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ABSTRACT SUMMARY 

Space domain awareness (SDA) is crucial for ensuring the safety and sustainability of space operations, especially 
as the space domain transitions toward a contested, degraded, and operationally-limited environment. The number of 
resident space objects (RSOs) continues to grow, and traditional ground-based sensors face limitations of coverage 
and latency. These sensors are also susceptible to deception due to their predictable periods of observation. 
Maneuvers performed immediately before or after the RSO is observed can introduce sufficient error into orbit 
determination to cause track association issues. In addition, a paucity of angular diversity in observations exists due 
to most current high-accuracy SDA assets being ground-based. Relatedly, as the lunar and Martian orbital regimes 
become increasingly crowded, SDA’s importance in those regions will grow, presenting significant challenges for 
ground-based SDA.  

To address these shortcomings, we present the results of an experimental demonstration of on-orbit RSO object 
detection using convolutional neural networks (CNNs) deployed to an on-orbit edge compute device. The CNN is 
trained on a custom annotation set created using the continuous false alarm rate (CFAR) detection algorithm and a 
proprietary algorithm (patent pending) which includes elastic shape analysis to identify RSOs in imagery and 
generate synthetic training image datasets. The goal of the experiment is the detection of RSOs using artificial 
intelligence (AI), specifically a computer vision (CV) CNN model running on edge-compute hardware in orbit 
without requiring ground-based image processing.  The initial set of candidate RSOs are bright, high-inclination 
rocket bodies with stable ephimerides selected for ease of detectability in the experimental demonstration. 

Once mature, our onboard CV solution will represent a significant advancement in SDA by producing a scalable 
algorithm capable of downlinking captured SDA data with over 93% reduced throughput requirements than 
attempting to downlink whole images and isolate that data on the ground. By developing this technology, we are 
paving the way for the proliferation of small, inexpensive, but highly capable SDA sensors throughout multiple 
orbital regimes, vastly increasing the angular diversity of observations available for RSOs orbiting Earth and other 
celestial bodies. In this effort, we aim to contribute to safer operations in humanity’s orbital commons.  

1. INTRODUCTION

In increasingly crowded orbital environments, space domain awareness (SDA) data is critical to safety of flight and, 
in manned missions, safety of life. The limited supply and high cost of SDA sensors mean that SDA sensor attention 
is a coveted commodity. In short, SDA sensor coverage needs to scale, and quickly. 

In support of this objective, this team is attempting to demonstrate an inexpensive, highly scalable SDA sensor 
solution that can go wherever satellites fly. Thus, at scale, this solution would not be limited in the amount of sky it 
can cover or suffer the fierce competition that afflicts requests for ground-based resources based on mission 
prioritization. When SDA sensors are mounted directly to spacecraft, the global space enterprise quickly brings SDA 
coverage wherever it goes. In this vein, dual-purpose systems which are both star trackers and surveillance sensors 
have previously been proposed. [1, 2] 

The prototype system discussed in this paper is designed to produce resident space object (RSO) detection data that 
are useful to SDA systems. The remainder of this paper consists of a brief exploration of background work in this 
area and an overview of this mission design and method, followed by a presentation of the current results and 
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analysis of the neural network (NN) performance. It concludes with recommendations for further experimentation, 
testing, and system design. 
 

2. BACKGROUND 
 
Awareness of RSOs involves a number of steps. The first is detection, or the determination that an RSO is in the 
field of view of a sensor at a given moment. This is followed by measurement, or the extraction of a relative position 
vector, range, or other parameter(s) from the detection. A series of measurements can be used to perform object 
tracking, either through orbit determination directly or the use of Kalman or particle filters. Alternatively, some 
track-before-detect methods determine the presence of a target based on a signal-to-noise ratio (SNR) that only 
exceeds a detection value after a period of time over which, very low SNR values are integrated in a method which 
assumes some consistent motion. Finally, the resulting track can be associated with a catalog of known space objects 
or the determination made that an unknown object has been observed. This study is concerned with the first step in 
the chain—detection—or determining the presence or absence of an RSO in a given sensor collection. 
 
Two primary methods for RSO detection using optical sensors have previously been proposed [3]. The first method, 
with which this paper is concerned, is the streak method [4], in which a sufficiently long real or synthetic exposure 
is used to allow relative motion between the stars and the target to be observed. Depending on the location and 
orientation of the observer, a long exposure causes RSOs or stars (or both) to form streaks in the image as their 
relative motion becomes apparent. These streaks can then be detected using computer vision (CV) or neural 
networks (NN) [5, 6, 7]. RSOs can be distinguished from stars by their different relative motion. Similarly, a 
ground-based observer with a constant camera angle notices minimal movement from a geostationary RSO while 
stars streak past due to the earth’s rotation [5]. The same observer notices low earth orbit (LEO) RSOs streaking but 
at different angles and rates from the stars [1]. A space-based observer with a constant inertial camera angle notices 
minimal star movement while RSOs streak past at different rates and angles depending on their orbits. 
 
The second family of methods, generally known as track-before-detect methods, use very low SNR sensor 
observations taken over a series of images along with reasonable assumptions about a target’s movement (e.g., 
Keplerian orbital mechanics) to arrive at a maximum likelihood estimation. These techniques show promise, and 
their results are particularly impressive for very low SNR targets, but are often computationally expensive [8, 9, 10, 
11, 12]. 
 
The streak method and track-before-detect methods can be augmented by using a star catalog to remove stars before 
performing streak detection [4, p. 19]. Star identification can be performed using NN [13, 14]. 
 
This study focused on the streak detection method and, more specifically, on the streak detection method in which 
the observer is on-orbit and in a constant attitude in an inertial reference frame.  
 

3. METHOD 
 
The approach to RSO detection is outlined in Fig. 1. The process involves on-orbit collection of images, on-orbit 
combination of images to enhance the SNR of any RSOs present in the collected images, and finally on-orbit 
inference of images to detect streaks indicative of RSOs. 
 
A command to the spacecraft, originating from the ground, sets the parameters for the detection attempt. The 
specified number of images is obtained at the specified settings (exposure time, gain), after which, if more than one 
image was taken, the images are summed to produce a synthetic exposure time exceeding the camera’s design 
capability. The image is then divided into appropriately sized subsections, or tiles, for inference before being 
converted into the appropriate format and passed to the inference hardware (HW). The inference is performed using 
a pruned version of YOLOv4-tiny, and the results are analyzed to determine if any detections exceed the minimum 
threshold for confidence in a detection.  
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Fig. 1. On-Orbit RSO Detection Approach 

 
The spacecraft used for this experiment was the Apex Aries SN1 (see Fig. 2). The imager used for this experiment, 
the Ubotica CogniSAT NEI AI-Enabled Non-Earth Imaging Space Camera System, is facing the viewer on the right. 
 

 
Fig. 2. The Apex Aries SN1 Spacecraft. Provided by Apex Space. Used with Permission. 
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3.1 Mission planning 
 
To implement the RSO detection method in the on-orbit experiment, the team set out to aim the satellite’s optics 
package at an orientation and time likely to yield a streak detectable by the experimental method. By identifying a 
set of likely bright objects (expended rocket bodies/debris with high-inclination orbits) with well-understood 
ephemerides, the team could plan to properly orient the host satellite’s camera’s field of view (FoV) during a 
predictable time interval such that targeted satellites would predictably cross the FoV, enabling execution of its RSO 
detection method at a time, place, and orientation likely to achieve positive results.  Those results could be tested to 
confirm the expected bright objects were detected by the experimental method. 
 
A simulation environment was used to model the experiment’s host satellite, its pointing angles at key times, and the 
trajectories of potential observation targets. The simulation environment was also used to calculate optimal target 
observation time intervals. The simulation environment chosen was Ansys Systems Tool Kit (STK), which provides 
industry-standard rigor in physics-based modeling and sensor access calculation capabilities to generate the time 
intervals for mission planning. The time intervals were calculated as follows.  
 
First, these components were built or imported into the Ansys STK scenario:  

• A model of the host satellite, especially including a model of the on-board imaging system (as a sensor 
attached to the host satellite, including FoV and other characteristic parameters set based on design metrics) 

• Host satellite ephemeris (based on most-current real-world ephemeris data) 
• Two known bright rocket bodies with up-to-date ephemerides 
 

Next, Ansys STK was used to plot the sun angle of the target debris. In this case, the sun angle was defined as the 
angle formed by two vectors: the first from the target to the sun and the second from the target to the host satellite, 
with the target debris as the vertex of this angle. On the same plot, but using a second vertical axis, the magnitude of 
the vector from the host satellite to the debris, or the slant range, was plotted. This plot was examined for periods 
when both the sun angle and the range were low, ideally below 40° and 800 km, respectively (see example in 
Fig. 3). These periods represent opportunities when the target debris would most likely be bright. Since the targets 
proposed for examination are long-abandoned debris, no modeling was done of their likely attitude or of any 
anisometric reflectivity, since they were assumed not to have solar arrays.  
 

 
Fig. 3. An example of the sun angle and range plot of a selected rocket body relative to the host spacecraft for 

approximately 48 hours at left, with a specific 24-minute period of interest at right. 
 
During these periods, the team selected observation opportunities when 1) the target was in sunlight; 2) the target 
could be held near the center of the FoV of the imager while maintaining the host spacecraft’s star trackers the 
required distance off the sun for a conservative period before and after the observation; 3) the background of the 
resulting image would contain no sunlit portions of the earth, but only regions of earth in night or starfield; and 4) 
the relative motion between the two would result in a change of relative angle of 0.2° - 0.4° over the course of a 0.5s 
exposure. This latter objective is based on the 0.5s maximum exposure of the available imager (discussed in more 
detail below) and the observation that the NN performs well on synthetic streaks of 5 pixels or greater in length, 
which equates to 0.2° in the FoV. Opportunities that would exceed the 0.4° objective are rare, but the purpose is to 
avoid observations where the collected light is spread over too many pixels, resulting in a low SNR for the streak.  
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This could be repeated to generate access windows of opportunity for the other bright debris. Mission operators 
would then have the necessary quaternion-time pairs available to execute a mission using the proposed experimental 
RSO detection methodology and to verify that any detected bright objects were the objects intended and targeted for 
detection. This process was repeatable for objects of varying brightness, enabling further experimentation on 
iteratively dimmer objects and larger sun angles to determine the boundaries of the detection capability. 
 
3.2 Image collection 
 
Ideally, the collection approach should be agnostic (though some cameras will be better suited to this application 
than others) and the NN would sufficiently generalize the streaks to allow images from different cameras to be 
inferred with the same NN. For the work described in this paper, the Ubotica CogniSAT NEI AI-Enabled Non-Earth 
Imaging Space Camera System was used. This instance of the Ubotica camera has pixel dimensions of 1920x1200, a 
lens with an f-stop of 5.6, and a FoV of 99°. The output image has been de-bayered and is RGB. The imager is 
depicted in Fig. 4. 
 

 
Fig. 4. The Ubotica CogniSAT NEI AI-Enabled Non-Earth Imaging Space Camera System. From Ubotica. Used 

with permission. 
 
Depending on the exposure and brightness of the resulting images, multiple images can be combined to digitally 
extend the effective exposure duration. While this function may be used in future work, the images in this paper 
were obtained with a single 0.5s exposure. A portion of an image collected with this camera is shown in Fig. 5.  
 

 
Fig. 5. One section of a 0.5s exposure obtained from the CogniSAT NEI camera of a starfield. 

 
This image was collected with a 0.5s exposure and cropped to reduce downlink time without reducing the resolution 
of the section being downlinked. The image was converted to .png format to allow for lossless compression of the 
image, and to reduce downlink time. A second image (not shown) was collected of the same starfield with the same 
exposure time approximately 18 hours after the first image. The images are grayscale. 
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A few key characteristics to note about the image are the low diffraction, high spacecraft stability, and consistent 
and low noise level. The stars in the image are typically 2 pixels in diameter, indicating the low diffraction of this 
imager. This reduces the need for centroid determination to determine the star’s location, but also precludes sub-
pixelation techniques.  
 
To explore the noise level, a histogram was produced of both images (see Fig. 6). Of note is the extent of the image 
noise. The image noise extends from a pixel value of zero to a pixel value of 20 on a uint8 scale (0 to 255). This is 
consistent across the image and neither image shows evidence of lens flare or other region-specific noise increases.  
 

 
Fig. 6. The histograms of the two images 

 
To characterize the impact of spacecraft stability on the images, the two images of the same starfield taken 
approximately 18 hours apart were compared (see Fig. 7). This figure was generated by binarizing both images 
about the value of 20, so that pixels above 20 (a value approximated from the histograms) were set to 255 and pixels 
below this value were set to zero. Then, a composite image was created in which pixels were white where both 
binarized images had pixel values of 255, black where both had pixel values of 0, and green or red where only one 
or the other binarized image had a pixel value of 255. This is done solely to illustrate the consistency of the star 
locations relative to pixel locations and the stability of the spacecraft attitude and imager, which is conducive to both 
RSO detection and future applications such as orbit determination. However, it also provides strong evidence that 
the detections are stars rather than shot noise or debris. The presence of the stars in the exact same pixels indicates 
the attitude repeatability or precision of the spacecraft to be <0.04 degrees which is the FoV pitch of a single pixel. 
This analysis also indicates that the stars are sufficiently stationary in the image such that nearby RSO should form 
streaks relative to this background starfield, assuming they have sufficient relative angular acceleration. 
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Fig. 7. A composite image showing where stars were detected in both images (white) or only one (red or green). A 

small portion of the image is displayed so that individual pixels are visible to the reader. 
 
This analysis indicates the images from this camera should be conducive to RSO detection for sufficiently bright 
RSOs. Artificially increasing the exposure time through the summing of several images would be possible and 
increase the length of any RSO streaks but would also raise the noise floor for each image summed. See Fig. 8 for a 
histogram of the pixel-wise summation of the two previously discussed images. Alternatively, the images could be 
averaged, which would cause the motion of an RSO to generate a streak but would also reduce the overall pixel 
values (i.e., the brightness) of the streak.  
 

 
Fig. 8. A histogram of the pixel-wise sum of the two starfield images. Compare to Fig. 6. 

 
3.3 Image pre-processing 
 
We developed a pre-processing software suite which could be configured to provide a chain of image processing 
algorithms to be applied to the collected camera images before being input into the convolutional neural networks 
(CNN). The pre-processing software was designed to be flexible (i.e., to allow each of the image processing 
algorithms to be optional and configurable at runtime) allowing for a customized image pre-processing chain. The 
pre-processing software suite consists of a coordination script written in Python, capable of being configured at 
runtime through a JSON configuration file, and a suite of image processing applications written in C++. Fig. 9 
shows the customizable image pre-processing chain. 

 
Image Processing Applications: 

• Grayscale - Converts the input RGB image into a grayscale image. 
• Combine - Combines multiple images into a single RGB image using either a summing or averaging 

algorithm. 
• Resample - Resamples the input image to the given dimensions. 
• Tile - Converts the input image into multiple tiled images. 
• Reformat - Reformats the image from an Int8 image to a floating-point 16 image. 
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Fig. 9. Customizable image pre-processing chain 

 
In testing, we found the CNN performed best with the pre-processing software configured to forego the grayscale 
and reformat steps, and to output 640x640 RGB (Int8) tiled images. 
 
3.4 Inference 
 
3.4.1 Details about the neural network structure 
 
YOLOv4-tiny with a CSPDarknet29 backbone was selected to train, validate and test detecting RSOs with artificial 
intelligence [15]. YOLOv4-tiny is a member of the You Only Look Once (YOLO) suite of deep CNNs that are 
popular in computer vision because they excel in quick and accurate single pass detections that supply bounding 
boxes and class labels for objects in images and videos [16] [17] [18]. YOLOv4-tiny is a lightweight, compressed 
version of YOLOv4 that has less YOLO heads for prediction and a simpler network structure with only 29 
convolutional layers [18]. YOLOv4-tiny has a relatively small model size of 23 megabytes (MB) and sacrifices 
accuracy for speed of detection; it achieves two-thirds the accuracy of YOLOv4 on the relatively complex Common 
Objects in Context (COCO) dataset [18]. As such, YOLOv4-tiny is an ideal candidate for deployment on edge 
devices with limited computing environments. 
 
Other object detection models, for example YOLOv3 and EfficientNET, have been successfully used for RSO 
detection [5] [19]. However, neither model met our operational needs for a very small model weight file size. 
YOLOv3-Tiny and Tinier YOLO were also tested when determining our optimal lightweight object detection 
model, but these models were too large or not able to meet our accuracy expectations during training [20] [21]. The 
final version of YOLOv4-tiny we deployed contained an altered convolutional network structure to reduce the 
model size. The altered structure had two 512-sized convolutional layers removed from the neural network which 
reduced the model weight size to approximately 9 MB. Furthermore, during compilation on the Ubotica CogniSAT-
XE2 AI co-processing system, the model layers underwent post-training quantization (PTQ) to make it deployable, 
further reducing the size to under 5 MB. The changes to the CNN structure were quantified by comparing accuracy 
metrics between the original model and a model with the altered structure. While the model weights were greatly 
reduced, there was only a minor drop in performance. The model size reduced from 23 MB to 9 MB, but the mean 
average precision (MAP) calculated from training decreased by only 5%. Based on our needs to deploy in a limited 
size, weight, and power (SWaP) environment on the edge, we decided the altered model structure with reduced size 
performed to our needs.  
 
3.4.2 Initial bootstrap training data 
 
Machine learning, when applied to object recognition, takes training data input, applies a model, and then makes 
distinctions between the classes of objects within the training set (which, in our case, are RSOs) and objects that are 
not members of the training set. A machine learning model’s theory of knowledge produces justified beliefs about 
the class of a particular RSO using inference to generate a confidence interval deeming a candidate RSO to be a 
member of the training class. When this inference process works well, a true positive is generated where an RSO 
exists in the image under examination and its existence is detected and confirmed by the classifier. A training set 
must be generated to train a model so it can make true, positive inferences about the objects it examines in an image.  
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In our case, this training set was difficult to produce because the images under consideration are acquired in an 
arduous space-based environment. To overcome these challenging image acquisition circumstances, we utilized 
proprietary synthetic data generation process (patent pending) to bridge the gap in the difference between what our 
YOLO object classifier required and the number of genuine space images we had available. Our synthetic training 
images were generated using the streak generation process illustrated in Fig. 10. 
 

 
Fig. 10. Streak Generation Process 

 
3.4.3 Using shape analysis for object detection 
 
The problem of creating a synthetic dataset is that the beginning point must be based on an understanding of the 
features that constitute an object we are interested in classifying. Our foundation for extracting objects from an 
image did not rely on neural nets. After all, how could we use a neural net to generate a ground truth when no hand-
labeled ground truth exists initially? We relied on mathematically rigorous techniques for extracting, classifying, 
and labeling objects in images. After performing these actions, we generated large synthetic datasets. To get a 
meaningful understanding of the objects that populated our synthetic dataset, we used elastic shape analysis (ESA) 
[22]. ESA allowed for a direct inquiry into an image to find objects that conformed to the shape of the object we 
wanted to find. The reference shape we used needed to only be a line 2 pixels wide and 20 pixels long. 
 
3.4.4 Extracting features that define an object 
 
Once we identified the streaks in our image, our next task was to discover the intrinsic qualities that defined the 
pixels comprising these streaks. The properties we were concerned with were the streak pixels’ mean, median, and 
standard deviation within its grayscale color. Equipped with this knowledge, we were now able to add further 
realism to the streaks we intended to generate. 
 
3.4.5 The Karcher Mean for object generation 
 
The Karcher mean (KM) [22] refers to a method for finding how shapes can be averaged together. In our case, we 
were interested in how the KM allowed us to understand the average features that define a streak’s feature-set. With 
this knowledge, the synthetic dataset’s streaks are representative of what can be expected in a genuine space-based 
dataset.  
 
3.4.6 Constructing a synthetic ground truth dataset 
 
As we stated above, our challenge now was to make sure we could generate credible synthetic data for the purpose 
of training YOLO. With the above-named components in place, this challenge was addressed in a straightforward 
manner; for every training image to be produced, we randomly placed our synthetic RSOs in accordance with our 
generative parameters. Fig. 11 shows the results of our synthetic dataset generation.  
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Fig. 11. Synthetic Image Example 

 
3.4.7 Details of the training 
 
To optimize model performance to detect satellite streaks and stars, we trained our model with a batch size of 64, a 
mini-batch size of 16 for 6,000 batches. The neural set was set to learn on 640x640 sized images with 3 bands. The 
learning rate during training was 0.00261 with momentum and decay values of 0.9 and 0.0005, respectively. We 
employed data augmentation techniques during training that randomly altered the following image properties: angle, 
saturation, exposure, and hue. 
 
Training neural networks on hybrid image datasets, where some images are real and some are synthetic, have been 
shown to improve accuracy of CNNs, particularly in low-shot detection problems where a robust dataset of images 
may not exist [23]. As such, a hybrid image dataset that contained 3,292 total images, composed of 258 real SatNet 
images and 3,034 synthetic images, was used to train YOLOv4-tiny to detect RSOs as streaks in space imagery.  
 

4. RESULTS 
 
The goal of this research was to detect, with a neural network inference, an RSO in an image captured on orbit. 
However, as of the time of this writing, the research team encountered an unexpected regulatory roadblock that 
prevents on-orbit image capture of RSOs. To allow development to continue, an alternative plan was required in the 
interim.  
 
Sections 3.4.2 through 3.4.6 describe how synthetic but feature-representative streaks can be generated to increase 
the chances that a NN trained on synthetic data will generalize sufficiently for real imagery. This technique was 
applied to the two test on-orbit images, which did not contain real RSO streaks. The result was an augmented image 
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consisting of a real on-orbit background image combined with feature-representative synthetic streaks. This 
represented the nearest representation possible before the receipt of real NEI after the regulatory roadblock is 
cleared. 
 
To test the remainder of the previously described process, this image was then loaded onto the flat-sat for the Apex 
Aries SN1 spacecraft and inference was run using the Ubotica CogniSAT-XE2 AI Co-Processing Unit. Once the 
inference process was verified using orbit-rated hardware on the ground, the image was uploaded to the spacecraft 
and inference of the augmented image was performed on-orbit using the Ubotica XE2 Vision Processing Unit. The 
inference results were then downlinked from the spacecraft and overlaid on the augmented image. The results are 
shown in Fig. 12. Streak object detections are outlined in red and star object detections are outlined in green. The 
confidences of the inference are shown. The inference results from the flat-sat inference and the on-orbit inference 
were identical for the same image. Fig. 13 shows another inference example that was performed on the flat-sat, but 
not on-orbit.  
 

 
Fig. 12. Left: augmented image consisting of an on-orbit acquired starfield image overlayed with synthetic RSO 

streaks;  Right: The same image with inference results obtained from an on-orbit inference overlayed. 
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Fig. 13. Left: augmented image consisting of an on-orbit acquired starfield image overlayed with synthetic RSO 

streaks;  Right: same image with interference results obtained from an interference on the flatsat overlayed 
 

5. ANALYSIS 
 
The downlinked inference results consist of a file of 70 kB for inference on a 640x640 section of collected image. It 
requires 6 inferences to completely process a 1920x1200 image. This means that rather than downlinking a 6.6 MB 
raw image, approximately 420 kB of inference results can be downloaded, reducing the downlink burden of an on-
orbit SDA operation by approximately 16 times. If only positive inference results are downloaded, the 
communications requirements would be reduced even further. 
 
The model was optimized during training by the MAP across all classes. The best model from training was selected 
where MAP@0.50 was 91.44% and precision, recall, and F1 were 0.91, 0.94, and 0.93, respectively. Streak objects 
were detected with a 98.74% accuracy in the validation dataset where there were 3,578 true positives and 34 false 
positives. Blob objects were detected at 84.15% accuracy in the validation dataset where there were 516 true 
positives and 51 false positives. 
 
There are many reasons for YOLO to struggle in an extreme low-SWaP and space-located edge device including 
limited storage, relatively low bandwidth, unfamiliar lighting conditions, unforeseen space weather, and unfamiliar 
camera noise [23] [24]. However, removing layers from YOLOv4-tiny and training with hybrid imagery with a great 
variance in satellite streak brightness and image noise created a more robust model that suggested it could handle a 
domain shift for space applications.  
 
5.1 Performance of YOLOv4-tiny on tasks that utilize on-orbit-captured NEI images 
 
Domain shift is a common problem in the object detection field where a model may struggle to perform accurately 
when different lighting, camera angle, background, object appearance, or occlusion is present in imagery [24]. 
Synthetic imagery in a training set can be used as one tactic to help models improve generalization and robustness, 
because the objects themselves and the background can be manually altered to accommodate different or extreme 
conditions [23]. The combination of real and synthetic imagery in our training dataset allowed YOLO to overcome 
significant domain shift and, for example, correctly identify a satellite streaking across a telescope imagery with 
significant noise from a background nebula. See Fig. 14. 
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Fig. 14. Model inference conducted on a telescope image with a satellite streak correctly detected on purpose. Image 

collected by and used with permission from Aldoria Space (https://www.aldoria.com/sensors/) 
 

6. CONCLUSION 
 
6.1 Achievements 
 
The goal of this project remains to detect RSOs using an on-orbit imager and a neural network trained for object 
detection running on on-orbit hardware. The use of the on-orbit imager to image RSOs is, at the time of this writing, 
legally prohibited pending clearance of an unexpected regulatory roadblock. However, the detection of feature-
representative synthetic streaks in an augmented on-orbit starfield image was performed, and successfully 
demonstrated the feasibility of this technique for future RSO detection, and eventually tracking.  Further it 
quantified the utility of relocating image-based RSO detection tasks from the ground to satellites.  This is perhaps 
the most significant implication of the demonstrated technique: compared to link requirements for executing image-
based RSO detection tasks on the ground, sensors that employ our onboard detection technique use over 93% less 
link throughput to relay valuable SDA data from on-orbit sensors to ground-based enterprise SDA data repositories.  
Once imaging of real RSOs is legally permissible, the team will begin exploring the detection limits of the 
technology, and engineering improvements to expand those limits towards less-detectable objects.  
 
This research has so far successfully demonstrated a process for streak detection performed completely on-orbit. On 
the path to achieving this, the team constructed a mission planning process for selecting optimal times to observe 
known RSOs.  The team selected particularly bright disused rocket bodies for the purpose of this experiment, but the 
mission planning process is easily transferrable to a wide variety of RSO types.   
 
Additionally, this research involved the characterization of the Ubotica camera for this use-case. This is a novel 
application of this imager, but the image statistics suggest it will be adept at this application.  In addition, the use of 
an “imager of opportunity,” even one as capable as this, provides a test case for wider deployment of detection 
algorithms like the one described here onto other “imagers of opportunity” in support of expanding RSO detection 
efforts by SDA enterprises. These “imagers of opportunity” might even include hardware that is already on-orbit, as 
both public and private enterprises seek to cost-effectively increase the fidelity of their SDA catalogs. 
 
Finally, this research developed a flexible image pre-processing software chain to support flexible tiling and 
synthetically-long exposures (summing or averaging multiple images), enabling further study on the optimal 
collection techniques for this application. This software chain will likely yield additional insights in the future into 
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optimal preparation of images for CV inferencing.  A robust technique was presented here for developing synthetic 
datasets for CNN training which are specifically tailored to the RSO detection application. Finally, the use of an on-
orbit edge Vision Processing Unit was demonstrated for the purpose of detecting image streaks caused by passing 
RSOs.  In short, the hardware/software toolchain developed to carry out this experiment can continue to be 
leveraged to further expand the current state of the art in on-orbit CV-based detection. 
 
6.2 Next Steps and Implications for Enterprises 
 
Several steps remain to be addressed after this study. The most obvious is the collection and inference of images 
taken of known RSOs from orbit. Once that is accomplished and the process is demonstrated end-to-end, several 
other questions present themselves.  
 
The mission planning section of this study illustrates how RSOs are most likely to become detectable in very 
specific and short time windows. A future system designed to detect RSOs from orbit whose presence is suspected 
or expected in a given region could make use of a tracking scheduler which specifically calculated these times. 
Previously untracked RSOs (such as debris and other previously-unnoticed objects) might be detected by simply 
looking away from the sun and into a dark background, but known RSOs associated with tracking information in 
extant catalogs requiring periodic updates would present the opportunity for optimal track update windows based on 
the closest approach and sun angles described here.  
 
Further, once several images are obtained of RSOs from orbit, the characterization of the imager and a 
generalization of properties important for on-orbit imagers in this application should be conducted to inform future 
imager design. Finally, the extensibility of this application to other imagers, including other “imagers of 
opportunity” such as star trackers, should be pursued.  
 
The > 93% reduction of link throughput requirements for RSO detection in space-based imaging, enabled by 
downlinking text-based detection location data rather than downlinking entire images and performing detection tasks 
on the ground, is the capstone achievement of this experiment so far.  At scale, this bandwidth savings offers room 
to substantially grow sensor counts in existing SDA networks without incurring communications bottlenecks.  This 
could enable improvements to sensor network angular diversity and sensor gap reduction through cheaply-
scalable/proliferatable SDA sensors, which in turn could vastly improve the quality of SDA catalogs. In short, the 
potential SDA enterprise improvements unlocked by relocating image-based detection processing from the ground 
to edge-compute resources aboard the spacecraft are exciting indeed.   
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