this level of deep learning 
investigation that can call for tens of thousands of images or more. As such, several techniques were used to create 
our full dataset using a variety of augmentation and degradation approaches – a number of which also employed 
several core principles of GANs [10][11][12]. However, a benefit and hence intrinsic convenience of the use of CGI 
was the ability to more openly distribute our concept and multiple stages of results for comment and review without 
regard to or concern with disclosing possible sensitive information. 
       

3.0 INNOVATIVE TARGET CHIPPING (ITC) 
 
The Innovative Target Chipping (ITC) applies a novel approach to detect the presence of anthropogenic objects (i.e., 
satellites, rocket bodies, debris) from single JPEG images and provides the pixel coordinates that define and 
encapsulate the detected object. The determined vertices that constitute a bounding box are provided as inputs to the 
subsequent multi-layered super-resolution enhancement process. The ITC construction of a layered edge map that is 
modified using image gradient and color statistical properties are important aspects of the ITC. 
 
Within the ITC, an original edge map is created using an enhanced 3 x 3 kernel Sobel [13] convolution. This approach 
emphasizes edges [14] such that the edge map modifiers were based on the hypothesis that anthropomorphic objects 
would intrinsically have anisotropic spatial gradient distributions of the variance and standard deviations. To avoid 
interference of each frame image boundary with respect to candidate objects in the field of view (FOV), all gradient 
angles converted to a numeric modulus were applied multiplicatively to the edge map metrics. Due to the wide range 
of scenarios, high luminance cases occurred due to natural reflection from clouds and daytime blue atmosphere and 
with stark contrast that included dark space background. In addition to using histogram-like distributions for 
association of weighted segments, proximity functions were also used to identify dominant color via inverse Euclidean 
distance in pixel space [15].  The resulting joint constraint threshold detection model allowed for proper detection of 
the object of interest for a plethora of evaluated scenarios. The pixel coordinates assigned to the bounding box vertices 
were based on height and width traversal of the confidence-based decision thresholds. 
 
Examples of results of the ITC satellite detection module with extraction of the region of interest (ROI) referred to as 
target (i.e., satellite) chips for aforementioned scenario types are presented in Fig. 6-10.  
 

 
Fig. 6 Example 1 ITC ROI extraction (20DS06) 
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Fig. 7 Example 2 ITC ROI extraction (20DS19) 

 

 
Fig. 8 Example 3 ITC ROI extraction (20DS03) 

 

 
Fig. 9 Example 4 ITC ROI extraction (20DS04) 

 

 
Fig. 10 Example 5 ITC ROI extraction (20DS17) 
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Fig. 11 Example 6 ITC ROI extraction (20DS14) 

 

 
Fig. 12 Example 7 ITC ROI extraction (20DS15) 

 
4.0 SUPER-RESOLUTION 

 
The primary goal of super-resolution is to enhance the pixelation and quality of low-resolution images that may 
otherwise be difficult to discern in terms of their content. Our interest in the application of super-resolution 
specifically relates to improving visual representation and ultimately achieving better classification of space 
objects within NEI by autonomous systems. In simplest terms, our work focuses on addressing blurred, noisy or 
otherwise distorted aspects of an image such that objects of interest within the FOV appear and are in fact 
measurably clearer such that our confidence in properly classifying said objects approaches 100%. Super-
resolution facilitates the extraction of finer details and characteristics from training with many images, which is 
crucial for accurate classification. It’s integration into the overall SROC LEO process flow aims to enhance the 
overall accuracy and robustness of the classifier, particularly in scenarios where small target chips are low 
resolution making it exceptionally difficult for accurate classification. 
 
The SROC LEO super resolution functionality is achieved via an adapted Multistage Super Resolution Generative 
Adversarial Network (MSRGAN) architecture. The resulting MSRGAN has two configuration types, for achieving 
8x and 16x super resolution respectively.  These models use multiple discriminators in the different resolution 
configurations to guide the super resolution process of the generator. Theoretically, the generator and the discriminator 
are required to learn and grow together at a similar pace so that the generator can flawlessly match the distribution of 
data. However early on in several cases the generator tended to be left behind without useful gradients and ceased 
improving the quality of the synthesized images. We alleviated this and related issues by incorporating multiple 
discriminators in multiple stages and arrived at a satisfactory point with the architectures depicted in Fig.13 and Fig.14. 
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Fig. 13 SROC LEO Generative Architecture (8x) 

 

 
Fig. 14 SROC LEO Generative Architecture (16x) 

 
Background and Select Details 
Generator Architecture: The Residual-in-Residual Dense Block (RRDB) used for the generator architecture 
interconnects all layers within a residual block to boost the network's capacity [16]. Residual scaling involves 
multiplying a parameter β within the range [0, 1] to the residual, preventing instability [17]. For a ×16 upscaling factor, 
the network's first half executes ×4 upsampling (using two successive PixelShuffle (×2)), while the latter half 
completes the remaining ×4 upsampling. Similarly, in the case of ×8 upsampling factor, the initial half performs ×2 
upsampling, and the latter half handles the remaining ×4 upsampling. Employing a multi-stage generator yields 
outputs from various intermediary layers, not just the final one [18].  
 
Discriminators Architecture: The main purpose of the discriminator is to classify between the generated outputs and 
the ground truths at each intermediary stages. In this SROC LEO work, multiple discriminators are being used to 
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enhance the discriminatory aspects of the GAN. Each of these discriminators is a PatchGAN [19] in which a 
convolutional neural network classifies an image as fake or real by focusing on penalizing it at the scale of local image 
patches of size N × N. Patch-based discriminators (Di ∈ {i=1, 2, 3, 4}) progressively contribute to learning finer details 
(higher resolution) in every scale. Stage-specific patch-based discriminators are employed at multiple SR stages to 
further refine generated images' texture towards indistinguishability from IHR. Addressing critical concerns in GAN 
training, spectral normalization (SN) is applied in each discriminator convolutional layer to stabilize adversarial 
training against exploding and vanishing gradients [10][20]. The former causes training instability, while the latter 
results in either bad local minima or training stalling before convergence [10]. Additionally, each discriminator after 
several convolutional layers has two fully connected layers, followed by batch normalization and leaky ReLU 
activation function. At the top of these hidden layers lies a single neuron with a Sigmoid activation function. 
 
PixelShuffle Layer: The purpose of PixelShuffle is to increase the resolution of the feature maps. This method takes a 
feature map as input, which consists of spatial information (width and height) along with a certain depth (number of 
channels). Through PixelShuffle(x2), the elements within each spatial neighborhood of the feature map are rearranged, 
resulting in an effective upscaling of the spatial resolution. Specifically, the spatial resolution is doubled (increased 
by a factor of 2) while the depth is reduced by a factor equal to the square of the upscaling factor, ensuring that 
information from adjacent channels is effectively combined. This process enables the model to enhance image 
resolution without losing valuable information, making it particularly useful in tasks requiring high-quality image 
reconstruction or enhancement [21]. 
 
Loss Functions: We used adversarial, L1 and perceptual in our SROC LEO work thus far and at the time of this writing 
concluded that our investigation was not sufficiently complete to include details here.  
 

5.0 CLASSIFICATION 
 

Within the context of SROC LEO, recall that our goal is to classify widely varying satellite target chips in terms of 
scenarios and size. Our assessment of required robustness of a classifier was heavily influenced by the ability to handle 
widely varying and unpredictable target chip sizes resulting from the ITC preprocessing. We determined that given its 
intrinsic robustness and efficiency when applied to very deep and very large networks, that employing a ResNet [22] 
classifier would be sufficient. 
 
Background: Microsoft Research Group introduced the ResNet [22] architecture to build a deeper neural network and 
to address the issue of vanishing and exploding gradients. A key innovation of this network is the skip connection 
which helps to backpropagate loss to the initial layer. By utilizing the skip connection, the ResNet architecture 
achieved state-of-the-art classification and object detection performance in computer vision benchmark datasets. In 
ResNet, skip connections, also known as shortcut connections, are fundamental to the architecture's design. They 
enable the network to bypass one or more layers, allowing the gradient to flow more directly during training. The 
simplest form of skip connection in ResNet is identity mapping where the input to a layer is directly added to its 
output. Here the output of a ResNet layer is the sum of its input and the output of the layer's convolutional operations. 
This skip connection typically bypasses one or more convolutional layers. 
 
In our SROC LEO classification approach, through reasonable adaptation, we utilized a shallower version of ResNet-
18, without any stride. This variant of the Residual Network (ResNet-18) architecture was specifically developed with 
18 layers. It consists of basic building blocks called residual blocks. An overview of the architecture of the SROC 
LEO satellite classifier merged with general background is as follows: 

Input Image: The input to a Shallower ResNet is typically an RGB image with a variable size, such as 10x20, 
30x12,120x180 pixels. 

Initial Convolutional Layer: The input image passes through an initial convolutional layer with 64 filters (kernels) 
of size 3x3, with a stride of 1. The convolution is followed by a batch normalization and a ReLU activation 
function. The output feature maps have the same spatial dimensions due to the stride set to one. 

Residual Blocks: SROC LEO ResNet consists of four residual blocks, each containing multiple convolutional 
layers. Within each residual block, there are two convolutional layers, except for the first block. After each 
convolutional layer, there is a batch normalization and a ReLU activation function. The first convolutional layer 
within each block has a filter size of 3x3, and the number of filters gradually increases from 64 to 128 across 
the blocks. Each convolutional layer in every block utilizes a stride of 1. Therefore, the spatial size of feature 
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maps remains the same. Shortcut connections (i.e., skip connections) are used to add the input of a block to the 
output of the block. 

Global Average Pooling (GAP): After the last residual block, an adaptive global average pooling layer is applied. 
After global average pooling on the feature map to contain rigorous spatial information. This layer averages the 
spatial dimensions of each feature map independently, resulting in a fixed-size feature vector regardless of the 
input size. 

Fully Connected Layer (Output Layer): Finally, a fully connected layer with a SoftMax activation function 
produces the output logits. The number of neurons in the output layer corresponds to the number of classes in 
the classification task. 

Output: The output of the fully connected layer represents the predicted probabilities for each class. 
Overall, our classifier is a relatively shallow variant of the ResNet architecture, designed to balance computational 
efficiency with performance. Despite its shallow structure, it has been shown to achieve promising performance on 
satellite image classification tasks. 
 

 
 

Fig. 15 SROC LEO ResNet-18 Classifier architecture 
 

6.0 TRAINING 
 
As was the case with the SROC LEO super-resolution loss function, at the time of this writing we concluded that our 
investigation of candidate training approaches was not sufficiently complete to include a full summary of details here. 
However, our initial training details are presented here for both the super-resolution and classifier, and our joint 
optimization implementation. 
 
Super-resolution Training Initial (Example Run) 
There were 20 classes of satellite images with varying backgrounds. We used the ITC module to detect and crop the 
target chips. Then we downsampled applying the wavelet decomposition technique. After that we split the data set 
into two sets. Working with a 10,000 image data set, classes were partitioned as training versus test sets (i.e., 75% | 25 
%) to ensure that there is no overlapping of the training and test data for generalization. We used the Adam optimizer 
to train the super-resolution algorithm with a learning rate of 0.00025 and 0.0001 for the generator and discriminator, 
respectively. The proposed framework benefits from the relative influence of different loss functions, which is guided 
by the regularization parameters: λGAN = 0.01, λl1 = 1.0, λlpips = 0.001, α1 = 0.001, α2 = 0.005, α3 = 0.01, and α4 = 1. For 
qualitative comparisons, results were reported for both upscaling factors of ×8 and ×16. The experiment is performed 
using the PyTorch framework with two NVIDIA Titan-RTX GPUs. 
 
Results on Initial Test set:  
Fig. 16 and Fig. 17 show the generator and discriminator training loss curves over time, demonstrating that the 
generator loss decreases as epochs progress. The MSR-GAN generator was initialized from scratch. Similarly, Fig.18 
and Fig. 19 present the training loss curves for the 16x MSGAN. For 8x downsampled images, the average PSNR and 
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SSIM were 23.52 dB and 0.606, respectively. For 16x downsampled images, the values were 21.26 dB and 0.606. The 
computational times were 0.1364 s/image for 8x and 0.096 s/image for 16x, using an NVIDIA Titan-RTX GPU. 
 

 
Fig. 16 Training loss curve of the generator of 8x super resolution by MSR-GAN. 

 

 
Fig. 17 Training loss curve of the discriminator of 8x super-resolution by MSR-GAN. 

 

 
Fig. 18: Training loss curve of the generator of 16x super-resolution by MSR-GAN 

 

Copyright © 2024  Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com 



 

 

 
Fig. 19: Training loss curve of the discriminator of 16x super-resolution by MSR-GAN 

 
Table 1: The average PSNR and SSIM of multi-stage super-resolution network. 

 PSNR [dB] SSIM Computational Time (s) 

16x 21.26 0.695 0.096 

8x 23.52 0.606 0.1364 

 
Classifier Preliminary Training (Example Run): 
Again, using the satellite dataset consists of 20 classes (each class consists of 500 samples), we divided the 
training, testing, and validation at an 80:15:5 ratio. We used the Adam optimizer and a learning rate of 0.001 to 
train the shallow ResNet classifier. After each epoch, the learning rate decreased exponentially by 0.95. We 
trained the classifier for 92 epochs and plotted the validation accuracy curve in Fig. 21. We used the categorical 
cross-entropy cost function to calculate the loss. Finally, we finetuned the classifier for 8 epochs for variable 
ITC target chips, for this regard, we use a learning rate of 0.0001, which decreased exponentially with a factor 
of 0.9 in elapsed of each epoch. During training the ITC target chips, we use the original resolution and super-
resolution target chips. The distribution of training, testing, and validation sets is similar to that described before. 
 
Results on Validation Dataset 
Fig. 21 depicts the classifier's validation set performance (accuracy) with the elapsed number of epochs. From 
there, we can see that the classifier's performance became saturated after 20 epochs. Fig. 20 and Fig. 22 illustrate 
the classifier's training and validation loss curves, respectively. From there, we can see loss become constant 
after ten epochs. However, after 70 epochs, classifier loss starts to increase due to overfitting. The classifier is 
trained on high-resolution images and tested on i) original resolution, ii) 8X downsampled, and iii) 16X 
downsampled images. The confusion matrix of the test set for three scenarios is depicted in Fig. 23 a) – c). The 
average accuracy of the original resolution, 8X downsampled, and 16X downsampled test set is 92.12%, 43.07%, 
and 18.42%, respectively. From there, we can see the classification performance is dropped due to the 
downsampling of the test images. To improve the performance in down-sampled images, we trained the target 
chips using all resolutions (down-sampled, super-resolved, and original). The confusion matrix for the all-
resolution test sets and the performance of each class are reported in Fig. 24. From there, we can see that the 
average accuracy on the test set is 97.4%. We also observed that every class performance is more than 90% 
except for class-4, class-8, and class-12. From Fig. 24, we also found that the classification performance 
substantially improves after super-resolving the degraded target chips. The average elapsed time for each target 
classification is 2.5 milliseconds on the NVIDIA RTX 6000 Ada GPU system. 
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Fig. 20: Training loss curve of the classifier. 

 

 
Fig. 21: Performance of the classifier on the validation dataset. 

 

 
Fig. 22: Validation loss curve of the classifier 

 

 
Fig. 23 a) Test on original resolution images 
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Fig. 23 b) Test on downsampled (8X) images 

 

 
Fig. 23 c) Test on downsampled (16X) images 

 

 
Figure 24 Confusion Matrices of the test set on all-resolution target chips. The classifier is trained using all-

resolution (original, down-sampled and super-resolution) satellite images. 
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In summary, we utilized an SROC LEO ResNet-18 classifier with stride one for variable target classification. We 
analyzed the training and validation loss curves to obtain the optimal checkpoint. We found that training the classifier 
on original target chips and testing on downsampled target chips degrades performance. To address this issue, we used 
super-resolution on the downsampled target chips and trained the classifier using original, downsampled, and super-
resolved target chips. By taking these steps, we achieved better performance on degraded target chips, as illustrated 
in Fig. 24. 

7.0 CONCLUSION AND DISCUSSION 
 
This paper presents very promising Super Resolution Object Characterization in low Earth orbit (SROC LEO) results 
in a newly investigated and complex area of detection and conclusive identification of satellites in an increasingly 
congested LEO using non-Earth imagery (NEI). At the time of this writing, our SROC LEO loss and training 
approaches were still in process and consequently were covered with limited scope herein. Notwithstanding, we were 
able to establish a reliable foundation with strong technical merit for subsequent exploration. To this end we built and 
deployed initial SROC LEO demonstration prototype versions on two distinct platforms – one of which is of pre-space 
flight technology readiness level. This provides a repeatable environment for subsequent SROC LEO advancement 
and improvement. 
 

 
Fig. 25 SROC LEO Demonstration Prototype (Example Screenshot) 
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