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Abstract 

The space domain is becoming increasingly crowded with proliferated constellations and advanced, highly-

maneuverable satellites. New mission sets, such as on-orbit servicing, introduce space scenarios that stress our 

current Space Domain Awareness (SDA) approach. These complex space scenarios include large maneuvers, 

rendezvous proximity operations (RPO), and deployment events. Maintaining accurate identification of satellites is a 

critical component of the SDA mission. Traditionally, space operators identify satellites by associating their 

kinematic information with a known catalog. The trend of increasing complexity in the space domain suggests a 

kinematic approach may prove insufficient to maintain identification of space objects in the near future. There is a 

compelling need to provide space operators with the ability to leverage information beyond traditional kinematics 

when determining the identity of orbital objects.  

As the complexity of space operations increases, so does the quantity and availability of SDA data. Commercial 

SDA systems enable lower-latency, high-frequency collection of kinematics and unresolved signature information 

on satellites in all orbital regimes. Unresolved signature information refers to sensor-measured information such as 

radar cross section, visual magnitude, and passive radiofrequency collections. While individual sensors may use 

non-resolved signature data to distinguish objects within their field of view, complex space scenarios indicate a need 

to incorporate multiple phenomenologies to achieve an accurate characterization.  

This study explores the use of unresolved signature information across multiple phenomenologies to identify 

satellites with a calculated confidence. The result of this study will be a proposed framework and classification 

algorithm for using multiple phenomenologies to classify a satellite. Additionally, the study highlights future force 

design and data exposure recommendations to improve SDA systems’ capabilities for classifying satellites.  The 

study defines an algorithmic and architectural approach to providing a classification capability as a decision aid to 

SDA Command and Control (C2) system operators.  

This study explores multiple variations of Naïve Bayesian classifiers for use in satellite identification. Bayesian 

classifiers are particularly well suited to this problem set due to their ease of explanation, low computational 

complexity, and statistics-based confidence values. They are also robust to incomplete datasets which is a critical 

need in the data-sparse space domain environment. We will train and evaluate the classification algorithms against 

real-world scenarios using historical datasets pulled from the Unified Data Library (UDL). Our algorithm’s 

objective is to label the orbital object with the correct satellite catalog number based on a comparison of current 

observed signature information with historical-based signature profiles. 

Our results indicate significant utility in using unresolved signature information to identify satellites. Bayesian 

classifiers prove to be a simple yet effective method to leverage this information, providing a 95% accuracy across 

historical scenarios. Furthermore, analysis of the reported confidence identifies clear thresholds for using the output 

of the algorithm as a decision aid to space operators. A sensitivity analysis of contributing phenomenologies 

highlights the utility of each phenomenology for providing a classification call. Furthermore, the sensitivity analysis 

highlights key areas for investment to improve satellite identification capabilities. 

In this study, we establish the usefulness of unresolved signature information, but space operators need to be able to 

convert these signatures into actionable decision aids. Our study defines a clear path forward to provide operators 

with defendable identification calls in complex scenarios. 
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Introduction 
The space domain serves a critical role in communication, position, navigation & timing (PNT), environmental 

monitoring, and many other mission areas. Space is a keystone of global economy and an area of significant 

investment in the commercial, civil, and government sectors [1]. Over the past decade, this domain has evolved to 

host record numbers of satellites [6]. The U.S. Department of Defense (DoD) describes the space domain as 

“increasingly congested, contested, and competitive [2]”. The introduction of large proliferated Low Earth Orbit 

(pLEO) constellations, such as Starlink and OneWeb, further increases the congestion of space. New emerging 

mission sets such as on-orbit servicing have the potential to increase spacecraft lifetimes and enable complex space 

missions [3]. On-orbit refueling missions require satellites to enter extremely close proximity, often referred to as 

Rendezvous Proximity Operations (RPOs). These scenarios can complicate efforts to track and distinguish satellites. 

New mission areas introduce complex scenarios for agencies tasked with maintaining Space Domain Awareness 

(SDA). The United States Space Force (USSF) defines SDA as “encompassing the effective identification, 

characterization, and understanding of any factor associated with the space domain that could affect space 

operations. [4]” Maintaining accurate identification of satellites is a critical component of the SDA mission and a 

primary focus of this paper. The evolution of the space domain to a congested, dynamic environment will make 

accurate identification more challenging and more imperative. 

The process of satellite identification falls into two main methodologies: cooperative and non-cooperative. The 

cooperative methodology leverages cooperation with satellite owner/operators to maintain position and 

identification of a space craft via satellite communication and Telemetry, Tracking and Command (TT&C). The 

non-cooperative methodology uses external sensors to characterize a space object and compare it to an established 

space catalog. This paper focuses on non-cooperative identification of orbital objects. 

Traditionally, non-cooperative space object identification has been done using exclusively kinematics. The success 

of this approach hinges on two key assumptions: orbital objects are spaced far apart, and orbital objects do not 

perform large maneuvers to change their orbit. Current trends in space operations challenge these assumptions. For 

example, the Chinese satellite Shijan-21 docked with a defunct Beidou satellite and towed it into super-synchronous 

orbit roughly 300 km above the geosynchronous (GEO) belt [7]. This scenario highlights how future on-orbit 

servicing operations will involve orbital behavior (close approaches, docking, and large maneuvers) that challenges 

long-held SDA assumptions. 

In tandem with the growing complexity of the SDA mission, commercial companies are investing heavily in their 

own SDA capability. Commercial companies operate geographically dispersed sensors across multiple 

phenomenologies to provide SDA data to government and commercial stakeholders. These sensors include, but are 

not limited to, ground-based telescopes, ground-based radar, and passive radiofrequency receivers. Commercial 

SDA systems enable lower-latency, high-frequency collection of kinematics and unresolved signature information 

on satellites across all orbital regimes. Unresolved signature information refers to sensor measured information such 

as radar cross section, visual magnitude, and passive radiofrequency collections. While individual sensors may use 

non-resolved signature data to distinguish objects within their field of view, complex space scenarios indicate a need 

to incorporate multiple phenomenologies to achieve an accurate characterization. 

Currently, much of this commercial SDA data is aggregated in the Unified Data Library (UDL). The USSF Chief of 

Space Operations (CSO) designated the UDL as the data library for storing and accessing this commercial data in 

support of USSF needs [5]. Furthermore, the United States Government Accountability Office (GAO) recommends 

the USSF leverage commercial data in support of its SDA mission [5]. This paper explores how fusion of 

unresolved, commercial signature data can support a critical component of the SDA mission - space object 

identification. 

Approach 
In this section, we will discuss our algorithmic approach enabling space object identification. 
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Data Availability 
When considering how to address the challenge of identifying objects in space, we need to fully examine the 

information available to support an identification decision. The following is a list of the information leveraged in 

this paper: 

Kinematics: Information detailing the location and velocity of a target space object in time. 

Radar Cross Section (RCS): The apparent size of an object derived from the reflected power collected at a radar. 

This will vary depending on the aspect of the target relative to the measuring sensor and the frequency of the sensor. 

Visual Magnitude (Vmag): The measured intensity of an object detected by a passive optic. Vmag is represented in 

the log-scale. This will vary depending on the aspect of the target relative to the measuring sensor. These 

measurements are fit to a diffuse spherical model and normalized in both range and solar phase angle. 

Passive Radiofrequency: The frequency of signals emitted from a target space object. These signals are collected 

by passive radiofrequency detectors for the purpose of Time/Frequency Difference of Arrival (TDOA/FDOA) 

tracking. 

Polarity: The measured polarization of signals emitted from a target space object. This information is collected by 

determining peak power received in a particular polarization: horizontal, vertical, right-hand circular, left-hand 

circular. 

The above data types are a subset of a much broader range of possible information. The study selected these features 

due to their widespread availability in commercial datasets. More advanced products such as resolved imagery from 

optics and inverse synthetic aperture radar could be extremely beneficial for object identification but are currently 

out of scope. 

Algorithm Selection 
While the space domain is experiencing significant growth in both quantity and complexity of orbital operations, 

man-made orbiting objects have existed for decades. The long orbital lifetime of spacecraft allows for sensor 

collections across large temporal and geographic baselines. Aggregated historical signature information for an 

individual spacecraft provides a good understanding of expected measured signatures in the future. We are presented 

with a classification problem where large historical signature databases exist for the objects we wish to classify. 

These signature databases can be refined into measured distributions known as priors. Figure 1 shows an example of 

a discrete distribution of measured signals. 
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Figure 1 VisMag distribution for Eutelsat 10A 

Bayesian classifiers are a family of classifiers built on Bayes Theorem, and they are well suited to this form of 

classification problem. Theses algorithms compare measured data points against prior distributions to determine 

which distribution most closely matches the data points. Equation 1 highlights the Bayes Theorem applied to a 

satellite identification problem where a ground-based optic has measured a Vmag of 11. 

𝑃(𝐴 | 𝐵) =  
𝑃(𝐵 |𝐴)∗𝑃(𝐴)

𝑃(𝐵)
      (1) 

Where,  

P(A|B) is the probability a measured satellite is Eutelsat 10A given a measured Vmag of 11 

P(B|A) is the probability of measuring a Vmag 11 on Eutelsat 10A 

P(A) is the probability of the measured object being Eutelsat 10A 

P(B) is probability of the sensor measuring a Vmag 11 

The Bayesian classifier discriminates objects by comparing their relative likelihoods. This approach assumes no bias 

in the measuring sensor such that P(B) is a uniform value for all sensor measurements. Additionally, we assume a 

uniform value for P(A) such that any satellite (meeting our kinematic gating threshold) is equally likely to be the 

measured satellite. We are left with a comparison of P(B|A) to determine the relative likelihood that a measured 

object is any particular satellite. We derive P(B|A) by referencing the Probability Distribution Function (PDF) of the 

prior distribution. We accumulate the likelihood of any particular satellite being the measured object by taking the 

product of P(B|A) over each measurement (as seen in Equation 2). 

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑𝐸𝑢𝑡𝑒𝑙𝑠𝑎𝑡10𝐴 =  ∏ 𝑃(𝐵𝑖 |𝐴)  (2)

𝑛

𝑖=1

 

Where,  

n is the number of measurements 

P(Bi | A) is the probability that measurement Bi was measured from Eutelsat 10A 
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Taking the product of probabilities results in a value rapidly trending towards zero. To address this challenge, we 

store the likelihood values as negative logarithmic likelihoods. When the algorithm provides an output, it will 

normalize the likelihoods among the candidate satellites such that they will sum to one. Normalization provides a 

much more intuitive confidence value than extremely small negative values. 

We chose Bayesian classifiers for several reasons. Most notably, these algorithms are extremely robust to disparate 

data sets. They can produce a classification decision from a single data point and any combination of 

phenomenology. This is especially important when ground-based sensors have limited access to certain spacecraft 

over long periods of time. Additionally, Bayesian classifiers are computationally lightweight and explainable. A 

consumer of these classification decisions could compare prior distributions with current measurements to 

understand the statistical decision the algorithm made. 

Representing the Prior 
In our approach, we construct a prior distribution per orbital object for each phenomenology. Unfortunately, these 

distributions do not typically fall within the known and easily modeled distributions (ex. Gaussian).  Numerous 

factors (including aspect angles, odd satellite configurations, specular glint, etc.) create irregularities in these prior 

distributions. We propose three methods to account for the irregularity of these prior distributions. The first method 

involves storing the distribution as a normalized, discrete probability distribution function as seen in Figure 1. 

Discretizing the prior is computationally simple and allows the algorithm to only store limited information (bins and 

counts). However, the selection of bin width and placement is completely subjective. Furthermore, grouping datasets 

in bins can smooth key discriminant behavior in an observed prior. For these reasons, method 1 is considered sub 

optimal to method 2. 

Method 2 models the prior by fitting a Gaussian Mixture Model (GMM) to the distribution. GMMs allow us to 

model a complex distribution as a sum of Gaussian components. Similarly to method 1, this method only requires 

the algorithm to store limited information (means, sigmas, and mixing proportions) for each satellite prior. However, 

method 2 allows for much greater resolution in the actual distribution of the prior and preserves key discriminant 

behavior. Figure 2 shows the probability distribution function of a GMM fit to a prior. 

Figure 2 SJ-23 Vmag distribution represent by Gaussian Mixture Model 
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While GMMs are well suited to modeling continuous distributions of data, they are particularly ill suited to 

modeling categorical data (ex. polarity). Therefore, we propose a third method, which is a hybrid of method 1 and 2. 

Method 3 models priors of continuous features as GMMs and priors of categorical features as discrete PDFs. 

All three methods will be implemented and explored in the following sections. 

Algorithm Functional Flow 

Figure 3 shows the functional flow of the classification algorithm. Note that sensor data, state estimation, and the 

space catalog are all considered outside the scope of this identification algorithm. State estimation is the process of 

correlating sensor measurements and performing an orbit determination. Signature data must be correlated to an 

orbital object to be fused for object identification. For our purposes, correlation should only consider kinematic 

information (ex. Right Ascension, Declination for optics). If signature data is used in the correlation process 

(feature-aided correlation), our object identification approach becomes incestuous. Signature data cannot be used 

twice; once to correlate a measurement to a specific satellite and the second time to identify the satellite. Double 

counting the signature information results in a self-confirming bias.  

We designed the identification algorithm to be hosted inside a broader Command & Control (C2) algorithm that 

would correlate measurements to orbital objects and produce states.  The referenced catalog could be produced by 

the hosting C2 algorithm or could leverage existing catalogs such as the one on SpaceTrack.org. The following 

subsections will cover the sub-components of the identification algorithm. 

Figure 3: Functional flow diagram for identification algorithm 

Kinematic Gating 
The first step in our classifier scopes down the list of possible candidates using kinematics. The kinematic gating 

component determines which orbital objects could have maneuvered to be the unknown object. This function 

outputs the optimal velocity expenditure (delta-V) needed for each known object to maneuver to the unknown object 
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state.  This is additional information a consumer could leverage when making a classification decision. This function 

outputs a list of orbital candidates that fall under some user-set velocity threshold. 

Feature Conditioning 
Concurrently to the kinematic gating step, the algorithm normalizes all incoming signature information for use in the 

downstream classifier. RCS values are normalized based upon the appropriate region (optical, Rayleigh, Mie). 

Vmag measurements are normalized in both range and solar phase angle using a diffuse sphere phase function. 

Current features pulled from passive radiofrequency do not require any normalization. 

Aggregate Object Feature Profile 
This step stores all of the collected feature information prior to feeding the data to the Bayesian classifier. Storing 

this data allows the algorithm too update the feature repository after the classification is complete. 

Build Candidate Profiles 
The algorithm pulls all available priors for each candidate and phenomenology present. Priors are updated every day 

to incorporate new signatures into the modeled distribution. The priors are stored in a feature repository. 

Likelihood Comparison 
This step is the application of the Bayesian classifier. It compares the aggregated signature information currently 

being measured from the target with the historical prior distributions. This step outputs a classification call and an 

associated confidence/likelihood for that call. 

Results 
To find scenarios for test, we employed a separate algorithm to identify maneuvers and RPO events based on 

historical Two-Line Element sets (TLE). The algorithm replayed these scenarios using the sensor correlation 

(satellite number tag given by sensor) and the catalog on space-track.org as inputs. All presented results used real-

world data on orbital objects. We tested this algorithm against 666 real-world scenarios including maneuvers and 

RPO events. Truth data was the classification call made by Space-Track.org when a new TLE was published on an 

object post-maneuver or post-RPO.  

The algorithm ingested scenario data sequentially as it would if it was running in a live environment. It produced a 

classification call and associated confidence each time a measurement was ingested. All three methods for 

representing the prior were tested and the results are shown in Table 1. 

Algorithm % of Objects Correctly Identified 

Discrete Naïve Bayesian Classifier 90% (597 / 666) 

GMM Bayesian Classifier 95% (632 / 666) 

Hybrid Bayesian Classifier 95% (632 / 666) 

Table 1: Scenario results 

The value in the second column represents the number of scenarios in which the algorithm arrived at the correct 

classification decision and did not change its classification decision with additional information. The GMM and 

Hybrid approaches (Methods 2 and 3) demonstrated the best performance. Given the Hybrid classifier’s flexibility to 

better handle categorical features, the Hybrid classifier appears to be the best solution. 

Figure 4 displays the algorithm output confidence compared with the percentage of algorithm calls that were correct 

in truth. Classification confidence is computed by normalizing the calculated likelihood for each candidate satellite. 

Normalized likelihood values are much more intuitive for end users than raw negative log likelihood values.  
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Ideally, the data would display a linear pattern where the reported confidence accurately represented the likelihood 

the classification call was correct. However, our results showed variations in the correlation between reported 

confidence and correctness. This behavior was particularly noted in the middle confidence bins. When the algorithm 

reports a confidence higher than 90% it is correct roughly 99% of the time. With this behavior in mind, consumers 

of the classification call could use 90% as suitable threshold for trusting the output of the classifier.  Ultimately, the 

output confidences are rooted in statistics and forensic analysis can explain how the algorithm arrived at both its 

decision and confidence.  

 

 

Figure 4: Classification confidence versus correctness 

Analysis of the cases in which the classifier arrived at the incorrect answer identified data sparsity as a key 

limitation. Apart from a single scenario, all of the cases of incorrect classifications had very little data for the 

classifier to ingest. Figure 5 shows a breakdown of the data availability for the incorrect classification cases. 

 

Figure 5: Data availability for incorrect cases 
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In addition to evaluating the algorithm’s performance against real-world data, we performed a sensitivity analysis. 

The sensitivity analysis removed individual phenomenologies from each scenario and regraded the algorithm 

performances. This analysis highlights which phenomenologies are most impactful for object identification. Table 2 

shows the changes in algorithm performance when certain phenomenologies are removed. 

 

Phenomenology Removed % of Scenarios with 

Performance Degradation 

% of Scenarios with 

Performance Improvement 

PASSIVE Frequency 80% 2% 

Radar Cross Section 75% 7.4% 

Polarity 60% 1.5% 

Visual Magnitude 28% 5.1% 
Table 2: Sensitivity analysis results 

In general, removal of any phenomenology results in a net degradation of algorithm performance. This behavior 

reinforces the need for fusion across phenomenologies to provide accurate identification. Passive radiofrequency 

proved to be the most useful phenomenology with radar cross section following closely. This analysis highlights 

opportunities to invest in passive radiofrequency and radars to improve enterprise object identification capabilities. 

There were limited scenarios where removal of a phenomenology improved the algorithm performance. These are 

cases where objects appeared similar in feature space for that phenomenology, and inclusion of that phenomenology 

injected uncertainty into the algorithm.  

Overall, the hybrid algorithm performed very well when identifying orbital objects in real-world scenarios. The 

output confidence values displayed a reasonable threshold to use when trusting classification calls, and the algorithm 

settled on the correct answer in 95% of the scenarios.  

Additional Applications 
Our approach of modeling historical signature distributions using GMMs enables many other applications. A space 

C2 algorithm could compare the GMMs of multiple space objects to determine the overlap/correlation between 

expected distributions. Fig. 6a shows the GMM Vmag distributions for eight satellites. Fig. 6b quantifies the overlap 

of these distributions. Satellite pairs with a high value have very similar distributions, and pairs with a low value are 

easily separable in feature space. 

 

Figure 6: (a) Left-side, GMM VisMag distributions for eight satellites 

(b) Right-side, Correlation between VisMag Distributions 
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For example, satellite 25001 (represented by the rightmost blue curve in Fig 6a) has a much higher Vmag 

distribution than the other satellites. By referencing the first column of Fig 6b, we can see low correlation values 

indicating Vmag is a good phenomenology to identify 25001 among these satellite options. This approach could be 

paired with a sensor orchestrator to prioritize tasking of phenomenologies that are most impactful in distinguishing 

closely spaced objects. Signature-informed tasking would improve enterprise SDA performance and free up sensor 

resources to support missions for which they are well suited.  

GMM-based signature distributions also support anomaly identification. An anomaly identification algorithm 

compares incoming signature data, correlated with a known orbital object, to an established historical distribution. 

By comparing this data with a GMM representation, we can derive the statistical distance of a measurement from its 

known distribution. Consumers of anomaly identification alerts could set statistical thresholds for alerts (ex. two-

sigma) and leverage statistical distances to quantify the degree of the anomaly.  

Finally, feature-aided correlation is a topic of interest in the SDA community. Feature-aided correlation includes 

feature information in the cost function used by a correlation algorithm. Our GMM approach creates numerical 

likelihood values for each measured signature and a corresponding orbital object. A correlator would use these 

values in the cost function to weight correlation of a measurement towards the object it more closely matches in 

signature space. Feature-aided correlation is a powerful tool for minimizing cross-tagging of measurements and 

maintaining accurate tracks of closely spaced objects. As previously noted, this identification algorithm should not 

be paired with feature-aided correlation because it creates a self-confirming bias. 

Limitations 
Algorithm performance is affected by several variables including scene complexity, available phenomenologies, and 

data volume. The algorithm struggles to distinguish similar objects in close proximity. In these cases, passive 

radiofrequency data is an ideal discriminant to identify objects, but this data is not always available.  

Additionally, the Bayesian classifiers perform well if the current measured signature information matches 

historically measured signatures. Spacecraft that change their physical configuration may confuse the classifier. In 

cases where historical signatures have not been captured for a known space object, the algorithm represents their 

distribution as a normal distribution centered around the global median value. This approach can lead to sub-optimal 

classifications when objects identified as candidates have not been historically characterized. 

Recommendations 
Our study demonstrates the utility of applying Bayesian classifier to the space object identification challenge. We 

hypothesized the need for data fusion to support this mission, and the sensitivity analysis provided confirming 

evidence. Data exposure and aggregation are key elements supporting the space object identification mission. Data 

repositories, such as the Unified Data Library, are key enablers to accessing commercial data across various 

phenomenologies. Due to our algorithm’s low computational complexity, the timeliness of data aggregation drives 

the timeliness of identification call. Entities interested in space object identification should prioritize the timely 

exposure of data to support identification timelines. 

While our test scenarios are based on real-world data, sensors were not deliberately tasked to collect on our objects 

of interest. Data used in the scenarios was collected by commercial sensors following their own tasking schedule. 

Pairing this identification algorithm with a sensor orchestrator would improve timeliness, data availability, and 

collection of specific, beneficial phenomenologies. Additionally, our approach is based on establishing an accurate 

historical model of the range of possible signatures measured from an object. A sensor orchestrator paired with our 

algorithm could enable prioritization of sensor collections from various aspect angles to build a robust historical 

dataset. Object identification and characterization are critical elements of the SDA mission and a global sensor 

orchestrator should integrate those capabilities into its tasking priorities. 
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Conclusion
An “increasingly congested, contested, and competitive [2]” space environment requires novel approaches to 

address the challenge of identifying objects in orbit. Bayesian classifiers demonstrate significant utility in classifying 

orbital objects. These classifiers provide an explainable identification call and a statistics-based confidence value. 

The proposed hybrid Bayesian classifier achieves 99% accuracy when its reported confidence is above 90%. 

Furthermore, the GMMs representing the historical signature databases show promising utility for applications in 

anomaly detection, feature-aided correlation, and signature-informed tasking. Sensitivity analysis of the Bayesian 

classifier indicates investments in passive radiofrequency and radar sensors could improve enterprise object 

identification efforts.  

In this study, we established the usefulness of unresolved signature information for object identification, but space 

operators need to be able to convert these signatures into actionable decision aids. Our approach defines a clear path 

forward to provide operators with defendable identification calls in complex, space scenarios. 
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